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Abstract 
This paper investigated the buoyancy and surface tension-driven ferro-ther- 
mal-convection (FTC) in a ferrofluid (FF) layer due to influence of general 
boundary conditions. The lower surface is rigid with insulating to tempera-
ture perturbations, while the upper surface is stress-free and subjected to 
general thermal boundary condition. The numerically Galerkin technique (GT) 
and analytically regular perturbation technique (RPT) are applied for solving 
the problem of eigenvalue. It is analyzed that increasing Biot number, de-
creases the magnetic and Marangoni number is to postponement the onset. 
Additionally, magnetization nonlinearity parameter has no effect on FTC in 
the non-existence of Biot number. The results under the limiting cases are 
found to be in good agreement with those available in the literature. 
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1. Introduction 

Until recently, there were liquids which could be magnetized to be comparable 
with the magnetization of magnetic nanoparticles. They have developed colloidal 
suspensions containing magnetic nanoparticles with a carrier liquid like water, 
hydrocarbon such as mineral oil or kerosene, or fluorocarbon referred as ferrof-
luids (FFs). Hence, FFs subjects have obtained much attention among the scien-
tific communities [1] [2] [3] [4]. The magnetization of FFs depends on its mag-
netic field, temperature and density. Whereas when a horizontal FF layer is pre- 

How to cite this paper: Ramachandraiah, 
M.K. and Basavaraju, S. (2022) The Onset 
of Buoyancy and Surface Tension Driven 
Convection in a Ferrofluid Layer by Influ-
ence of General Boundary Conditions. Open 
Journal of Fluid Dynamics, 12, 56-68. 
https://doi.org/10.4236/ojfd.2022.121003 
 
Received: January 2, 2022 
Accepted: February 27, 2022 
Published: March 2, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/ojfd
https://doi.org/10.4236/ojfd.2022.121003
https://www.scirp.org/
https://doi.org/10.4236/ojfd.2022.121003
http://creativecommons.org/licenses/by/4.0/


M. K. Ramachandraiah, S. Basavaraju 
 

 

DOI: 10.4236/ojfd.2022.121003 57 Open Journal of Fluid Dynamics 
 

sent with a magnetic field, it is heated from below and convective motions might 
take place which is called as FTC [5]. 

Thereby, FTC can also be induced by providing surface-tension and later with 
the function of temperature. Qin and Kaloni [6] have investigated both linear 
and non-linear stability of combined effects of buoyancy and surface tension 
forces in a FF layer. Hennenberg et al. [7] have examined the coupling effects on 
Marangoni and Rosensweig instabilities by considering two semi-infinite im-
miscible and incompressible viscous fluids. The results of different basic tem-
perature gradients on FTC which is driven by buoyancy and surface tension 
forces discussed by Shivakumara et al. [8] with an plan following indulgent con-
trol of FTC concept. Shivakumara and Nanjundappa [9] have also examined the 
initiation of Marangoni FTC with differing initial temperature gradients. A very 
less number of researches address the effects of Bouyancy and surface tension 
forces on FTC (see [10] [11]) with viscosity variations ([12] [13] [14] [15]), heat 
source strength ([16] [17]) and Coriolis force ([18] [19] in a FF layer. Later, Shi-
vakumara et al. [20] studied the onset of FTC in a horizontal FF layer with tem-
perature dependent viscosity in exponentially. In many natural phenomena, the 
study of penetrative FTC in a saturated porous layer is studied by Nanjundappa 
et al. [21] with the internal heating source and applied Brinkman extended Dar-
cy model in the momentum equation. Nanjundappa and co-workers ([22] [23] 
[24]) analyzed the internal heat generation effect on the onset of FTC in a FF 
saturated porous layer. Recently, Savitha et al. [25] investigated the penetrative 
FTC in a FF-saturated high porosity anisotropic porous layer via uniform inter-
nal heating. 

The intent of the present work is to investigate Bénard-Marangoni FTC in a 
FF layer due to influence of general boundary conditions. The numerically Galer-
kin technique (GT) and analytically regular perturbation technique (RPT) are 
applied for solving the problem of eigenvalue when both the surfaces insulated 
to temperature perturbations. 

2. Formulation of the Problem 

Consider an incompressible FF horizontal layer of thickness d with temperatures 

1 0k T z q− ∂ ∂ =  ( 0z = ) and ( )1 1k T z h T T∞∂ ∂ = −  ( z d= ). Where T is the tem- 
perature, 0q  is the conductive thermal flux, 1k  the overall thermal conductiv-
ity, th  the heat transfer coefficient and T∞  the temperature in the bulk of 
the environment. 

Cartesian coordinates ( ), ,x y z  system are chosen (see Figure 1). Gravity 
acts vertically downwards and is given by ˆg gk= −

 , where k̂  is the unit vector 
in the z-direction. The layer is bounded below by a rigid surface and above by a 
non-deformable free surface. At the upper free surface, the surface tension σ  is 
assumed to vary linearly with temperature in the form 

( )0 0T T Tσ σ σ= − −                       (1) 
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Figure 1. Physical configuration. 

 
where 0σ  is the unperturbed value and Tσ−  is the rate of change of surface 
tension with temperature T. The fluid density ρ  is assume to vary linearly with 
temperature in the form 

( )0 01 t T Tρ ρ α = − −                       (2) 

where tα  is the thermal expansion coefficient and 0ρ  is the density at  

0T T= . The governing equations for the flow of an incompressible fluid are 

0q∇⋅ =
                            (3) 

where ( ), ,q u v w=
  is the velocity vector. 

( ) ( )2
0 0

q q q p g q M H
t

ρ ρ µ µ∂ + ⋅∇ = −∇ + + ∇ + ⋅∇ ∂ 



 

   

         (4) 

where p is the pressure, t is the time and 0µ  the magnetic permeability of vac-
uum. 

2
0 , 0 0

, ,
V H t

V H V H

M DT M DHC H T k T
T Dt T Dt

ρ µ µ
    ∂ ∂

− ⋅ + ⋅ = ∇    ∂ ∂     

  



      (5) 

where C is the specific heat, ,V HC  is the specific heat at constant volume and 

magnetic field, and 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 is the Laplacian operator. 

The magnetic field ( H


) in magnetic fluid obeys the Maxwell equations in the 
absence electric field and current are 

0B∇⋅ =


, 0H∇× =


 or H ϕ= ∇


              (6a,b) 

where B


 is the magnetic induction and ϕ  is the magnetic potential. 

( )0B M Hµ= +
  

                        (7) 

Since the magnetization ( M


) depends on the magnitude of magnetic field 
and temperature, we have 

( ),HM M H T
H

=




.                       (8) 

The linearized equation of magnetic state about 0H  and 0T  is 

( ) ( )0 0 0M M H H K T Tχ= + − − −                 (9) 

where ( )
0 0,H TM Hχ = ∂ ∂  is the magnetic susceptibility, ( )

0 0,H TK M T= − ∂ ∂  is 
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the pyromagnetic co-efficient and ( )0 0 0,M M H T= . 
It is clear that there exists the following solution for the basic state: 

0bq =
 , ( )

( )

2 2
2 20 0 0

0 0 0 2

1
2 1 2 1

b t
M

p z p gz g z z z
µ κβ µ κ β

ρ ρ α β
χ χ

= − − − −
+ +

 

( ) 0bT z T zβ= − , ( ) 0
ˆ

1b
K zH z H kβ

χ
 

= − + 



, ( ) 0
ˆ

1b
K zM z M kβ

χ
 

= + + 



 (10) 

where T dβ = ∆  is the temperature gradient and the subscript b denotes the 
basic state. 

To study the stability of the system, we perturb all the variables in the form 

( ) ( ) ( ) ( ), , , ,b b b bq q p p z p T T z T H H z H M M z M′ ′ ′ ′ ′= = + = + = + = +
     

   (11) 

where q′ , p′ , T ′ , H ′


 and M ′


 are perturbed variables and are assumed to 
be small. 

Substituting Equation (11) into Equations (8) and (9), and using Equation (7), 
we obtain (after dropping the primes) 

( )
( )
( )

0 0

0 0

1 ,

1 ,

1 .

x x x

y y y

z z z

H M M H H

H M M H H

H M H KTχ

+ = +

+ = +

+ = + −

                  (12) 

Again substituting Equation (11) into momentum Equation (4), linearizing, 
eliminating the pressure term by operating curl twice and using Equation (12) 
the z-component of the resulting equation can be obtained as (after dropping the 
primes): 

( )
2

2 2 2 2 20
0 0 01h h t h

K
w K T g T

t z
µ β

ρ µ µ β ϕ ρ α
χ

∂ ∂ − ∇ ∇ = − ∇ + ∇ + ∇ ∂ ∂ + 
   (13) 

where 2 2 2 2 2
h x y∇ = ∂ ∂ + ∂ ∂  is the horizontal Laplacian operator. The temper-

ature Equation (5), after using Equation (11) and linearizing, takes the form (af-
ter dropping the primes): 

2
2 0 0

0 0 1 0 0 1
T KT T K k T C w

t t z
µϕµ ρ β

χ
 ∂ ∂ ∂ − = ∇ + −  ∂ ∂ ∂ +   

        (14) 

where 0 0 0 , 0 0V HC C H Kρ ρ µ= + . Equations 6(a, b), after substituting Equation 
(11) and using Equation (12), may be written as (after dropping the primes) 

( )
2

20
2

0

1 1 0h
M TK
H zz

ϕϕ χ
  ∂ ∂
+ ∇ + + − =  ∂∂ 

.              (15) 

The normal mode expansion of the dependent variables is assumed in the 
form 

{ } ( ) ( ) ( ){ } ( ), , , , expw T W z z z i t x myϕ ω= Θ Φ + +           (16) 

where   and m are wave numbers in the x and y directions, respectively, and 
ω  is the growth rate with is complex. On substituting Equation (16) into Equa-
tions (13)-(15) and non-dimesionalizing the variables by setting 
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( )* * * * *
2 2

1
,  , , ,z dz w w t t

d vdd K vd
χ κκν

ν β β
+

= = = Θ = Θ Φ = Φ      (17) 

where 0v µ ρ=  is the kinematic viscosity and 1 0 0k Cκ ρ=  is the effective ther- 
mal diffusivity, we obtain (after dropping the asterisks for simplicity) 

( ) ( )2 2 2 2 2 0.m mD a D a W a Ra D Ra Raω   − − − + Φ − + Θ =        (18) 

( )2 2 0.D a Pr Wω− − Θ+ =                    (19) 

( )2 2
3 0.D M a D− Φ − Θ =                    (20) 

Here, , ,W Θ Φ  are respectively the z-component perturbed amplitudes of 
velocity, temperature and magnetization term. In addition d dD z≡  differential  
operator, 2 2a l m= +  wave number, 4

tRa g dα β=  thermal Rayleigh number,  
( )2

1 0 01 tM K Cµ β χ α ρ= +  magnetic number,  
( )2 2 4

1 0 1mRa RaM K dµ β χ µκ= = +  magnetic thermal Rayleigh number,  
( )2

2 0 0 01M T K Cµ χ ρ= +  magnetic parameter, ( ) ( )3 0 01 1M M H χ= + +   
magnetization nonlinearity parameter and Pr ν κ=  Prandtl number. 

We impose the boundary conditions (see Ref. [5] [12] [26]): 
0, 0, 0at0W DW D z= = Θ = Φ = =               (21) 

2 2 0, 0, at0 1W D W a Ma D Bi D z= + Θ = Θ+ Θ = Φ = =       (22) 

or 
2 2 0, 0, 1at0W D W Ma a D Bi D z= + Θ = Θ+ Θ = Φ −Θ = =      (23) 

where, TMa Tdσ µκ= ∆  the Marangoni number and 1tBi h d k=  the Biot num- 
ber. 

3. Numerical Solution 

The Galerkin method is applied to solve the problem of eigenvalue constituted 
by Equations (18)-(20) subject to Equations (21)-(23) and accordingly the ex-
panded unknown variables are 

{ }( ) { }( )
1

, , , ,
n

m m m m m m
m

W z A W B C z
=

Θ Φ = Θ Φ∑             (24) 

where , ,m m mA B C  are constants and basis functions , ,m m mW Θ Φ  are trial cho-
sen usually satisfying the considered boundary conditions as follows 

( ) ( ) ( )3 2 25 2 3 2 , 1 2 , 1 3 .m m m
m m mW z z z z z z z z z z= − + Θ = − Φ = −   (25) 

By introducing Equation (25) into Equations (18)-(20), multiplying the re-
sulting equations respectively by ,m mW Θ  and mΦ , integrating between 0z =  
and 1z =  and using Equations (21)-(23) yields 

0.nm m nm m nm mC A M B F C+ + =                   (26) 

0.nm m nm mG A H C+ =                      (27) 

0.nm m nm mI C J D+ =                       (28) 

where 
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2 2 2 42mn m n m n m nC D W D W a DW DW a W W= + + , 

( ) ( ) ( )2 2
11 1 1mn m n m nM a Ra M W a MaDW= − + Θ + Θ  

2
1mn m nF a RaM W D= Φ  

mn m nG W= − Θ , 

( ) ( )2 1 1mn m n m n m nH a D D BiD= Θ Θ + Θ Θ + Φ Θ  

mn m nI D= − Φ Θ  

2
3mn m n m nJ a M D D= Φ Φ + Φ Φ  

with ( )
1

0

dz= ∫   

Equations (26)-(28) may have a solution of non-trivial solution if 

0 0.
0

nm nm nm

nm nm

nm nm

C D E
F G

H I
=                      (29) 

It would be informative to seem at the results for 1m n= =  as it gives ade-
quate physical insight into the problem with minimum mathematical computa-
tions. For this order, Equation (29) in terms of Ma  gives the following charac-
teristic equation (after omitting the subscript 1) 

( ) ( )21 2
2

3 3

14070 2
1260

m
a m

R WDBiMa a Pr R R W
a W

ϕη η
η η

 +Ω
= + +Ω + − + Θ Θ  

(30) 

where 2 4
1 4536 432 541a aη = + + , 2

2 216 541aη = +  and 2
3 356 11M aη = + . 

To stability of the system is examined by taking iωΩ =  in Equation (30) 
and the complex quantities have to be clearly yields 

( )

2 2
1 22

3

3

1 70
1260

140
2m

a m

BiMa a Pr
a W

R WD
R R W

η η ω
η

ϕ
η

  
= + −  

Θ    

+ − + Θ

           (31) 

where 

2
1 22

3

1 70
1260

BiN Pr a
a W

η η
η

  
= + +  

Θ    
. 

The steady onset (i.e., direct bifurcation) is governed by 0ω =  and it occurs 
at sMa Ma= , where 

( )2
12

3 3

1401 70 2
1260

m
m a

R WDBiMa a R R W
a W

η
η η

  Φ 
= + + − + Θ  

Θ    
  (32) 

4. Numerical Results and Discussion 

Equation (29) leads to characteristic equation 
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( )1 3, , , , , 0f Ra Ma Bi M M a = .                 (33) 

Here we note that the minimum of Ra  corresponding to ca  is to be found 
that for various physical parameters 1, ,Ma Bi M  and 3M . Mathematica 12.0 
symbolic algebraic package is applied to compute numerically by Galerkin me-
thod for fixing the other parameters with three sets of boundary combinations. 
The value of ( ),c cRa a  obtained here are compared with Sparrow et al. [27]. 
The results established are in admirable agreement and thus validate the exact-
ness of the numerical technique utilized (see Table 1). 

The loci of cMa  and cRa  with Bi , 1M  and 3M  are shown in Figures 
2(a)-4(a) respectively as well as different magnetic boundaries at the upper sur-
faces like 0DΦ−Θ =  and 0DΦ =  at 1z = . It is noticeable that, curves are 
slightly convex and there is a strong coupling between cMa  and cRa . If the 
magnetic force is leading, then the surface tension becomes insignificant and 
vice-versa. A review of Figure 2(a), further reveals that with increase in Bi  it 
delays the FTC. This may be attributed to fact that with increasing Bi , the free 
surface gets deviated from good conductor of heat and there is an increase in 

cMa  and cRa . Also 0DΦ−Θ =  surfaces offer more stabilizing effect com-
pared to 0DΦ =  against FTC. Figure 2(b) illustrates that increasing in ca  as 
Bi  increases, hence its effect is to diminish the size of convection cells. 

In Figure 3(a), cRa  and cMa  presented with 1M  when 3 1M =  and  
2Bi = . This is expected that an increase in 1M  is to decrease cMa  and cRa , 

thus leads to a more unstable system due to an increase in magnetic force. More- 
over, it is remarkable cMa  and cRa  are diminishes as 1M  increases. From 
Figure 3(b), increase 1M  is to increase ca , thus leading to diminish the con-
vection cell size.. 

The effect of increase in M3 is shown in Figure 4(a) for 1 2Bi M= =  and it is  
 

Table 1. Comparison of ( ),c cRa a  with Bi  for 1 0Ma M= = . 

Bi  
Sparrow et al. [27] Present study 

cRa  ca  cRa  ca  

0 320.000 0.00 320.000 −2.641 × 10−9 

0.01 338.905 0.58 338.904 0.5831 

0.03 353.176 0.76 353.158 0.7624 

0.1 381.665 1.015 381.665 1.0151 

0.3 428.290 1.03 428.290 1.2992 

1 513.792 1.64 513.790 1.6438 

3 619.666 1.92 619.666 1.9211 

30 780.240 2.18 780.237 2.1760 

100 804.973 2.20 804.972 2.2029 

∞  816.748 2.21 816.744 2.2147 

https://doi.org/10.4236/ojfd.2022.121003


M. K. Ramachandraiah, S. Basavaraju 
 

 

DOI: 10.4236/ojfd.2022.121003 63 Open Journal of Fluid Dynamics 
 

 
Figure 2. (a) cMa  versus cRa  with Bi  when 3 1M =  and 1 2M = ; (b) ca  versus cRa  with 
Bi  when 3 1M =  and 1 2M = . 
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Figure 3. (a) cMa  versus cRa  with 1M  when 3 1M =  and 2Bi = ; (b) ca  versus Ra  with 1M  
when 3 1M =  and 2Bi = . 
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Figure 4. (a) cMa  versus cRa  with 3M  when 1 2M =  and 2Bi = ; (b) ca  versus cRa  with 3M  
when 1 2M =  and 2Bi = . 
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observed the stability parameters cRa  and cMa  decreases as increasing M3, 
thus the mechanism of magnetization non-linearity parameter has a destabiliz-
ing effect on the system. Nonetheless, cRa  and cMa  are found to be indepen-
dent of 3M  for 0Bi = . While the value of ca  decreases as increasing in 3M  
and thus the effect is to enlarge size of convection cells. 

5. Conclusions 

The influence of general boundary conditions on buoyancy and surface tension- 
driven FTC in a FF layer is investigated numerically Galrkin technique based on 
weighted residual technique. The following conclusions were resulting: 
• The initiation of FTC is inhibited with increasing Biot number Bi . 
• The magnetic parameter 1M  and fluid magnetization non-linearity parame-

ter 3M  hasten the FTC. 
• The magnetic bounding surfaces DΦ−Θ  offer more stabilizing while 

DΦ  surfaces offer least stable effects against FTC. i.e.  
( ) ( )or orc c c cD D
Ra Ma Ra Ma

Φ Φ−Θ
< . 

• The critical value ( ca ) for DΦ  is always higher than those of remaining 
boundaries. i.e. ( ) ( )c cD D

a a
Φ−Θ Φ

< . 
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