
Open Journal of Fluid Dynamics, 2022, 12, 304-320 
https://www.scirp.org/journal/ojfd 

ISSN Online: 2165-3860 
ISSN Print: 2165-3852 

 

DOI: 10.4236/ojfd.2022.124015  Dec. 15, 2022 304 Open Journal of Fluid Dynamics 
 

 
 
 

Mathematical Formulation of Bubble 
Formation after Compressible Boundary Layer 
Separation: Preliminary Numerical Results 

Michail A. Xenos 

Section of Applied and Computational Mathematics, Department of Mathematics, University of Ioannina, Ioannina, Greece 

 
 
 

Abstract 
Laminar boundary layer (BL), under adverse pressure gradient, can separate. 
The separated shear layer reattaches to form a laminar separation bubble. Such 
bubbles are usually observed on gas turbine blades, on low Reynolds number 
wings and close to the leading edges of airfoils. Presence of bubbles has a wea-
kening effect on the performance of a fluid device. The understanding of the 
prevailing mechanism of the separation bubble and ways to control it are essen-
tial for the efficient design of these devices. This is due to the significance of 
drag reduction in these various aerodynamic devices, such as gas turbines, 
re-entry space vehicles and airfoils. This study introduces a two-dimensional 
mathematical formulation of bubble formation after flow separation. The la-
minar BL equations with appropriate boundary conditions are dimensionalized 
using the Falkner-Skan transformation. Additionally, using the Keller-box me-
thod, the nonlinear system of partial differential equations (PDEs) is numeri-
cally solved. This study presents preliminary numerical results of bubble for-
mation in low Mach numbers. These results reveal that after separation, a la-
minar bubble is formed in all studied cases, for Mach numbers, M = 0.2, 0.33 
and 1.0. The flow after separation reverses close to the wall and finally reattach-
es downstream, in a new location. As the Mach number increases, this effect is 
more intense. After reattachment, the BL is again established in a lower energy 
level and the velocity field is substantially reduced, for all cases. 
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1. Introduction 

Laminar boundary layer (BL) is highly influenced by an adverse pressure gra-
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dient. This pressure gradient could lead to flow separation causing undesired ef-
fects. As a countermeasure of flow separation, the idea of controlling the BL flow 
is introduced. Many researchers have proposed several control techniques to re-
tain flow separation. 

Controlling flow separation. Methods for controlling fluid flow separation by 
electromagnetic forces date to the 60s. One of the first who studied the incom-
pressible BL flow over a flat plate in the presence of a uniform magnetic field, 
normal to the plate, was Rossow [1]. Additionally, Bleviss studied the magneto-
hydrodynamic (MHD) effects on hypersonic flow under the influence of a uni-
form magnetic field, imposed normal to the wall [2]. Recently, the influence of a 
magnetic field on the BL flow has attracted attention as a control technique [3]. 
The magnetic field can delay flow transition from laminar to turbulent. It can 
also delay the turbulent BL separation. The gas (air) can become weakly ionized 
either by viscous heating at high temperatures or by artificially generated plasma 
at lower temperatures, especially in high Mach number flows [3]. 

Another approach for controlling BL flow is the thermal radiation. The radia-
tion effect is more noticeable at high temperatures providing important engi-
neering applications [4] [5] [6]. The study of compressible and turbulent BL flow 
under the influence of thermal radiation and adverse pressure gradient has re-
ceived little attention [3]. A computational model for convective and radiative 
heat transfer in high temperature nuclear reactors was introduced by Anghaie 
and Chen. This computational model considers the turbulent compressible flow 
under the radiation effect in a large temperature range [7]. The emission turbu-
lence-radiation interaction in hypersonic BLs was studied by Duan et al. [8] [9]. 
In this case, when emission is introduced to the flow, the temperature is signifi-
cantly decreased in the turbulent BL. A numerical analysis of heat transfer, nat-
ural convection, conduction, and thermal radiation in a rectangular domain was 
performed by Miroshnichenko et al. [10] [11]. The compressible turbulent flow 
over a backward facing step was studied by Kim and Baek. The study shows that 
thermal behavior is significantly influenced by radiation [12]. 

Türkyılmazoglu et al. studied the absolute/convective instability of two- 
dimensional wakes that are formed behind a flat plate, near the trailing-edge of a 
thin wedge-shaped airfoil in an incompressible/compressible fluid [13]. In this 
study, solving numerically the classical compressible BL equations with an ad-
verse pressure gradient, the mean velocity profiles were obtained. A linear stabil-
ity analysis of the BL showed that a pocket of absolute instability occurs down-
stream of the trailing-edge. This instability region is increasing with more ad-
verse pressure gradients. In a similar study, Turkyilmazoglu explored the nature 
of the flow in the vicinity of the trailing edge of Joukowski-type airfoil configu-
rations using the asymptotic interactive BL theory and employing a spectral nu-
merical scheme [14]. The analysis showed that flow separation always takes place 
beyond a certain critical value of the thickness-to-chord ratio parameter, under 
the effect of a self-induced pressure gradient. Additionally, reversed flow regions 
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of a sufficiently large size are found to be unstable. In a third study, the asymp-
totic theory of flow separation is used to derive the interactive BL equations go-
verning the flow motion in the vicinity of the trailing edge of thin airfoil shapes, 
whose trailing edge is represented in a mathematical form, y(x) = α(–x)m. The 
analysis showed that flow separation always takes place beyond a critical value of 
the parameter, α, under the action of a self-induced pressure gradient. The criti-
cal value is found to be coincident for each m, with the one related to the wedged 
trailing edge [15]. 

Additionally, to prevent flow separation suction and/or injection have often 
been used as an active aerodynamic flow control technique. The combination of 
suction and injection is one of the most effective approaches for BL control [16]. 
The response of the turbulent or laminar BL under localized wall suction/injection 
and suction throughout the wall was studied by several researchers [17] [18] 
[19]. The combined effect of localized injection/suction retains BL flow, reduc-
ing significantly skin friction [18]. Another mean of BL control is heating and/or 
cooling of the wall [20]. 

An adverse pressure gradient could lead to separation of the laminar BL very 
close to the leading edge of the airfoil. The separated shear layer further reat-
taches on the surface to form a “laminar separation bubble”. These bubbles are 
usually observed on gas turbine blades and on low Reynolds number wings, 
close to the leading edges of the airfoils [21]. When appear, separation bubbles 
have a deteriorating effect on the device performance. To efficient design aero-
dynamic devices, it is important to understand the prevailing mechanism of the 
laminar separation bubble and ways to control it. This could lead to drag reduc-
tion in these various aerodynamic devices. 

Laminar separation bubbles. At low Reynolds numbers, the performance of 
the aerodynamic devices is strongly influenced by laminar separation bubbles. 
As mentioned before, such a separation bubble is usually appearing due to a 
strong pressure increase along the aerodynamic surface. This pressure increase is 
related to significant velocity drop towards the trailing edge of the airfoil, lead-
ing to separation of the laminar BL from the airfoil [21]. 

The separated, laminar flow is highly sensitive to any disturbance and quickly 
transitions to the turbulent state. The transition region is located at the outer BL 
of the separated area. The thickness of the turbulent BL rapidly grows and forms 
a turbulent wedge, which may eventually reach the airfoil surface. The region 
where the turbulent flow reaches again the surface is called the “reattachment 
point”. So, we can provide the definition of the laminar separation bubble, where 
is the volume enclosed by the regions of separated laminar flow and the reat-
tached turbulent flow. In the laminar separation bubble, the flow is circulating 
with almost no energy exchange with the outer flow, which makes the laminar 
separation bubble a stable structure [21] [22]. The laminar separation bubble 
significantly increases the drag of the airfoil and the BL thickness. This drag in-
crement could be several times the drag of the airfoil with a healthy flow, mean-
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ing a flow without a separation bubble. To that extent, stability and control of an 
aerodynamic device can be influenced substantially by a laminar separation 
bubble [21] [22]. 

Complete BL flow separation. When transition occurs very far away from the 
airfoil, the turbulent flow wedge cannot reach the surface. In this case, there is 
no reattachment, and the bubble remains open. Such a flow field, which is com-
posed of a thick area of separated flow, retains high drag values and lift breaks 
down, leading to stall effects. This phenomenon is similar to what happens when 
the angle of attack, α, is increased beyond the maximum lift angle [21] [22] [23]. 

Means to avoid separation bubbles in the BL. An effective way to avoid BL se-
paration caused by laminar bubbles, are the “vortex generators” [24]. These are 
devices used to delay flow separation. To accomplish this, vortex generators are 
placed on external surfaces of vehicles and blades. They are usually installed close 
to the airfoil’s leading edge, maintaining steady flow over the surface near the 
trailing edge of the airfoil. Vortex generators are typically rectangular or trian-
gular. Their height is about the thickness of the local BL and they are placed in 
lines near the thickest part of the airfoil [24]. 

Mathematical modeling of laminar separation bubble. Initially, scientists be-
lieved that BL mathematical theory was not sufficient to describe separated flows 
and regions of reverse flow. Goldstein showed that the solution of the classical 
BL formulation has a singularity at the separation point. However, Catherall and 
Mangler were able to compute a smooth solution beyond the separation point. 
To achieve that, they replaced the classical formulation by a new one, where the 
displacement thickness, *δ , is specified. To that extent, the external flow veloc-
ity, or equivalently the downstream pressure gradient, is not specified [25]. 

In this study, a two-dimensional mathematical formulation of bubble forma-
tion after flow separation is introduced. The laminar BL equations with boun-
dary conditions, where displacement thickness is specified, *δ , (non-classical 
formulation), are transformed using the Falkner-Skan transformation. The sys-
tem of nonlinear and coupled partial differential equations (PDEs) is numerical-
ly solved using the Keller-box method. This study presents preliminary numeri-
cal results of bubble formation in low Mach numbers. 

2. Mathematical Formulation 

When a laminar BL encounters an adverse pressure gradient the flow usually 
separates, leading to the formation of a laminar separation bubble. Downstream 
of the separation point, defined as xS in Figure 1, the flow is divided into two re-
gions [22]. The first region, close to the flat plate, represents the recirculatory 
flow forming a laminar separation bubble, Figure 1. The second flow region 
consists of a shear layer enclosed between the outer edge of the BL and the sepa-
ration bubble. Eventually, due to momentum transfer between the two regions 
the reverse flow eliminates near the wall and the flow reattaches at point xR, 
Figure 1. This process composed of separation, transition, and reattachment,  
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Figure 1. Problem description for laminar flow, separation of the BL and laminar separation bubble (LSB) 
formation, xS is the location of BL separation, xR is the reattachment location. 

 
leads in the formation of a laminar separation bubble. This bubble has a domi-
nant and undesired effect on the entire flow field. In this process, the viscous 
damping effect increases, and it tends to suppress the transition or to delay the 
BL reattachment, as the Reynolds number decreases [21] [22] [23]. In this case is 
difficult to obtain the edge velocity, ( )eu u x= , or the pressure, ( )p p x= . So, 
we specify the displacement thickness of the BL, defined for a compressible  

flow as, ( )*
0

1 dey

e e

ux y
u

ρδ
ρ

 
= − 

 
∫  [25]. 

2.1. Mathematical Formulation Bubble Formation—Inverse BL 
Problems 

The problem under consideration can be described by the continuity and the 
momentum PDEs, Equations (1)-(3), and for a compressible fluid are [17] [20], 
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ρ ρ∂ ∂

+ =
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∂
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∂

                           (3) 

with the following boundary conditions are, 

( ) ( )
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0

0 : ,0 ,0 0,

: 1 d ,ey
e

e e

y u x v x

uy y x y
u

ρδ
ρ

= = =

 
= = − 

 
∫

                (4) 

where, ( )* xδ  is the displacement thickness. This approach is called inverse BL 
problem formulation and is introduced for reverse flow calculations [25]. In the 
inverse problem formulation, we specify the displacement thickness ( )* xδ , ra-
ther specifying the edge velocity, ( )eu u x= , or the pressure, ( )p p x=  (clas-
sical boundary layer formulation). When the u-velocity becomes negative is 
common to such computations to drop the convective terms, xuu . We then cor-
rect this approximation with upstream-downstream iterations. Introducing the 
following transformation, 

https://doi.org/10.4236/ojfd.2022.124015


M. A. Xenos 
 

 

DOI: 10.4236/ojfd.2022.124015 309 Open Journal of Fluid Dynamics 
 

( ) ( ) ( )
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where η , is the dimensionless distance normal to the wall, and the stream func-
tion, ψ , for a compressible flow, we obtain the dimensionalized set of equa-
tions. The above equation, Equation (5), identically satisfies the continuity Equ-
ation (1), by the relations, 

, .u v
y x
ψ ψρ ρ∂ ∂

= = −
∂ ∂

                     (6) 

The momentum equation is transformed to the following, 
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where b, c, m1 and m2 are given as, 
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where Rx is the local Reynolds number. Additionally, we evaluate the Mach 

number, 
s

uM
u

= , where us is the speed of sound, and the velocity, ue = ue(x), is 

an unknown function of x, describing the adverse pressure gradient imposed to 
the boundary layer flow. Where the prime denotes partial differentiation in re-

spect to η , (
ff
η
∂′ =
∂

). The following boundary conditions are transformed to, 
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where ( )f η′ , is the unknown dimensionless velocity, also evaluated at the BL 
edge, ,

e efη ρ′ , is the edge density and c is a positive constant ( 0c ≥ ) defined in 
the literature from experimental data [25]. Equations (7)-(9) provide a new for-
mulation for the evaluation of the bubble formation. This description is different 
from the classical boundary layer formulation and can effectively evaluate the 
bubble occurring after the separation point [25]. 

2.2. Evaluation of Initial Data—Classical Boundary Layer Problem 

To compute bubble formation, the inverse problem, Equations (7)-(9), requires 
the evaluation of the flow field at an upstream location. To obtain the flow field 
we utilize the classical boundary layer formulation. In previous studies, we eva-
luate the boundary layer until the point of separation, x = xs [17]. Following a 
similar approach, described in the previous section, we evaluate the flow field 
just before the point of separation, using the classical BL formulation. The pres-
sure gradient is expressed as a function of the edge velocity, using the Bernoulli’s 
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equation [17]. Introducing the energy equation in the formulation written as, 

11 ,H H H uu v u
x y y Pr y Pr y

µρ ρ µ
 ∂ ∂ ∂ ∂ ∂ + = + −  ∂ ∂ ∂ ∂ ∂  

          (10) 

where H is the fluid’s total enthalpy defined for a perfect gas (air) by the expres-
sion, 2 2pH c T u= +  and pPr c kµ=  is the Prandtl number, we can evaluate 
the temperature in the BL until the point of separation, x = xs, where ,pc k  are 
constants [17]. 

Introducing in Equations (1)-(3) the Falkner-Skan transformation, Equation 
(5), and the stream function, ψ , for a compressible flow, continuity is satisfied. 
Additionally, if S = H/He, where He is the enthalpy at the BL edge, the momen-
tum and energy equations become, 
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where b, c, d, e, m1 and m2 are given similarly as, 
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where prime denotes partial differentiation in respect to η , (
ff
η
∂′ =
∂

). The 

boundary conditions are now transformed to (classical BL formulation), 

0 : 0, ,
: 1, 1.

w

e

f f S S
f S

η
η η

′= = = =
′= = =

                  (14) 

In this study, we use the previously obtained data as initial flow distributions. 
We have developed a two-dimensional computational program where we can 
obtain the flow field until the separation point, x = xs, [17]. The specified flow 
field has to be consistent with the classical BL formulation or has to be obtained 
from experimental data of an actual flow field. Non-physical disturbances and 
oscillations may appear in the numerical solutions if the flow field is not chosen 
appropriately [25]. 

3. Numerical Solution of the Problem 

To study the bubble formation after laminar flow separation, a numerical scheme 
must be applied. The scheme utilized to solve the inversed problem, Equations 
(7)-(9), is a version of the Keller-box method [17] [18] [20] [26]. The scheme is 
unconditionally stable, and second-order accuracy is achieved with nonuniform 
x and η spacing [27]. The equations are written as a first-order system and the 
derivatives of the unknown function f (x, η), with respect to η are introduced as 
new functions. Further, using central-difference derivatives for the unknown 
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functions at the midpoints of the net rectangle, the obtained difference equations 
are nonlinear and implicit. The numerical scheme is then applied to the first-order 
equations. This provides a block tridiagonal system, which is solved by the block 
elimination method. Since the difference equations are nonlinear the Newton 
method is used [17]. 

To describe the presence of an adverse pressure gradient (in the forward 
problem—classical formulation) we consider, as an example, the linearly re-
tarded flow, known as Howarth’s flow, in which the external velocity (at the edge 
of the boundary layer) varies linearly with x, as shown in the following equation 
[17], 

( ) ( )1 ,eu x u x∞= −                       (15) 

where u∞  is the free-stream velocity and x x L= , L is the length of the boun-
dary surface. The basis pressure is the atmospheric pressure, approx. 1 atm ≈ 
101,374.14 Pa. All performed simulations of this study used this pressure as a 
basis. The free-stream and BL edge values, such as μe, ρe, were calculated from 
formulas, e.g., the viscosity, μ∞, is calculated using Sutherland’s law [17]. In this 
work, we assume that the fluid is air (perfect gas), at about T∞ = 300 K, with 
Prandtl number, Pr = 0.708. More details can be found elsewhere [17] [20] [28]. 

Reverse Flow and Downstream—Upstream Iterations 

When the flow is about to reverse, we utilize the Reyhner-Flugge-Lotz (RFL) ap-
proximation, as described in [25]. This approximation is dropping the term, 

xuu , in the x-momentum equation when the u-velocity becomes negative. We 
use an iterative procedure to correct the RFL approximation. The downstream 
pass of the iteration solves the inverse problem described in the previous section, 
Equations (7)-(9). After any downstream pass we employ an upstream one [25]. 
This computation is confined to the reverse flow region. The whole idea was in-
itially introduced in the BL theory by Klemp and Acrivos [29]. 

The numerical code was tested for grid independence and a Table is presented 
below, Table 1 [28]. The numerical results for separation point, xs (m) and maxi-
mum temperature, Tmax (K), for different configurations of the grid are shown. 
The results are presented for three Mach numbers, M = 0.2, 0.33 and 1.0, the 
flow is adiabatic and laminar, the free stream temperature is T∞ = 300 K. The 
numerical solution for the first level of calculations (classical boundary layer 
formulation) is obtained when the difference of the dimensionless skin friction  

 
Table 1. Grid independence data of the computational approach. 

Grid size 
Mach num, M = 0.2 

xs, Tmax 
Grid size 

Mach num, M = 0.33 
xs, Tmax 

Grid size 
Mach num, M = 1.0 

xs, Tmax 

97 × 110 = 10670 0.9588,  300.613 97 × 110 = 10670 0.9588,  301.665 91 × 110 = 10010 0.8989,  314.273 

145 × 110 = 15950 0.9592,  300.614 144 × 110 = 15840 0.9525,  301.662 136 × 110 = 14960 0.8993,  314.322 

193 × 110 = 21230 0.9594,  300.615 192 × 110 = 21120 0.9544,  301.666 181 × 110 = 19910 0.8994,  314.351 
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coefficient, wf ′′ , is less than 10−5, [17]. We have formulated a variable computa-
tional grid. This grid is very dense close to the wall and becomes coarser as we 
move away the wall, to capture all near wall action, Figure 2. The developed 
numerical approach has been validated for laminar and turbulent flows [3] [30]. 
A validation of this code and the mathematical model with analytical approx-
imate solutions is presented in [30]. 

For the solution of the inverse problem a computational program was developed 
in Matlab (MathWorks, Natick, MA, USA). We use the Levenberg-Marquardt al-
gorithm for the solution of the obtained non-linear algebraic problem. The resi-
dual error of the algorithm for the inverse problem is of the order of 10−8. 

4. Results and Discussion 

In this section, we present preliminary numerical results of the bubble formation 
for low Mach numbers. We focus the analysis to laminar flow separation and 
bubble formation of the compressible BL for Mach numbers, M = 0.2, 0.33 and 
1.0. The local Reynolds number of the presented results close to the point of se-
paration are, Rx = 3.93 × 106, 6.46 × 106, 1.87 × 107, for the corresponding Mach 
numbers. Initially, we evaluate the BL before the separation point and these nu-
merical solutions are based on the classical BL formulation. In the next subsec-
tion, we present the BL formation for the case of an adiabatic wall [17]. 

4.1. Results until Separation Point for Laminar Boundary Layer 

In this subsection, we present the data obtained from the classical BL formulation,  
 

 
Figure 2. The computational grid for the BL and a zoomed area close to the wall. We 
have formulated a variable computational grid where is very dense close to the wall and 
becomes coarser as we move away the wall, to capture all near wall action. 
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Figure 3. Velocity vectors and temperature distribution of the laminar BL for Mach 
number, M = 1.0, location of separation from the leading edge, xs = 0.8994 m. 

 
as initial data, for calculating the laminar bubble formation for different Mach 
numbers. Figure 3 reveals the laminar BL for Mach number, M = 1.0, under ad-
verse pressure gradient and for the case of an adiabatic wall, until the location of 
flow separation, x = xs, [17]. It is observed that for this Mach number the lami-
nar BL separates at the location, xs = 0.8994 m, from the leading edge of the flat 
plate. In this figure, we also present the thermal BL that follows the laminar BL, 
showing a small temperature increase from the initial free stream temperature, 
T∞ = 300 K. 

Additionally, Figure 4 presents the skin friction coefficient, Cfx, for the three 
studied cases, M = 0.2, 0.33 and 1.0, under adverse pressure gradient [17] [18]. 
The skin friction coefficient initially has a large value and reduces as x increases, 
until it becomes zero, revealing the location of flow separation. The figure re-
veals the point of separation for each case. So, in detail and for Mach number M 
= 0.2 the flow separates at xs = 0.9594 m, from the leading edge of the flat plate. 
For the other two cases, M = 0.33 and 1.0 the separation point is xs = 0.9544 and 
0.8994 m, respectively. These data are used for the calculation of the laminar 
bubble formation discussed in the next subsection. 

4.2. Results on the Bubble Formation 

In this subsection, we present the numerical data obtained from the mathemati-
cal description of the laminar bubble formulation (inverse problem) for three 
different Mach numbers. The numerical results of bubble formation in low 
Reynolds numbers reveal that after separation a laminar bubble is formed in all  
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Figure 4. Skin friction coefficient, Cfx, of the laminar boundary layer for Mach numbers, M = 0.2, 
0.33 and 1.0 and corresponding separation locations, xs. 

 
studied cases, Mach numbers, M = 0.2, 0.33 and 1.0. The flow after separation 
reverses close to the wall and finally reattaches in the x-direction, as depicted in 
Figure 5. As the Mach number increases, this effect is more intense. More pre-
cisely, for the case where M = 0.2, a small recirculation region is observed close 
to the wall. The velocity is substantially reduced. After reattachment the BL is 
again established but in a much lower energy level and the velocity field is sub-
stantially reduced, compared to the initial flow field. The BL, due to the adverse 
pressure gradient, moves upward as shown in Figure 5. The same behavior is 
obtained for the other two Mach numbers, M = 0.33 and 1.0. The bubble forma-
tion is more pronounced for the larger Mach number, M = 1.0. In this case, the 
velocity after separation is also increased compared to the other two cases. 

Advantages and disadvantages of the obtained results. The preliminary results 
show that the presented approach can effectively describe the flow after separa-
tion (laminar bubble formation). This approach is novel and promising, since 
the fact that until recently scientists believed that BL mathematical theory was 
not sufficient to describe separated flows and regions of reverse flow. Comparing 
these results with previous studies, in a qualitative way, we observe that these 
data are well related with previous numerical approaches [25]. After separation 
usually the reattached BL is transient or fully turbulent. This study cannot cap-
ture the turbulent flow after reattachment since mathematically describes the 
laminar bubble formation. Α more detailed comparison of the numerical results 
with experimental data should be performed in a future study. 

Mathematical description of flow separation and bubble formation is a key 
element in the field of aerodynamics. Nowadays, with the strides achieved in 
mathematical modeling, numerical analysis, and computers we can describe such 
phenomena providing vital information about the aerodynamic performance of 
the device. 
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Figure 5. Velocity contours of bubble formation after separation for various Mach numbers, M = 0.2, 0.33 and 1.0. 

5. Conclusions and Future Steps 

At low Mach and Reynolds numbers, fluid devices are strongly influenced by the 
formation of laminar separation bubbles. Such a laminar separation bubble is 
usually caused by a strong adverse pressure gradient along the surface, leading to 
the separation of the BL from the flat surface. Presence of these bubbles has an 
undesired and weakening effect on the performance of the fluid device. The un-
derstanding of the prevailing mechanism of the separation bubble and ways to 
control it are essential for the efficient design of these devices. 

The study introduces a two-dimensional mathematical formulation of bubble 
formation after flow separation. The laminar BL equations with appropriate boun-
dary conditions are dimensionalized using the Falkner-Skan transformation. The 
Keller-box method is used to numerically solve the nonlinear system of PDEs. 
The presented formulation (inverse formulation) is different from the classical 

https://doi.org/10.4236/ojfd.2022.124015


M. A. Xenos 
 

 

DOI: 10.4236/ojfd.2022.124015 316 Open Journal of Fluid Dynamics 
 

boundary layer formulation and can effectively evaluate bubble formation oc-
curring after the separation point. To obtain the flow field before separation, we 
utilize the data from the numerical code developed in our previous studies [17]. 
This code is based on the classical boundary layer formulation. 

The preliminary numerical results of bubble formation in low Reynolds num-
bers reveal that after separation, a laminar bubble is formed in all studied cases, 
M = 0.2, 0.33 and 1.0. The flow after separation reverses close to the wall and fi-
nally reattaches downstream in a new location, at the x-direction. As the Mach 
number increases, this effect is more intense. After reattachment, the BL is again 
established but at a much lower energy level and the velocity field is substantially 
reduced, for all studied cases. The presented approach can effectively describe 
the flow after separation (laminar bubble formation). This approach is novel and 
promising, since the fact that until recently scientists believed that BL mathe-
matical theory was not sufficient to describe separated flows and regions of re-
verse flow. In future steps, additional studies are required for delineating this 
phenomenon that could have a deteriorating effect on the performance of a fluid 
device. 
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Appendix 

Figure A1 shows the velocity contours after separation and the dimensionless  
 

 
Figure A1. (A) Velocity contours of bubble formation after separation for various Mach 
numbers, M = 0.2, 0.33 and 1.0. (B) Dimensionless stream function and the arrows of ve-
locity for the same Mach numbers. The circle indicates the bubble formation. 
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stream function in combination with the arrows of velocity, for various Mach 
numbers. As depicted in Figure A1(B), there is a drastic drop in the stream 
function after separation revealing that the BL undergoes a dramatic effect. The 
BL has experienced intense energy losses and the velocity reduces substantially 
after separation, Figure A1(A). So, there is a sharp change for the stream func-
tion after the bubble formation for all Mach numbers of this study, M = 0.2, 0.33 
and 1.0. Additionally, we plot the velocity field that captures flow separation and 
the bubble formation, Figure A1(B). We mark with a circle the location of bub-
ble formation. It can be observed that the bubble, in all three studied cases, is 
small and the BL eventually overcomes the bubble formation, Figure A1. 

We further present the qualitative bubble formation in one of the studied cas-
es, for Mach number, M = 0.33. In Figure A2, we focus the attention at the re-
circulation zone as to visualize the bubble construction. We highlight the bubble 
region with a blue solid line. 

 

 
Figure A2. Focusing the attention at the recirculation zone, we highlight the bubble for-
mation region with the blue solid line for the case of M = 0.33. 
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