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Abstract 
The hydrodynamics of the capillary flow of a viscous-plastic liquid in cylin-
drical rectilinear pores is considered, as a result of which the structural velocity 
distribution over the pore cross section is obtained. Analytical solutions are 
proposed for the equations of hydraulic diffusion and nonlinear filtration for a 
non-Newtonian fluid in a cylindrical porous medium. It is noted that when a 
non-Newtonian fluid flows in a porous medium, the filtration equations take a 
nonlinear form due to the effective viscosity, shear, and yield stresses taken 
into account in its structure. The proposed solutions make it possible to evalu-
ate the state of the porous medium and its main parameters (permeability, hy-
draulic diffusion, and effective viscosity coefficients). The obtained solutions 
are compared with existing experimental data for non-Newtonian oils. 
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1. Introduction 

The flow of non-Newtonian fluids in porous media is accompanied by disor-
dered structure formation in the volume. A special case of structure formation is 
the formation of disordered structures in non-Newtonian oil due to the presence 
in it of various particles of natural properties and asphalt-resinous substances [1] 
[2] [3] [4] [5], leading to changes in the rheological properties of the liquid. 

The development and construction of deterministic models of non-stationary 
phenomena in porous media with more complex internal geometry of pores and 
channels are limited by significant mathematical difficulties associated with the 
complex structure and structure of a porous medium characterized by structural 
anisotropy. The extremely small size of the pore channels, their irregular shape, 
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their random coordination, and dispersion in the volume of the reservoir, and 
the large surface of the rough walls determine that the geometry of the pore space 
is not among the measured characteristics of a porous medium obtained by ac-
cumulating the main types of local information [1]. The structure (granular, frac-
tured, mixed) and the qualitative and quantitative composition of the reservoir 
(clay, sand, limestone, dolomites, hard rock, etc.) are associated with the condi-
tions of rock formation, their random distribution, and location in the volume 
do not allow to unambiguously determine or evaluate the main reservoir parame-
ters (porosity, hydraulic diffusion, and permeability coefficients), on which all hy-
drodynamic parameters and well productivity depend. In this regard, the prop-
erties of the reservoirs of various fields are characterized by a change in porosity 
and permeability in all directions over a wide range. The hydrodynamic theory 
of transport in solid porous formations is a quasi-continuum theory, the object 
of which is continuous media. For each considered real medium, by averaging 
the characteristics of a given transfer process over a set of discrete elements, aver-
age values are introduced that characterize the local continuous medium. Thus, 
continuous media are not real bodies themselves, but their mathematical models. 
Given the above, it is advisable to consider a homogeneous isotropic porous me-
dium that does not have a set of directions internally related to the geometry of 
the pores. 

It is known that the motion of a viscous fluid in a porous medium is described 
by the Navier-Stokes equation. However, due to the inhomogeneity of the po-
rous medium, the use of this equation is difficult. Considering an isotropic po-
rous medium, the authors [6] [7] present the Darcy-Forchheimer filtration equation 
in the form 

( ) 1
c eff p cP kρ η βρ−∇ − = +f V V V                  (1) 

The works [8] [9] [10] [11] present filtration in an isotropic porous medium, 
described by the Navier-Stokes-Brickman equation, which combines the hydro-
dynamic equation with the filtration equation 

( ) ( ) 1
eff c rff p ck f P g Pη ρ η ρ−−∇ ∇ + ∇ + = −∆ = − ∆V V V V         (2) 

Here, f is the external gravitational force. 
In this equation, the first and second terms determine the viscous and convec-

tive fluid flow, and the subsequent terms characterize the filtration through a po-
rous medium, considering body forces. If we neglect the viscous and convective 
terms, then we obtain the Darcy filtration equation in the form 

1
rff pk Pη − = −∆V                         (3) 

The transfer of some substance (mass, heat, and momentum) Ψ in the as-
sumed continuous porous medium (inside the reservoir) is described by the fol-
lowing equation. 

( )divJ w
t ψ

ε∂ Ψ
+ = Ψ

∂
                      (4) 
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Here, ( )Jψ Ψ  is the flow of substance in a unit volume of the reservoir, ( )w Ψ  
is the amount of transported substance formed within a unit volume of the res-
ervoir per unit time. Substituting (4) into expression (3), after a series of simple 
transformations, for non-Newtonian fluids we obtain [1]. 

( )( )eff c p p
i i

P Pk w
t x x

η τ β εβ
 ∂ ∂ ∂

+ − = ∂ ∂ ∂ 



              (5) 

Here, 1 ,c p
c P P

ρ εβ β
ρ

∂ ∂
= =

∂ ∂
—coefficients of isothermal compressibility of  

liquid and pores. Equations (3) and (5) serve as the basis for calculating the proc-
esses of filtration of non-Newtonian fluids in a porous medium. 

2. Capillary Flow of a Non-Newtonian Fluid in Pores 

Let us consider the flow of a viscous-plastic Bingham fluid, 0τ τ ηγ= +   in cy-
lindrical rectilinear pores in the absence of external forces. The equation of hy-
drodynamics in this case (2) for the stationary case in cylindrical coordinates 
will be represented as 

1 1

eff

V Pr
r r r xη
∂ ∂ ∂  = ∂ ∂ ∂ 

                     (6) 

The boundary conditions for the flow of a viscous-plastic fluid in a pipe are 
shown in Figure 1. 

0 0, , 0, 0eff
Vr R V
r

τ τ τ τ η ∂
= < = + = =

∂
               (7) 

0 0, , 0, 0eff
Vr R V
r

τ τ τ τ η ∂
= > = + ≠ =

∂
               (8) 

Integrating condition (7), we have 

0

eff

V R
τ
η

= −                           (9) 

Integrating condition (8), we obtain 

0

0

1
eff

R
V

τ τ
η τ

 
= − 

 
                       (10) 

Integrating expression (6) twice, we obtain 

21
4 eff

PV r A
xη

∂
= − +

∂
                     (11) 

Here A is the integration coefficient, equal to the first boundary condition (7) 

2 01
4 eff C

PA R R
x

τ
η η

∂
= −

∂
                    (12) 

and for the second boundary condition (8) 

2 0

0

1 1
4 eff

RPA R
x

τ τ
η η τ

 ∂
= − − ∂  

                 (13) 
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As a result of solving the hydrodynamics of Equation (6) for a viscous-plastic 
fluid described by the expression 0 d dV rτ τ η= +  in a pore with boundary con-
ditions (7) and (8) and assuming that, P x P l∂ ∂ = ∆ , taking into account (11)-(13), 
in the simplest case, we obtain the following distribution for the velocity currents 
(Figure 1). 

( )

( )

2
0

0

2 2
0

02
0

21 ,
4

41 1 ,
4

eff

eff

PR lV r r r
l R P

PR r l rV r r r R
l R P rR

τ
η

τ
η

∆  = − < ∆ 

  ∆
= − − − ≤ <  ∆   

          (14) 

where l is the pore length, r0 is the plug radius. It is important to note that the 
effective viscosity of a viscous-plastic fluid depends on its composition. For 
heavy oils, the effective viscosity depends on the content of the solid phase, wa-
ter droplets and asphalt-tar substances in the oil. The deposition of these parti-
cles on the inner surface of the pores leads to the formation of a dense layer of 
particles on the inner surface of the pores, which leads to a significant change in 
the flow structure. For the case of the formation of a dense layer of particles on 
the inner surface of a pore with a thickness δ , which is typical for the flow of a  

viscous-plastic fluid and, assuming that 0
0

, 1R R
R
δβ β= = − , then these expres-

sions (14) for the quasi-stationary case will be presented as 

( )

( )

2 2
0 0

0
0

2 2 2
0 0

0 02 2
0 00

21 ,
4

41 1 ,
4

eff

eff

PR lV r r r
l R P

PR r l rV r r r R
l R P rR

β τ
η β

β τ
β

η ββ

 ∆
= − < ∆ 

  ∆
= − − − ≤ <  ∆   

      (15) 

It should be noted that if 1β = , then the thickness of the deposits is absent, 
at 0β = , then 0Rδ = , there is a complete blockage of the pore and the flow 
velocity ( ) 0V r → , i.e. throughput is reduced to almost zero. 

This distribution of velocities in hydrodynamics is called the “structural 
regime of motion”. Note that the presence of various dispersed particles in 
non-Newtonian oil leads to the formation of coagulation structures and aggre-
gates that fill the pore space until condition 0τ τ=  is met, at which the flow  

 

 
Figure 1. Velocity distribution of a viscous-plastic fluid over the pore cross section. 
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0V =  completely stops. Obviously, for a system of pores forming a porous me-
dium with a complex geometry, the flow of a viscous-plastic fluid will be described 
by the equations of hydraulic diffusion and filtration. 

3. Equation of Hydraulic Diffusion in a Porous Cylindrical 
Medium 

Hydraulic diffusion Equation (5) characterize the pressure distribution in a po-
rous medium with allowance for diffusion and convective momentum transfer. 
The existing literature offers various options for solving the equation of cylin-
drical filtration, based on the Darcy equation [12] [13], for an infinite porous 
medium. 

Having assumed the cylindrical shape of a porous medium (Figure 2), the 
general equation of hydraulic diffusion (5) for its final dimensions will be repre-
sented as 

( )( )

( )0, ; , ; 0,

m
e

i i e e

P P PV r b t P P
t r r r r

r R P P r R P P t P P r

χε ∂ ∂ ∂ ∂ + = − − ∂ ∂ ∂ ∂ 
= = = = = =

            (16) 

Here, 
( )( )

p

eff c p

k
χ

η τ β εβ
=

+





—coefficient of hydraulic diffusion. This linear  

differential equation is derived based on the synthesis of the continuity equation, 
the dynamic filtration equation—Darcy’s law, the equation of state of a porous 
medium and a saturating liquid. 

The equation makes it possible to calculate the distribution of pressure along 
the radius of the porous medium ( )0P r  depending on the contour pressure 
and porosity of the medium. To solve this boundary value problem, we introduce  

dimensionless variables 
0

V
V

υ = , 
e

r
R

ρ = , 0

e

V t
R

τ = , eu P P= −  considering 

which we transform Equation (16) to a dimensionless form 

( )1 1 mu u u t u
Ke

ε υ ρ γ
τ ρ ρ ρ ρ

 ∂ ∂ ∂ ∂
+ = − ∂ ∂ ∂ ∂ 

             (17) 

with boundary conditions 
 

 
Figure 2. Schematic diagram of an oil reservoir: ,i eR R —internal and external radii of 

the medium, respectively, ,i eP P —internal and external pressure. 
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( )0, , , , 1, 0, 0,i
c i e e e

e

R
r R u P P r R u u P r P

R
ρ ρ τ= = = − = = = = = −     (18) 

Here, 0 e
K

V R
Ke ReQ

χ
= = —a criterion that characterizes the ratio of convective  

transfer to momentum transfer by hydraulic diffusion and represents an analogy 
of the number Pe in the hydrodynamics of fluid flow and the number Pe in the 
processes of mass and heat transfer, χ is the hydraulic diffusion coefficient,  

0 e

c

V R
Re

ν
= —the Reynolds number, ( ) ( ) 0t b t V Rγ = , s

KQ
ν
χ

=  is a criterion  

characterizing the physical properties of the fluid and reservoir, similar to the 
Schmidt number for mass transfer and the Prandtl number for heat transfer. The 
value of the criterion determines the nature and area of transfer and filtration of 
fluid in the reservoir and depends on the flow rate and the coefficient of hydrau-
lic diffusion. It should be noted that for a viscous-plastic fluid, we have  

2RKe γ
χ

=


, and for a power-law non-Newtonian fluid we have  

20 n n

p

k
Ke V R

k
β −= , c pβ β εβ= + , 

2 2 2

0 0

n n n
C CR V R

k k
Re

ρ γ ρ− −

= =


. 

Note that Equation (16) is questioned on the grounds that it comes from ex-
periments with homogeneous isotropic porous media, although in a real situa-
tion the porous medium is inhomogeneous, with a characteristic distribution of 
pores in the volume and their geometric structure inherent in each layer. Obvi-
ously, such a simplification often makes it possible to use empirical expressions 
when modelling these systems. 

The solution of Equation (17) with boundary conditions (18) with small con-
vective transfer can be carried out by the method of separation of variables, set-
ting 1m =  and introducing the following transformation [14] [15] 

( ) ( ) ( ),u ρ τ ψ τ ϕ ρ=                      (19) 

Substituting expression (19) into (17) and dividing the variables into separate 
terms, we obtain the following two equations 

( )
2

2
2

2

1

1 0

t
t Ke
ψ µγ

ε

ϕ ϕ µ ϕ
ρ ρρ

 ∂
= − + ∂  

∂ ∂
+ + =

∂∂

                    (20) 

where 2µ  are eigenvalues. The solution of the first Equation (20) will be rep-
resented as 

( ) ( )
2

1
1exp dC

Ke
µ τψ τ γ τ τ
ε ε

 
= − − 

 
∫                (21) 

The second expression (20) is the zero-order Bessel equation of the real argu-
ment. Therefore, the limited solution of the second Equation (20) can be repre-
sented as 
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( ) ( )2 0C Jϕ ρ µρ=                       (22) 

Finally, solution (17), taking into account (20) and (22), will be represented as 

( ) ( ) ( )
2

00

1, exp dn
n nnu A J

Ke
µ τ

ρ τ µ ρ γ τ τ
ε ε

∞

=

 
= − − 

 
∫∑         (23) 

where ( )J r  is the Bessel function, nµ  are the roots of the equation ( )0 0nJ µ = , 
obtained according to the second condition (18) and are equal to:  

1 2 32.4048; 5.5201; 8.6537;µ µ µ= = =  . 
The constant coefficients of the series are determined according to the third 

condition (9) and the conditions for the orthogonality of the Bessel functions at 

i eR R  in the form 

( )( ) ( )
( )

1
0 00

2
1

2 de n
n

n

P r P J
A

J

ρ µ ρ ρ

µ

−
=

  

∫                (24) 

The final general solution (17) can be represented as 

( ) ( )
2

01

1, exp d exp n
e n nn

e

rP r t P t t A J
R Ke

µ τ
γ µ

ε ε
∞

=

   = + − −   
     
∫ ∑     (25) 

Due to the large values of 2
nµ , the series (25) converges rapidly and, there-

fore, in practical calculations, only the first terms of the series can be used. This 
allows using simpler expressions to estimate the main hydrodynamic character-
istics of a porous medium. Let us consider special cases of solving the filtration 
equation. 

When solving applied problems, Equation (16) under certain assumptions is 
simplified to a simpler form, and therefore, we will consider special cases of solv-
ing Equation (16): 

1) Provided that 1Ke , i.e., for large values of the hydraulic diffusion coef-
ficient, Equation (16) is transformed into the equation of unsteady cylindrical 
filtration 

d
d
P Pr
t r r r

χε ∂ ∂ =  ∂ ∂ 
                     (26) 

with boundary conditions 

( )00, ; , ; ,e e i it P P r r R P P r R P P= = = = = =  
Solution (26) is obtained, similarly to the above, in the form 

( ) 2
0 21, expe n n nn

e e

rP r t P A J t
R R

χµ µ
ε

∞

=

  
= + −  

   
∑           (27) 

Here the coefficients nA  are determined from Equation (24). Having defined 
the derivative in (27) in the form 

2
1 21 expn

n nn
e e

AP rJ t
r R e R

χµ µ
ε

∞

=

 ∂  = − −  ∂    
∑              (28) 

We find the flow rate of the liquid depending on the time at ir R=  
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( )
( )

2
1 21

2
expp i

n n nn
eff e e

hk R
q A J t

R R
ε χµ µ

η τ ε
∞

=

π   
= −  

   
∑           (29) 

2) Consider the stationary solution of the filtration Equation (16), setting 
d 0
d
P
t
≈ . Then we have the following equation 

0Pr
r r r
χ ∂ ∂  = ∂ ∂ 

                       (30) 

, ; ,e e i ir R P P r R P P= = = =  
This equation can be represented as 

0Pr
r r r
χ ∂ ∂  = ∂ ∂ 

                       (31) 

Integrating expression (31) twice, taking into account the boundary condi-
tions, we finally obtain 

( ) ln
ln

e i
e

e

i

P P
P r P r

R
R

−
= −

 
 
 

                    (32) 

Let us determine the fluid filtration rate in a porous medium and determine 
the fluid flow rate in the form 

( )
( )

2
2

ln

p e i
e

eff e

i

hk P P
q hR V

R
R

ε
η τ
π −

= π =
 
 
 

                (33) 

Equation (33) in the relevant literature [16] [17] is called the Dupuis formula, 
although it is a particular case of solving the stationary filtration Equation (16) 
for 1eK  . 

3) For large values of the number of 1eK  , i.e. for small values of the hy-
draulic diffusion coefficient, Equation (16) is transformed to the form 

( )( )

0

d
d
0,

m
e

P b t P P
t

t P P

ε = − −

= =
                     (34) 

In particular, if 1m = , which is confirmed experimentally for many oils, the 
solution to Equation (34) can be represented as 

( ) ( ) ( )
0

1exp de e i
t

P t P P P b t t
ε

 = − − −  ∫               (35) 

The choice of the structure and type of coefficient ( )b t  is carried out on the 
basis of experimental studies of the pressure recovery curve, taking into account 
the experience and intuition of the researcher. It should be noted that in the existing 
literature, the experimental data are presented in the coordinates ( ) ~ lnP t t , based 
on this, in the first approximation, we can take 

( ) ( ) ( ) ( ) ( ) 1

0
ln , ln d ln ln

1
tm m mb t t t t t

m
αα α += =
+∫           (36) 
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Then expression (35) will be presented in the form 

( ) ( ) ( )

( )

1
0

1

exp ln

lnexp
ln

m
e e i

m

e e i
p

P t P P P m t

tP P P
τ

+

+

 = − − − 
  
 = − − −     

              (37) 

Here, 
( ) ( )0 1

1
1 ln

m
p

m
m
α

ε τ
+= =

+
, pτ —relaxation time. It is important to note  

that expression (37) is not the only formula for estimating the pressure recovery 
curve, since other options for determining the coefficient ( )b t  are also possi-
ble. Figure 3 below shows a comparison of experimental data from the literature 
[3] [17] and our own studies of the pressure distribution curve in an oil well with 
their calculated values according to Formula (37):  

( ) ( )30.3 0.235exp 0.05 ln ,МРаP t t = − −  . 

The advantage of Equation (37) is that it describes the entire pressure recovery 
curve as a single equation, which makes it possible to estimate the hydrodynamic 
properties of the oil reservoir without additional tangents or approximations of 
the quasi-linear part of the curve. As shown in Figure 3, the time derivative of 
pressure (curve 2) practically does not become constant anywhere, which indi-
cates the absence of a linear section of the pressure recovery curve. Until now, 
the estimation of the parameters of a porous medium (the coefficients of hy-
draulic diffusion and permeability has been carried out by approximating the 
experimental data of the steady-state region with linear functions, which leads to 
significant errors. In this case, all information about the pressure recovery curve  

 

 
Figure 3. Comparison of the experimental pressure recovery curve [18] with the calculated values (37) 
( 02, 0.05m m= = ); 1: pressure recovery curve; 2: derivative of pressure with respect to time. 

https://doi.org/10.4236/ojfd.2023.131002


G. I. Kelbaliev et al. 
 

 

DOI: 10.4236/ojfd.2023.131002 25 Open Journal of Fluid Dynamics 
 

is not used, and in the steady region of this curve, information about its origin is 
lost, i.e., the hereditary memory of the curve is lost. Consider the determination 
of hydrodynamic parameters for a shut-in well using the solution of the filtra-
tion equation for a limited reservoir with 1Ke . To calculate the hydrody-
namic characteristics of the reservoir, it is desirable to use the obtained analytical 
solutions (25) and (27). Since the series (25) and (27) converge rapidly for the 
given values of nµ , it suffices to confine ourselves to the first term and determine  

that ( )1 2.408 0.52J ≈ , 
( ) ( )1

2
1.5974

0.52 2.408
e i

e i

P P
A P P

−
= − = − −

×
. Solution (27) 

can be written as 

0 1 21.5974 exp 5.783e i

e i e e

P P R
J t

P P R R
χµ

ε
  −

= −  −    
           (38) 

From this equation, assuming that i eR R  or 410i

e

R
R

−≈  and  

( )4
0 2.408 10 1.0J −× ≈ , by simple transformations, we find an estimate for the 

effective coefficient of hydraulic diffusion in the form 

( )2 0.6260.1729
ln ee

e i

P PR
t P P
ε

χ
−

= −
−

                (39) 

Using the dependence of pressure on time (Figure 3), with the following data: 
lnt = 3.5, t = 33.115 hour = 119214 sec, Re = 300m, Pe = 0.3 MPa, Pi = 0.06 

MPa, P = 0.27 MPa, ε ≈ 0.2, from Equation (39) we determine that the coeffi-
cient of hydraulic diffusion is. Below in Figure 4 shows the interpretation of the 
surface of the change in the coefficient of hydraulic diffusion from time and 
pressure. Thus, for a sufficiently large area of the pressure recovery curve, the  

 

 
Figure 4. Graphical interpretation of the dependence of the hydraulic diffusion coefficient on time and pres-
sure. 
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hydraulic diffusion coefficient tends to a constant value for all values of time and 
pressure, equal to 2 27.181 10 m secχ −= × , although for small values of these 
parameters it gives a significant deviation. The dimensions of this area are  

determined from the condition 
2

2.3712eR
t

ε
χ

> , which corresponds to the condi-

tion 0P
t

∂
<

∂
 (Figure 3). This means that Formula (39) can be suitable for  

calculating the hydraulic diffusion coefficient for various values of time and pres-
sure of the pressure recovery curve in the indicated region. 

The permeability coefficient, using the value of the hydraulic diffusion coeffi-
cient, is determined by the following formula 

( )p tff c fk χη β εβ= +
 

4. Filtration Rate of a Viscous-Plastic Liquid in a Porous  
Medium 

Anomalous viscous-plastic fluids differ in their properties from ordinary fluids 
and their rheological description obeys the laws of flow of non-Newtonian Bing-
ham fluids. 

0τ τ ηγ= +                           (40) 

Expressing the viscosity of a viscous-plastic fluid in terms of the effective vis-
cosity in the form [1] [2] 

0
eff

τ τ
η η

τ
−

=
−

,                       (41) 

we obtain a nonlinear filtration equation for a structured oil system 

01p
p

eff

k PV
x

τ
η τ

∂ = − −  ∂ 
                    (42) 

At 0τ τ , this expression transforms into the usual Darcy equation for un-
structured oil. An analysis of experimental data on the filtration of non-Newtonian 

oils made it possible to approximate the ratio 0τ
τ

 in the form 

( )0 0

gradln
grad

n
P
P

τ α
τ

 
=   

 
                     (43) 

Here, α  is a coefficient determined based on experimental data, n is an ex-
ponent. The rheological equation can be written in the form (Figure 5). 

( )( )0 0exp nτ τ α γ γ=                        (44) 

Expression (41) can be considered as a new rheological equation describing 
the viscous-plastic flow of non-Newtonian fluids. Obviously, the exponent n, 
depending on the temperature and properties of the porous layer, characterizes 
the complete destruction of the structure. To date, many concepts and models 
have been put forward to describe the shear flow of oil dispersed systems, resulting 
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in a wide variety of rheological dependences of effective viscosity on shear stress 
τ  and shear rate γ . 

Using the experimental data of the work [3] and Equations (42) and (43), we 
represent the filtration rate in the following form 

( ) ( )( )( )( )6
2 2 01 exppV K T T z z zα= − −              (45) 

here ( )2 0.1422exp 0.0247Tα = − , ( ) ( )5
2 1.4 10 exp 0.0364K T T−= × ,  

gradz P= , ( )0 0gradz P= , 2 p effK k η= —fluid mobility. The high value of the 
exponent is explained by a sharp drop in viscosity during the destruction of 
the formed structure. Figure 6 below shows a comparison of the calculated 
(45) and experimental values of the filtration rate of abnormal oils at different  

 

 
Figure 5. Dependence of shear stress on shear rate at n, equal to: 1—5.0; 2—3.0; 3—2.0; 
4—1.5; 5—1.0; 6—0.8; 7—0.4. 

 

 
Figure 6. Change in filtration rate of abnormal oils for different temperatures: 1—T = 
24˚C; 2—T = 50˚C; 3—T = 80˚C. 
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temperatures for different fields [3]. 
The change in the effective viscosity of anomalous oil from the pressure gra-

dient based on experimental data and expression (45) is determined by the em-
pirical formula 

( ) ( ) ( )6
0 exp 30 28exp 26.65eff z zη η η η∞ ∞= − − + − +          (46) 

here, 0 ,η η∞ —initial ( 0τ τ≤ ) and final oil viscosity ( 0τ τ ). 
In Figure 7, the solution of Equation (46) is compared with the experimental 

data at a temperature of 24 CT =   [3]. 
As follows from Fig., at low flow rates, the effective viscosity of the abnormal 

oil depends on the shear rate or on the pressure gradient, and at 0 Pτ τ τ< ≤ , the 
effective viscosity decreases from the maximum 0η  value η∞  to the minimum 
and then stabilizes. A sharp decrease in the effective viscosity of non-Newtonian 
oil indicates an instantaneous destruction of the structure with increasing shear 
stress and a high nonlinear dependence on shear stress or pressure gradient. 

As follows from Figure 7, the ratio 
eff

k
η

 or the mobility of oil at shear stress  

values 0τ τ≤  increases very slowly and practically remains constant; at  
0 Pτ τ τ< ≤ . The mobility of oil increases intensively to a maximum value, and 

the transition from the minimum to the maximum value occurs in a narrow range 
of pressure gradient changes and stabilizes only at pressure gradient values cor-
responding to the limiting destruction of the structure Pτ τ> . 

5. Results and Discussions 

Problems of the rheology of viscous-plastic fluids associated with the solution of 
various problems of hydrodynamics and filtration are considered. A solution to  

 

 
Figure 7. Dependence of viscosity on the pressure gradient during the destruction of dis-
ordered structures in oil. 
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the problems of the flow of viscous-plastic liquids in capillary pores is proposed, 
as a result of which the structure of the flow and the distribution of the flow ve-
locity in various regions are determined (14). These equations consider the for-
mation of a dense layer of particles on the inner surface of the pores and their 
influence on the distribution of the flow velocity over the cross section (15). A 
solution to the equation of hydraulic diffusion of viscous-plastic fluids for a cy-
lindrical porous medium is proposed, taking into account the rheological prop-
erties (25) that are important for estimating the coefficients of hydraulic diffu-
sion (39) and the permeability of the porous medium. A nonlinear equation for 
the filtration of viscous-plastic fluids (42) and a rheological model are proposed 
that consider the effective viscosity and shear stress (44). All proposed models are 
tested on experimental data for non-Newtonian oil. The proposed models allow for 
solving important applied problems related to the transport and production of 
viscous-plastic oil in porous media. 
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Symbols 

kp  permeability coefficient 
R   radius 
υ    immeasurable speed 
P   pressure 
T   temperature 
V   fluid velocity 
V0   average speed 
Vp  filtration rate 
β   dimensionless deposit thickness 

,c fβ β  the elasticity coefficients of the liquid and the skeleton of the porous 
medium 

Cρ   the density of the liquid 
r   current radius 
χ    hydraulic diffusion coefficient 
δ    particle layer thickness 
ε    porosity; medium density 
γ   shear rate 
η    viscosity 
τ    shear stress 

effε   the effective viscosity of the liquid 

0τ   yield point 

pτ   relaxation time 
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