
Open Journal of Fluid Dynamics, 2023, 13, 32-46
https://www.scirp.org/journal/ojfd

ISSN Online: 2165-3860
ISSN Print: 2165-3852

DOI: 10.4236/ojfd.2023.131003 Mar. 24, 2023 32 Open Journal of Fluid Dynamics

Shared Memory Semi-Implicit Solver for
Hydrodynamical Instability Processes

Augusto Kielbowicz1, Diego Fernández1, Adriana Saal1, Claudio El Hasi1,2, Carlos Vigh1,3,4*

1Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Argentina
2Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Argentina de la Empresa, Buenos Aires, Argentina
3Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
4Instituto de Física Interdisciplinaria Aplicada (CONICET-UBA), Buenos Aires, Argentina

Abstract
The Advection-Diffusion Reaction (ADR) equation appears in many prob-
lems in nature. This constitutes a general model that is useful in various sce-
narios, from porous media to atmospheric processes. Particularly, it is used at
the interface between two fluids where different types of instabilities due to sur-
face mobility may appear. Together with the ADR equation, the Darcy-Brinkman
model describes the phenomena known as fingering that appear in different
contexts. The study of this type of system gains in complexity when the number
of chemical species dissolved in both fluids increases. With more solutes, the
increasing complexity of this phenomenon generally requires much compu-
tational power. To face the need for more computational resources, we build
a solver tool based on an Alternating Direction Implicit (ADI) scheme that
can be run in Central Processing Unit (CPU) and Graphic Processing Unit
(GPU) architectures on any notebook. The implementation is done using the
MATLAB platform to compare both versions. It is shown that using the GPU
version strongly saves both resources and calculation times.

Keywords
Fingering, Fluids, Simulations, Numerical Solver, Hele-Shaw Cell

1. Introduction

The numerical modeling of a natural phenomenon usually demands intensive
computational work. The dynamics of the interaction between two fluids is a typi-
cal example that requires the use of several specific equations such as the Advec-
tion-Diffusion Reaction (ADR) equation or the Darcy-Brinkman (DB) equation.

How to cite this paper: Kielbowicz, A.,
Fernández, D., Saal, A., El Hasi, C. and Vigh,
C. (2023) Shared Memory Semi-Implicit
Solver for Hydrodynamical Instability Pro-
cesses. Open Journal of Fluid Dynamics,
13, 32-46.
https://doi.org/10.4236/ojfd.2023.131003

Received: November 20, 2022
Accepted: March 21, 2023
Published: March 24, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojfd
https://doi.org/10.4236/ojfd.2023.131003
https://www.scirp.org/
https://doi.org/10.4236/ojfd.2023.131003
http://creativecommons.org/licenses/by/4.0/

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 33 Open Journal of Fluid Dynamics

This constitutes a general model useful in several physical phenomena, from
porous media to atmospheric processes, where several variables may be in-
volved and solving strategies are generally highly demanding in terms of com-
putational cost. Although we will restrict ourselves to natural phenomena, there
are other disciplines, like economy in the social science, which can be addressed
like complex systems where behaviors highly sensitive to perturbations can be
modeled mathematically to describe various economic processes [1]. Further-
more, sometimes to describe properly a system or to have a better resolution of
the numerical results, the grid refinement increases the computational require-
ments.

When solving the ADR equation to simulate miscible fluid displacement, a va-
riety of methods have been applied. They include finite differences, pseudo-spectral
methods, and modified methods of characteristics, among others. Also, finite
element methods have been applied (see [2] and references therein).

In field problems or situations with several species interacting, the increasing
complexity of the problem makes it necessary to appeal to optimization criteria
that save computational resources and reduce the time of the simulations. Clearly,
the optimization strategies are dependent on hardware and software. Usually, se-
quential codes are used, but they are not adequate for parallelization. However,
parallelization and high-performance computing resources have become funda-
mental strategies to improve numerical performance (see [3] and references there-
in). Notwithstanding this new paradigm, the procedure is not straightforward.
In shared-memory bus-based multiprocessors, when the number of processors
grows, the processors spend an increasing amount of time waiting for access to
the bus (and shared memory). This contention reduces the performance of pro-
cessors and imposes a limitation on the number of processors that can be used
efficiently in bus-based systems. For example, [4] is made a detailed study con-
cerning to the relationship between the behavior of shared-memory bus-based
multiprocessors system and its time performance.

Several examples appear in the literature where the ADR equation was applied
not only to solve environmental processes, but also most daily life issues [5]. Mean-
while, the use of Graphics Processing Unit (GPU) has deserved much attention
lately. For example, in [6], the processing time could be improved by a factor of
70 using a General-Purpose Graphics Processing Unit (GPGPU) code consider-
ing heterogeneous and anisotropic media. In [7], a GPU algorithm was applied
to hydrogeologic processes showing different benchmarks. Su et al. [8] presented
the parallelization of a well-known code (MIN3P-THCm) widely used for the si-
mulation of reactive transport modelling to assess long-term geochemical processes.
Li et al. [9] proposed parallelization codes to study hydrological problems in Ba-
sin Rivers. Other applications of GPU are possible, for example, to speed up Fast
Fourier Transformation for imaging processing [10].

Here, we use a high-level environment such as MATLAB [11] which has many
friendly tools available for profiling and visualization that also includes a battery

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 34 Open Journal of Fluid Dynamics

of NVIDIA GPU resources that allow us to implement parallelizing criteria. Our
main purpose is to have a low-cost code dedicated to modeling fingering pheno-
mena experimentally conducted in a Hele-Shaw cell to analyze several processes. To
validate the outputs, we compare them with previous experimental and numeri-
cal works. In order to validate the accuracy of our algorithm, we will compare
our results with previous experimental and numerical works [12] [13] [14].
To verify its efficiency, we will compare the computing time of several simu-
lations.

In the next section, we present the physical context. In Section 3, we present
the ADI method to solve this kind of problem and the essential characteristics of
our algorithm and discuss optimization and parallelization strategies. In Section
4, we perform quality tests of rendering and benchmarking. Finally, we present
our conclusions.

2. Physical and Mathematical Context

The phenomenon of interfacial deformation between two fluids appears in sev-
eral branches of science and technology. Its dynamics have been extensively stu-
died experimentally, theoretically, and numerically (see earlier works of Whi-
taker [15] [16], Turner et al. [17] and Homsy [18]). The mentioned deforma-
tions appear like fingers that invade the phase of lower mobility, causing the ve-
locity of advance of one fluid onto the other to be strongly increased. The insta-
bilities can be caused by density difference (Rayleigh-Taylor, a denser fluid on
top of a less dense one [19]), viscosity difference (Saffman-Taylor, a less viscous
fluid displacing a more viscous one), difference in diffusion coefficients, or by
concentration difference of the same solute in both fluids and double diffusion
[20]. For example, the case of Turner instability is found in oceans when two
water masses of different salt concentrations and at different temperatures come
into contact [21].

Lately, particular attention has been paid to the case of bimolecular reactions
of the form A + B → C [22] [23] and to the dissolution of CO2 (g) in aqueous so-
lutions (see also [24] and references therein). Rayleigh-Taylor (RT), Double
Diffusion (DD), and/or Dynamic Layer Convection type instabilities appear in
all these systems. The case of the liquid-liquid interfaces has deserved detailed
studies, both numerical and experimental. It has been shown that generally in, a
priori, stable systems; the occurrence of hydrodynamics instabilities is regulated
by the existence of chemical reactions [25]. In situations that could give rise to
both RT and DD processes, the existence of chemical reactions causes important
changes in the fingering pattern [22]. CO2 dissolution has also been extensively
analyzed in the context of its geological sequestration.

Due to the difficulties to make a realistic experiment, to analyze and character-
ize which mechanisms are at the origin of these instabilities, a typical laboratory
experimental array is a Hele-Shaw cell as shown in Figure 1, which consists of
two plates separated by a thin space. The cell has a width Ly, a highness Lx and

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 35 Open Journal of Fluid Dynamics

thickness e, with e  Ly, Lx (see more details in [23]).
To study the variety of processes that could be considered, we make an exam-

ple with a bimolecular reaction in a Hele-Shaw cell. In this way, we consider a
bidimensional stationary, laminar, incompressible, and isothermal flow. As the
problem is bidimensional, we can express the field velocity in terms of the stream
function ψ (x yv ψ= ∂ and y xv ψ= −∂).

For the case of a reactive system like A + B → C, after some mathematical
steps; the set of dynamical equations which describes the problem can be written
in its dimensionless form as [24]:

() 2
t aa v a a abδ∂ + ⋅∇ = ∇ − (1)

() 2
t bb v b b abδ∂ + ⋅∇ = ∇ − (2)

() 2
t bc v c c abδ∂ + ⋅∇ = ∇ + (3)

()2 , ,y a b cω ω−∇ = −∂ Γ (4)

(), , a b ca b c R a R b R cΓ = + + (5)

The first three equations correspond to the transport equations for two reac-
tives (a and b) and the product (c), the fourth describes the motion of the fluid
(the Brinkmann equation), in terms of the dimensionless curl of the velocity

2Vω ψ= ∇× = ∇ [24] and the last one is the density (Γ) of the fluid. v is the ve-
locity and δ is the dispersion coefficient, while R is the corresponding Rayleigh
number associated with buoyancy driven flows.

3. Numerical Strategy and Implementation

To solve the kind of problems described by the equations stated above, there are
different strategies, but usually the most frequent are pseudo-spectral codes [25]
using Fast Fourier Transform (FFT) libraries and semi-implicit finite difference
schemes [26] [27].

In pseudo-spectral codes, it is necessary to impose periodic boundary conditions
requiring to duplicate the computational domain, as shown in Figure 2(A), and

Figure 1. Left: Hele-Shaw cell of dimensions Lx, Ly and thickness e (e  Ly, Lx). Right: In-
itial setting with species A and B.

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 36 Open Journal of Fluid Dynamics

Figure 2. Modelling of two species into a Hele-Shaw cell in presence of gravity. (A) Initial
setting for FFT implementation which needs periodic boundary conditions (pbc). (B) Ini-
tial setting for ADI implementation with arbitrary boundary conditions (abc).

increasing memory resources. Meanwhile, in semi-implicit finite difference schemes
the physical and numerical domains are the same, and the boundary conditions
are imposed more straightforwardly (see Figure 2(B)). In what follows, we will use
the semi-implicit method and apply optimization techniques.

3.1. Optimization

In general, for specific scientific applications, numerical codes are written to
solve a particular problem. This means that probably there is no place for effi-
ciency and speeding up in the first step to fulfill this objective. Parallel comput-
ing is the way to follow. However, before implementing a parallel code, it is man-
datory to assure an optimal serial version of it. After that, it is necessary to choose
the proper parallelization strategy.

3.2. Vectorization

To reduce the number of computations, in MATLAB is easy to optimize through
vectorization of the set of variables in the system of Equations (1)-(5). Some ad-
vantages of implementing this strategy are concise and simple programming and
reduction of processing time.

3.3. Shared and Distributed Memory

In a shared memory architecture, a number of independent processors share a single
memory and they can directly access any data location. In distributed-memory,
messages are used to coordinate data transmission between processors. The
time needed to exchange data between processors is in favor of shared mem-
ory computers which communicate faster than distributed memory comput-
ers. CPU and GPU paradigms intelligently combine the best features of both
to achieve even further computational gains. Both are increasingly being seen
as indispensable coprocessors, instead of substitutes for each other. We ex-
ploit the parallelisms in computation via the NVIDIA CUDA programming
model.

3.4. ADI Scheme

Semi-implicit codes are conditional stable, and the stability is easy to manage

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 37 Open Journal of Fluid Dynamics

numerically. We use the Alternating Direction Implicit (ADI) method, this me-
thod computes the nearest neighbors in alternate directions in one intermediate
step (see stencil scheme in Figure 3). For more details, see [27] and references
therein. The use of this scheme has the following advantages; the boundary con-
ditions are more realistic and allow using around 90% of the integration domain
as shown in Figure 2(B).

3.5. Algorithm

We implement our model, Equations (1)-(5), in a MATLAB environment. For
the problem, we are facing on the boundary conditions used are:

⋅ =v n 0 (No flux condition) (6)

And Wood’s conditions on the vorticity [28]:

()2

3 1
2

x x
x x xx

ψ
ω ω+∆

+∆

−
= −

∆
 en 0x = (7)

()2

3 1
2

x x
x Lx xx

ψ
ω ω−∆

−∆

−
= −

∆
 en xx L= (8)

()2

3 1
2

y y
y y yy

ψ
ω ω+∆

+∆

−
= −

∆
 en 0y = (9)

()2

3 1
2

Ly y
y Ly yy

ψ
ω ω−∆

−∆

−
= −

∆
 en yy L= (10)

The algorithm follows the diagram flux shown in Figure 4, the modules pre-
sented are:
• Initialization: Initialize all variables and fields.
• Inputs: We introduce the input values of the numerical experiment, which in-

cludes concentrations values, diffusivities, kind of reactions and Rayleigh num-
bers, initial velocities.

Figure 3. ADI stencil graphic.

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 38 Open Journal of Fluid Dynamics

Figure 4. Flux diagram to solve the Advection-Diffusion Reaction (ADR) system.

• Stability condition checking: In each iteration, step is necessary to assure that

numerical information speed is lower than physical information speed:
2

22 1x iv t t
x x

δ  < < 
 

∆ ∆
∆ ∆

 (11)

2

22 1y iv t t
y y

δ 
< < 

 

∆ ∆
∆ ∆

 (12)

• DB if statement: the key point of the algorithm is to decide if this is a Dar-
cy-Brinkman problem or not.

If so, the code activates the:
• Vorticity module: The code computes the vorticity including the diffusion term,

If not, it goes directly to the following module:
• Streamline module. This module computes the streamline functions and its

boundary conditions. After that, begins the loop at the desirable final time.
• Velocity: In each step, the velocity field is computed using direct forward time

iteration and checking stability again.
• ADR (ADI) module: Computes the chemical reactive-diffusion-advection evolu-

tion. Here, we implement the ADI scheme and solve the tridiagonal system
that appears in this kind of resolution [26].

• Outputs: Finally, the outputs are saved.
Essentially, this flux diagram is for the serial version but the parallel one has

the same spirit.

4. Numerical Experiments

In the previous sections, we exposed the main ideas to develop two versions of a
code used to simulate the onset of instabilities in some physical situations, a
CPU sequential vectorized version and a GPU-CUDA parallelized version. From
here on, we are going to probe the goodness of them to reproduce the experi-
mental results. On the other hand, we will see that the codes are versatile enough
to manage an increasing number of variables. Meanwhile, the GPU version is

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 39 Open Journal of Fluid Dynamics

more efficient to process information.

4.1. Case A → A: Physical Behavior

The first example to study is a numerical experiment considering just one species.
That corresponds to gaseous CO2 absorption in a liquid medium (A → A), as it is
the case of CO2 sequestration. Figure 5 shows the concentration map compari-
son at the same final time simulation for the CPU and GPU versions, which is
consistent with the real and numerical experiments made in [12] and [13]. The
similarity between the previous and present results is remarkable. In Figure 6,
we compare each point of the grid for the results of both versions of the code,
with the same and different initial seeds to see consistency of the outputs of the
system. For different initial seeds, the solutions are qualitatively identical into a
range of 10% relative to the total concentration. Based on these results, we can

Figure 5. Concentration map of a system A(gaseous) → A(aqueous) at t = 150 (a.u), spatial resolution 128 ×
256, Δx = 0.5, Δy = 0.5, Δt = 0.75. Left: CPU version. Right: GPU version.

Figure 6. Concentration difference between CPU and GPU outputs for each species. Left: CPU seed = 500, GPU seed = 500.
Right: CPU seed = 500, GPU seed = 400. Horizontal scale from grid points 0 to 32,767. Vertical scale is the absolute differ-
ence in concentration value between simulations.

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 40 Open Journal of Fluid Dynamics

conclude that both codes correctly reproduce the experiments.

4.2. Case A → A: Benchmarking

We also consider the speed-up of the GPU version compared to the CPU ver-
sion. Figure 7 shows that a very low-resolution GPU is not convenient due to
the time needed for initialization variables requires around 40 seconds. For higher
resolutions, the optimized version is clearly faster than the CPU version.

4.3. Case A + B → C: Physical Behavior

Here, we apply both codes to a more complex situation a bimolecular reaction,
i.e., two species A and B that react and give a product C. In Figure 8, we show

Figure 7. (A) Comparison time between GPU and GPU versions as a function of the number of grid points; (B) Relative time
quotient between GPU and CPU versions.

Figure 8. Concentrations A, B and C for t =75 (a.u.), Δt = 0.5 and resolution 128 × 256. CPU version (left) and
GPU version (right) using the same noise seed.

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 41 Open Journal of Fluid Dynamics

the fingering evolution at a given time of the CPU (left) and GPU (right) ver-
sions. Both numerical results are quite like the real experiments [29].

To verify the accuracy between versions, we computed, for the simulations
corresponding to Figure 8, the difference for each grid point comparing the
concentrations A, B and C in both versions. In Figure 9(A), we showed that if
we use the same initial noise seed to generate the evolution, we obtain the same
output. In Figures 9(B)-(D), we used different initial noise seeds in CPU and
GPU versions. As seen in the figures the concentration difference for each case is
of the order of 1% - 5% with respect to the absolute concentration values for each
reactive species. The difference for concentration C in this scale is not appreciable.

4.4. Case A + B→ C: Benchmarking

To get some idea of the comparative performance of both versions of the code,
we make several experiments ranging from 50 × 50 to 900 × 900 grid points for
the same final time, the results are shown in Figure 10(A). It is clearly seen, on

Figure 9. Concentration difference between CPU and GPU outputs for each species. Concentration A: red, Concentration B: blue
and Concentration C: green. Horizontal scale from 0 to 32,767 (A) grid points, 32,768 to 65,535 (B) and 65,536 to 98,303 (C). Ver-
tical scale is the absolute difference value between simulations in the range −0.008 - 0.008. (A) cpu_seed = 100, gpu_seed = 100;
(B) cpu_seed = 4, gpu_seed = 100; (C) cpu_seed = 99, gpu_seed = 100; (D) cpu_seed = 999, gpu_seed = 100.

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 42 Open Journal of Fluid Dynamics

Figure 10. (A) Comparison time between GPU and GPU versions as a function of the number of grid; (B) Relative time quotient
between GPU and CPU versions.

a logarithmic scale, that the GPU strategy runs more than an order of magnitude
faster than the CPU one. In Figure 10(B), we show the computational time ratio
of CPU over GPU. As seen the GPU version is faster than CPU version after
around 40,000 grid points. At 900,000 grid points, the ratio of computational
time is around 18.

Both figures show that the setting and initialization of the code require extra
time for the GPU version. This time is relevant for smaller grids, but for numer-
ical domains of the order of 100 × 100 points the computational time cost is sim-
ilar. Then, for greater grids, the time consumption for the simulations strongly
grows in the case of the CPU version with respect to the GPU version. It means
that for low resolution experiments, it is not strictly necessary to use paralleli-
zation, but is mandatory when the resolution requirements imply many grid
points.

4.5. Case A + B → C + D

The codes presented here can easily be adapted to problems with an increasing
number of variables. For instance, the analysis of a bimolecular reaction is some-
times performed using color indicators to visualize how the reaction proceeds.
Recently, it was discovered that the color indicators are not passive species, but
they play a role in the development of the instabilities. In this way, the number
of involved species must be increased. To compare the performance of both
codes when the number of variables becomes greater, we study a bimolecular
reaction including a color indicator (A + B → C + D) [29]. Also, in this case, the
results of the numerical simulations using CPU and GPU versions of the code
are like the real experiments. In Figure 11, we present the map of the density
and total concentration. Allow us to observe that numerically, we can study each
species separately to get a better understanding of the physical subjacent processes.
Figure 12 shows how each reactant and product contributes to the behavior of
the whole system.

5. Conclusions

We present an optimized solver for problems related to the advection-diffusion

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 43 Open Journal of Fluid Dynamics

Figure 11. System A + B → C + D at time t = 210 in arbitrary time units, ∆t = 0.001 for a res-
olution grid 175 × 50. Initial contrast a/b = 12 [14]. Left: Density map. Right: Total concen-
tration field.

Figure 12. Concentration fields for each specie for the same experiment.

reaction equation. We developed two versions using a semi-implicit scheme. The
codes are implemented in MATLAB using vectorized architectures for CPU and
GPU-CUDA. With these tools, we can analyze the study of how to solve finger-
ing phenomena using ADR models. To stress the main ideas presented here, we
can say that:

1) The fingering problem is explicitly solved using both sequential vectorize
and GPU versions of the code.

2) The numerical results of the presented cases agree with experimental results
and other numerical results shown in previous works.

3) For low-resolution simulations, the performance of both codes is similar,
but for grids of a larger number of points, the use of GPU is more suitable. It is
seen that as the number of grid points increases, the GPU version becomes more

https://doi.org/10.4236/ojfd.2023.131003

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 44 Open Journal of Fluid Dynamics

efficient.
4) This solver code could be implemented in an arbitrary number of variables;

this will allow us to study phenomena including temperature, for example.
In summary, we get a code that can be useful even in an environment where

not much hardware power is available.

Acknowledgements

The authors are grateful for the financial support of UNGS.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Perevoznikov, E. and Lomteva, E. (2019) Modeling of Economic Processes, Instabil-

ity and Chaos. Journal of Applied Mathematics and Physics, 7, 356-363.
https://doi.org/10.4236/jamp.2019.72027

[2] Sesini, P.A., de Souza, D.A. and Coutinho, A.L. (2010) Finite Element Simulation of
Viscous Fingering in Miscible Displacements at High Mobility-Ratios. Journal of the
Brazilian Society of Mechanical Sciences and Engineering, 32, 292-299.
https://doi.org/10.1590/S1678-58782010000300013

[3] Narang, H., Wu, F. and Mohammed, A.R. (2019) An Efficient Acceleration of Solv-
ing Heat and Mass Transfer Equations with the First Kind Boundary Conditions in
Capillary Porous Radially Composite Cylinder Using Programmable Graphics Hard-
ware. Journal of Computer and Communications, 7, 267-281.
https://doi.org/10.4236/jcc.2019.77022

[4] Zuberek, W.M. (2018) Timed Petri Net Models of Shared-Memory Bus-Based Mul-
tiprocessors. Journal of Computer and Communications, 6, 1-14.
https://doi.org/10.4236/jcc.2018.610001

[5] Egidi, N., Giacomini, J., Maponi, P., Perticarini, A., Cognigni, L. and Fioretti, L.
(2022) An Advection-Diffusion-Reaction Model for Coffee Percolation. Computa-
tional and Applied Mathematics, 41, Article No. 229.
https://doi.org/10.1007/s40314-022-01929-9

[6] Carlotto, T., da Silva, R.V. and Grzybowski, J.M.V. (2019) GPGPU-Accelerated En-
vironmental Modelling Based on the 2D Advection-Reaction-Diffusion Equation.
Environmental Modelling & Software, 116, 87-99.
https://doi.org/10.1016/j.envsoft.2019.02.001

[7] Le, P.V., Kumar, P., Valocchi, A.J. and Dang, H.V. (2015) GPU-Based High- Per-
formance Computing for Integrated Surface-Sub-Surface Flow Modeling. Environ-
mental Modelling & Software, 73, 1-13.
https://doi.org/10.1016/j.envsoft.2015.07.015

[8] Su, D., Mayer, K.U. and MacQuarrie, K.T.B. (2017) Parallelization of MIN3P-THCm:
A High Performance Computational Framework for Subsurface Flow and Reactive
Transport Simulation. Environmental Modelling & Software, 95, 271-289.
https://doi.org/10.1016/j.envsoft.2017.06.008

[9] Li, T., Wang, G., Chen, J. and Wang, H. (2011) Dynamic Parallelization of Hydro-
logical Model Simulations. Environmental Modelling & Software, 26, 1736-1746.

https://doi.org/10.4236/ojfd.2023.131003
https://doi.org/10.4236/jamp.2019.72027
https://doi.org/10.1590/S1678-58782010000300013
https://doi.org/10.4236/jcc.2019.77022
https://doi.org/10.4236/jcc.2018.610001
https://doi.org/10.1007/s40314-022-01929-9
https://doi.org/10.1016/j.envsoft.2019.02.001
https://doi.org/10.1016/j.envsoft.2015.07.015
https://doi.org/10.1016/j.envsoft.2017.06.008

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 45 Open Journal of Fluid Dynamics

https://doi.org/10.1016/j.envsoft.2011.07.015

[10] Haque, M.N. and Uddin, M.S. (2011) Accelerating Fast Fourier Transformation for
Image Processing Using Graphics Processing Unit. International Conference on Sig-
nal Processing, Image Processing, and Pattern Recognition, Jeju Island, 8-10 Decem-
ber 2011, 300-309.https://doi.org/10.1007/978-3-642-27183-0_32

[11] MATLAB, 9.2.0.538062. (R2017a) The MathWorks Inc., Natick, MA.

[12] Fernandez, D., Binda, L., Zalts, A., El Hasi, C. and D’Onofrio, A. (2018) Lateral
Movements in Rayleigh-Taylor Instabilities Due to Frontiers. Numerical Analysis.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 28, Article ID: 013108.
https://doi.org/10.1063/1.4995396

[13] Binda, L., Fernandez, D., El Hasi, C., Zalts, A. and D’Onofrio, A. (2018) Lateral
Movements in Rayleigh-Taylor Instabilities Due to Frontiers. Experimental Study.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 28, Article ID: 013107.
https://doi.org/10.1063/1.4995395

[14] Kuster, S., Riolfo, L.A., Zalts, A., El Hasi, C., Almarcha, C., Trevelyan, P.M.J. and
D’Onofrio, A. (2011) Differential Diffusion Effects on Buoyancy-Driven Instabilities
of Acid-Base Fronts: The Case of a Color Indicator. Physical Chemistry Chemical Phys-
ics, 13, 17295-17303. https://doi.org/10.1039/c1cp21185d

[15] Whitaker, N. (1990) Numerical Solution of the Hele-Shaw Equations. Journal of Com-
putational Physics, 90, 176-199. https://doi.org/10.1016/0021-9991(90)90202-C
http://www.sciencedirect.com/science/article/pii/002199919090202C

[16] Whitaker, N. (1994) Some Numerical Methods for the Hele-Shaw Equations. Jour-
nal of Computational Physics, 111, 81-88. https://doi.org/10.1006/jcph.1994.1046

[17] Turner, J. (1974) Double-Diffusive Phenomena. Annual Review of Fluid Mechanics,
6, 37-54. https://doi.org/10.1146/annurev.fl.06.010174.000345

[18] Homsy, G.M. (1987) Viscous Fingering in Porous Media. Annual Review of Fluid
Mechanics, 19, 271-311. https://doi.org/10.1146/annurev.fl.19.010187.001415

[19] Sharp, D.H. (1984) An Overview of Rayleigh-Taylor Instability. Physica D: Nonli-
near Phenomena, 12, 3-18. https://doi.org/10.1016/0167-2789(84)90510-4

[20] Lemaigre, L., Budroni, M.A., Riolfo, L.A., Grosfils, P. and De Wit, A. (2013) Asym-
metric Rayleigh-Taylor and Double-Diffusive Fingers in Reactive Systems. Physics
of Fluids, 25, Article ID: 014103. https://doi.org/10.1063/1.4774321

[21] You, Y. (2002) A Global Ocean Climatological Atlas of the Turner Angle: Implica-
tions for Double-Diffusion and Water-Mass Structure. Deep Sea Research Part I: Ocea-
nographic Research Papers, 49, 2075-2093.
https://doi.org/10.1016/S0967-0637(02)00099-7

[22] Trevelyan, P.M.J., Almarcha, C. and De Wit, A. (2015) Buoyancy-Driven Instabili-
ties Around Miscible A + B → C Reaction Fronts: A General Classification. Physical
Review E, 91, Article ID: 023001. https://doi.org/10.1103/PhysRevE.91.023001

[23] Zalts, A., El Hasi, C., Rubio, D., Urena, A. and D’Onofrio, A. (2008) Pattern Forma-
tion Driven by an Acid-Base Neutralization Reaction in Aqueous Media in a Gravi-
tational Field. Physical Review E, 77, Article ID: 015304.
https://doi.org/10.1103/PhysRevE.77.015304

[24] Tan, C.T. and Homsy, G.M. (1986) Stability of Miscible Displacements in Porous
Media: Rectilinear Flow. The Physics of Fluids, 29, Article No. 3548.
https://doi.org/10.1063/1.865832

[25] Mangiavacchi, N., Coutinho, A.L.G.A. and Ebecken, N.F.F. (1997) Parallel Pseu-
do-Spectral Simulations of Nonlinear Viscous Fingering in Mis-Cible Displacements.

https://doi.org/10.4236/ojfd.2023.131003
https://doi.org/10.1016/j.envsoft.2011.07.015
https://doi.org/10.1007/978-3-642-27183-0_32
https://doi.org/10.1063/1.4995396
https://doi.org/10.1063/1.4995395
https://doi.org/10.1039/c1cp21185d
https://doi.org/10.1016/0021-9991(90)90202-C
http://www.sciencedirect.com/science/article/pii/002199919090202C
https://doi.org/10.1006/jcph.1994.1046
https://doi.org/10.1146/annurev.fl.06.010174.000345
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1016/0167-2789(84)90510-4
https://doi.org/10.1063/1.4774321
https://doi.org/10.1016/S0967-0637(02)00099-7
https://doi.org/10.1103/PhysRevE.91.023001
https://doi.org/10.1103/PhysRevE.77.015304
https://doi.org/10.1063/1.865832

A. Kielbowicz et al.

DOI: 10.4236/ojfd.2023.131003 46 Open Journal of Fluid Dynamics

WIT Transactions on the Built Environment, 32, 498-506.

[26] Tan, C.T. and Homsy, G.M. (1988) Simulation of Nonlinear Viscous Fingering in
Miscible Displacement. The Physics of Fluids, 31, 1330-1338.
https://doi.org/10.1063/1.866726

[27] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1993) Numerical
Recipes in Fortran 77: The Art of Scientific Computing. 2nd Edition, Cambridge
University Press, Cambridge, MA.

[28] Woods, L.C. (1954) A Note on the Numerical Solution of Fourth Order Differential
Equations. Aeronautical Quarterly, 5, 176-184.
https://doi.org/10.1017/S0001925900001177

[29] Kim, M.C. and Cardoso, S.S. (2019) Diffusivity Ratio Effect on the Onset of the
Buoyancy-Driven Instability of an A + B → C Chemical Reaction System in a Hele-Shaw
Cell: Numerical Simulations and Comparison with Experiments. Physics of Fluids,
31, Article ID: 084101. https://doi.org/10.1063/1.5094913

https://doi.org/10.4236/ojfd.2023.131003
https://doi.org/10.1063/1.866726
https://doi.org/10.1017/S0001925900001177
https://doi.org/10.1063/1.5094913

	Shared Memory Semi-Implicit Solver for Hydrodynamical Instability Processes
	Abstract
	Keywords
	1. Introduction
	2. Physical and Mathematical Context
	3. Numerical Strategy and Implementation
	3.1. Optimization
	3.2. Vectorization
	3.3. Shared and Distributed Memory
	3.4. ADI Scheme
	3.5. Algorithm

	4. Numerical Experiments
	4.1. Case A → A: Physical Behavior
	4.2. Case A → A: Benchmarking
	4.3. Case A + B → C: Physical Behavior
	4.4. Case A + B→ C: Benchmarking
	4.5. Case A + B → C + D

	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

