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Abstract 
In this work, a study involving the fully coupled Euler and Navier-Stokes 
reactive equations is performed. These equations, in conservative and finite 
volume contexts, employing structured spatial discretization, on a condition 
of thermochemical non-equilibrium, are analyzed. High-order studies are ac-
complished using the Spectral method of Streett, Zang, and Hussaini. The high 
enthalpy hypersonic flows around a circumference, around a reentry capsule, 
along a blunt body, and along a double ellipse in two-dimensions are simulated. 
The Van Leer, Liou and Steffen Jr., and Steger and Warming flux vector split-
ting algorithms are applied to execute the numerical experiments. Three tem-
peratures, which are the translational-rotational temperature, the vibrational 
temperature, and the electron temperature, are used to accomplish the nu-
merical comparisons. Excellent results were obtained with minimum errors 
inferior to 6.0%. The key contribution of this work is the correct implementa-
tion of a three temperature model coupled with the implementation of three 
algorithms to perform the numerical simulations, as well the description of 
energy exchange mechanisms to perform more realistic simulations. 
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1. Introduction 

Several conceptual designs for vehicles that would fly in the atmosphere at hyper-
sonic speeds have been developed recently [1]. For typical flight conditions, the 
air that envelops these vehicles is chemically reacted, vibrationally excited, and 
ionized. These reactions and excitation processes occur at rates similar to the 
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rate of fluid motion, which results in a state of thermochemical non-equilibrium. 
The thermochemical state of the gas influences its dynamics and affects the aero-
dynamic forces and heat transfer acting on the vehicle. 

The motivation for multi-temperature model studies often originates for io-
nized flows owing to the wide disparities in the masses of the constituent species 
[2]. In this regard, the accuracy of macroscopic temperature models, such as the 
Landau-Teller translation-vibration (T-V) model, can lead to questioning of the 
underlying approximations. Such questioning in the past invariably has lead to the 
development of gas kinetic schemes, such as the Bhatnagar-Gross-Krook scheme 
[3], to describe the energy exchanges. In addition, the extended Navier-Stokes 
equations [4] are often used for high-altitude hypersonic flows to accurately cap-
ture the shock and provide more information than the classical Navier-Stokes 
equations can provide. However, the subjective question of the effect of the var-
ious energy exchanges using approximate macroscopic temperature models on 
the shock structure of hypersonic flows can be answered with greater ease if the 
analysis is made for flows within the continuum regime. 

Spectral methods are considered a class of solution techniques using sets of 
known functions to solve differential equations [5]. Such methods are generally 
considered high order and capable of obtaining solutions with a high resolution. 
Unlike finite-difference and finite-element methods, spectral methods utilize an 
expansion in terms of global, rather than local, basis functions to represent the solu-
tion of a differential equation. When properly applied, these techniques accurately 
resolve phenomena on the scale of the mesh spacing. The order of truncation error 
decay with mesh refinement is also higher than which can be achieved with fi-
nite-difference and finite-element methods. For problems with smooth solutions, it 
is possible to produce spectral method whose truncation error goes to zero as faster 
than any finite power of the mesh spacing (exponential convergence). 

In this work, a study involving the fully coupled Euler and Navier-Stokes reac-
tive equations is performed. These equations, in conservative and finite volume 
contexts, employing structured spatial discretization, on a condition of thermo-
chemical non-equilibrium, are analyzed. High-order studies are accomplished 
using the spectral method of [6]. The high enthalpy hypersonic flows around a 
circumference, around a reentry capsule, around a blunt body, and around a 
double ellipse in two-dimensions are simulated. The [7] [8] [9] flux vector split-
ting algorithms are applied to execute the numerical experiments. The Euler back- 
ward integration method is employed to march the schemes in time. The con-
vergence process is accelerated to steady state condition through a spatially va-
riable time step procedure, which has proved effective gains in terms of compu-
tational acceleration (see [10] [11]). The reactive simulations involve Earth at-
mosphere chemical model of seven species and eighteen reactions, based on the 
[12] model. Three temperatures, which are the translational-rotational tempera-
ture, the vibrational temperature, and the electron temperature, are used to ac-
complish the numerical comparisons. Excellent results were obtained with mini-
mum errors inferior to 6.0%. Moreover, the implementation of a three tempera-
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ture model has a great impact to the CFD community in terms of numerical 
tools available to study thermochemical non-equilibrium flows in two-dimen- 
sions more realistically. 

The main contribution and originality of this paper is concerned with the 
three-temperature model studied in it. As [21] has explained, the use of a three 
temperature model is more appropriated to describe the flow field in the case of 
numerical simulations of fluid dynamics. The translational and vibrational tem-
peratures, case of two temperature models, are not sufficient to highlight the 
main features of the flowfield and the use of a third temperature, the electron 
temperature, is fundamental to describe more correctly the flow physics for the 
cases of weakly ionization, as is the case. On the other hand, this paper also in-
corporates the implementation of three upwind numerical algorithms on a con-
text of finite volumes discretization and reactive equations and describes them 
with details. Although the numerical algorithms were not new for the CFD com-
munity, their implementations for such discretization and for reactive formula-
tion is also a original contribution of this work. Moreover, the description of the 
most important energy exchanges between molecules and atoms, as well elec-
trons, are also pointed out as key mechanisms to be considered in a more realis-
tic scenario of fluid flow. The key contribution of this work is the correct im-
plementation of a three-temperature model coupled with the implementation of 
three algorithms to perform the numerical simulations, as well the description of 
energy exchange mechanisms to perform more realistic simulations. 

Small number of papers related to the three-temperature and multi-temperature 
models is available in the CFD literature. With it in mind, this paper aims to fill 
this space and to provide efficient tools to perform such numerical simulations. 
For example, the majority of papers lead to one- and two-temperature models 
and with a minor number of exchange mechanisms to describe the energy change 
between atoms, molecules, and electrons. The three-temperature model is more 
involved with the physics and chemistry of the reactive Euler and Navier-Stokes 
equations, obtaining better results than the one- and two-temperature counter-
parts. Moreover, the three algorithms studied in this paper have description for 
perfect gas formulation, being rare the implementation to models of one- and 
two-temperatures. The present manuscript is an original and detailed descrip-
tion of their implementations for reactive gas flow. The use of a spectral method 
for the reactive Euler and Navier-Stokes equations is also the extension of the 
perfect gas formulation to a reactive gas flow one. All of these requisites point 
out to the original contribution of this work to the CFD state-of-art in terms of 
non-equilibrium thermal and chemical modeling and reentry flows. 

2. Spectral Method 

On this current work, a spectral method is applied to assure that high order so-
lutions are obtained by the numerical algorithms. Two classes of techniques for 
spectral discretization are referred to as tau and collocation methods [6] [13]. 
The latter technique is used here. In this scheme, the approximation series is de-
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termined by satisfying the differential equation exactly at a set of distinct collo-
cation points. The locations of these points in the domain are linked to the choice 
of basis function. In this study, arbitrary collocation points are implemented. The 
collocation method is used here since enforcement of boundary conditions and 
evaluations of nonlinear terms are straightforward. Additionally, some accuracy 
advantage is seen in the collocation method over the tau method for a number of 
problems [6] [13]. The series expansion for a function Q(x) may be defined by 

( ) ( )0
ˆ

N n nnQ x Q B x∞

=
= ∑ ,                    (1) 

where Bn(x) are the basis functions and N is the total number of nodes employed 
in the interpolation process (It is also the order of accuracy of the spectral me-
thod). The coefficients ˆ

nQ  are often termed the spectrum of QN(x). One com-
mon technique used to evaluate the spectrum is to consider Equation (1) as an 
interpolation series representing Q(x). The interpolation “nodes” of such series 
are the collocation points of the method. For a scheme based on Chebyshev col-
location points, the basis functions are: 

( ) ( ) ( ) ( )1 22 , 2n n n nB x T x xP x P x n− −= = − ≥ ,             (2) 

with: P0(x) = 1 and P1(x) = x. The Chebyshev-Gauss-Lobatto standard colloca-
tion points are defined by: 

cosl
lx

N
π =  

 
, 0,1, ,l N=  .                  (3) 

The Chebyshev collocation points result from a simple change of variables, 
which relates the Chebyshev interpolation series to a Fourier cosine series [6, 
13]. To evaluate the ˆ

nQ , the inverse relation is required. This is 

( ) ,0
ˆ ˆn n l n l i jl

NQ c w B x Q
=

= ∑ , 0,1,n =  ,              (4) 

with wl being a normalized weighting function and ˆnc  a constant. These variables 
assume the following expressions to a Chebyshev-Gauss-Lobatto interpolation: 

2ˆn
n

c
Nc

= , where: 
2, 0 or
1, 0n

n N
c

n N
=

=  < <
 and 1

l
l

w
c

= .         (5) 

Legendre collocation is based on using Legendre polynomials as the basis func-
tion in Equation (1), e.g., 

( )
( ) ( ) ( ) ( )1 22 1 1

, 2n n
n

n xP x n P x
B x n

n
− −− − −  = ≥ ,          (6) 

where: P0(x) = 1 and P1(x) = x. Interpolation via Legendre series cannot easily be 
related to trigonometric interpolation, so there is no simple expression to eva-
luate the ˆ

nQ  coefficients. Appeal must be made to the theory of numerical qu-
adrature to form an approximation to the integrals which result from analytic 
Legendre interpolation [14]. Considering Equation (4), the normalized weights 
and constant of the Legendre-Gauss-Lobatto collocation points are 

( ) ( )2

1
1l

N l

w
N N B x

=
+

 and 
( )2 1, 0,1, , 1

ˆ
,n

n n N
c

N n N
 + = −= 

=



.     (7) 
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In this current work, it was assumed that the Legendre-Gauss-Lobatto collo-
cation points are the same as the Chebyshev-Gauss-Lobatto ones. It was also 
adopted the following collocation points and normalized weight for the Cheby-
shev-Gauss-Radau interpolation, based on the work of [15]: 

2cos
2 1l

lx
N
π =  + 

,                       (8) 

, 0
2 1

, elsewhere
1

l

N l
Nw
N

N

 = += 

 +

.                    (9) 

For the Legendre-Gauss-Radau interpolation, also based in [15], the colloca-
tion points are defined by Equation (8) and the normalized weights are described 
by: 

( )

( ) ( )

2

2 2

1 , 0
1

11 , elsewhere
2 1

l
l

N l

l
N

w
x

B xN

 = +=  − ×
 +

.              (10) 

The same application to the vector of conserved variables Q is applied to the 
vector of flux C, to be defined in section 5. The proposed method has two collo-
cation point options and two normalized weight functions to be considered by 
the Chebyshev and Legendre methods: Chebyshev-Gauss-Radau, Chebyshev- 
Gauss-Lobatto, Legendre-Gauss-Radau and Legendre-Gauss-Lobatto. 

3. Reactive Navier-Stokes in 2D 

As the Navier-Stokes equations tend to the Euler equations when high Reynolds 
number are employed, only the former equations are presented. The reactive 
Navier-Stokes equations in thermochemical non-equilibrium, where the rota-
tional and vibrational contributions are considered, were implemented on con-
servative and finite volume contexts, in the two-dimensional space. In this case, 
these equations in integral and conservative forms can be expressed by: 

d d dCVEV S V
Q V S S V

t
∂

+ ⋅ =
∂ ∫ ∫ ∫F n , with: ( ) ( )e v e vE E F F= − + −F i j ,   (11) 

where: Q is the vector of conserved variables, V is the volume of a computational 
cell, F  is the complete flux vector, n  is the unity vector normal to the flux 
face, S is the flux area, SCVE is the chemical, vibrational, and electron source term, 
Ee and Fe are the convective flux vectors or the Euler flux vectors in the x and y 
directions, respectively, and Ev and Fv are the viscous flux vectors in the x and y 
directions, respectively. The i  and j  unity vectors define the Cartesian coor-
dinate system. Twelve (12) conservation equations are solved: one of general 
mass conservation, two of linear momentum conservation, one of total energy, 
six of species mass conservation, one of vibrational energy, and one of electron 
energy. Therefore, one of the species is absent of the iterative process. The CFD 
literature recommends that the species of biggest mass fraction of the gaseous 
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mixture should be omitted, aiming to result in a minor numerical accumulation 
error. To the present study, in which is chosen a chemical model to the air 
composed of seven (7) species (N, O, N2, O2, NO, NO+, and e−), this species can 
be the N2 or the O2. To this work, the N2 was chosen. The vectors Q, Ee, Fe, Ev, Fv, 
and SCVE can, hence, be defined as follows: 
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;         (12) 

in which: ρ is the mixture density; ρe is the electron’s density; u and v are Carte-
sian components of the velocity vector in the x and y directions, respectively; e is 
the fluid total energy; H is the total enthalpy; ρ1, ρ2, ρ4, ρ5, ρ6, and ρ7 are densities 
of the N, O, O2, NO, NO+, and e−, respectively; eV is the sum of the vibrational 
energy of the molecules N2, O2, NO, and NO+; ee is the electron’s specific energy; 
the τ’s are the components of the viscous stress tensor; fx and fy are viscous work 
and Fourier heat flux functions; fe,x and fe,y are viscous work and Fourier heat 
flux functions due to the electron; ρsvsx and ρsvsy represent the species diffusion 
flux, defined by the Fick law; xφ  and yφ  are the terms of mixture diffusion; 

,e xφ  and ,e yφ  are the electron’s diffusion terms; ,v xφ , and ,v yφ  are terms of 
molecular diffusion; sω  is the chemical source term of each species equation, 
defined by the law of mass action; qv,x and qv,y are the vibrational Fourier heat 
flux components in the x and y directions, respectively; 
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QT-V is the translation-vibration energy transfer rate for the diatomic mole-
cules; Se,pg, Se,trans, Se,inel, and Se,chem are the electron’s relaxation source terms; and 
Re is the laminar Reynolds number. In Equation (12), the pressure term of the 
electron’s convective flux balance was suppressed aiming to simplify the com-
putational implementation as well reduce the computational cost. 
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 
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 
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.              (14) 

The viscous stresses, in N/m2, are determined, according to a Newtonian fluid 
model, by: 

22 ;
3

;

22 .
3

xx m m

xy m

yy m m

u u v
x x y

u v
y x

v u v
y x y

τ µ µ

τ µ

τ µ µ

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

 ∂ ∂
= + ∂ ∂ 

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

                 (15) 

where µm is the molecular viscosity. Expressions to fx and fy are given below: 

, ,x xx xy x e x v xf u v q q qτ τ= + + + + ;                (16) 

, ,y xy yy y e y v yf u v q q qτ τ= + + + + ,                (17) 

where qx and qy are the Fourier heat flux components and are given by: 

x
Tq k
x

∂
=

∂
 and y

Tq k
y

∂
=

∂
,                  (18) 

where: k is the thermal conductivity due to translation and rotation. The qv,x and 
qv,y are the vibrational heat flux components and are given by: 

,
v

v x v
T

q k
x

∂
=

∂
 and ,

v
v y v

T
q k

y
∂

=
∂

,                (19) 

with kv being the mixture-vibrational-thermal conductivity, and TV is the vibra-
tional temperature. The electron’s Fourier heat flux is determined by: 

,
e

e x e
T

q k
x

∂
=

∂
 and ,

e
e y e

T
q k

y
∂

=
∂

,                (20) 

where Te is the electron’s temperature and ke is the electron’s thermal conductiv-

https://doi.org/10.4236/ojfd.2022.121001


E. S. de Góes Maciel 
 

 

DOI: 10.4236/ojfd.2022.121001 8 Open Journal of Fluid Dynamics 
 

ity. The terms of species diffusion, defined by the Fick law, to a condition of 
thermal non-equilibrium, are determined by [16]: 

,MF s
s sx s

Y
v D

x
ρ ρ

∂
= −

∂
 and ,MF s

s sy s

Y
v D

y
ρ ρ

∂
= −

∂
,         (21) 

with “s” referent to a given species, YMF,s being the molar fraction of the species, 
defined as: 

,

1

s

s
MF s

ns k
k

k

M
Y

M

ρ

ρ
=

=

∑
                      (22) 

and Ds is the species-effective-diffusion coefficient. “ns” is the number of spe-
cies. The diffusion terms xφ  and yφ , which appear in the energy equation, are 
defined by [17]: 

1

ns
x s sx ss

v hφ ρ
=

= ∑  and 
1

ns
y s sy ss

v hφ ρ
=

= ∑ ,            (23) 

being hs the specific enthalpy (sensible) of the chemical species “s”. The molecu-
lar diffusion terms calculated at the vibrational temperature, ,v xφ  and ,v yφ , 
which appear in the vibrational-internal-energy equation are defined by ([16]): 

, ,v x s sx v ss mol v hφ ρ
=

= ∑  and , ,v y s sy v ss mol v hφ ρ
=

= ∑ ,         (24) 

with hv,s being the specific enthalpy (sensible) of the chemical species “s” calcu-
lated at the vibrational temperature TV. The sum of Equation (24), as also those 
present in Equation (14), considers only the molecules of the system, namely: N2, 
O2, NO, and NO+. The laminar Reynolds number is estimated by: 

,

char initial REF

m char

V L
Re

ρ
µ

= ,                     (25) 

with “char” related to characteristic or freestream variables, Vinitial is the flow ini-
tial velocity, and LREF a characteristic configuration length. For details of the 
chemical model, the calculation of thermodynamic and transport properties see 
[18] [19]. 

For the electron energy equation, the following expressions are defined to fe,x 
and fe,y: 

, , , ,e x xx e xy e e xf u v qτ τ= + +  and , , , ,e y xy e yy e e yf u v qτ τ= + + ,       (26) 

where the electron viscous stresses are calculated with the Equation (15), being 
the electron’s molecular viscosity used in place of the mixture molecular viscosi-
ty. The electron’s diffusion flux is given by: 

,e x e ex ev eφ ρ=  and ,e y e ey ev eφ ρ= .                (27) 

The caloric equation of state for the mass-averaged gas is derived subtracting 
the vibrational, kinetic, electron, and chemical energies from the total energy to 
yield the energy in the translational and rotational modes [20]. Assuming that 
the rotational energy modes are in equilibrium with the translational modes, it is 
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possible to determine the translational-rotational temperature T, 

( )2 2 0
, ,

1
2r v r r s v s e e r rr e r e s mol rc T e u v e e hρ ρ ρ ρ ρ

≠ ≠ =
= − + − − −∑ ∑ ∑ ∑ ,  (28) 

where h0 is the formation enthalpy. The pressure is the sum of the partial pressures, 

r r er ep R T pρ
≠

= +∑ ,                     (29) 

being pe the electron’s pressure. The equations of state for the electrons are 

( )2 2
,

1
2e v e e e e ec T e u vρ ρ ρ= − +  and e e e ep R Tρ= .         (30) 

It was assumed that the energy contained in the excited electronic states of the 
molecules is negligible relative to the energy contained in the other modes. 

4. Energy Exchange Mechanisms 

The energy exchange mechanisms that appear on the SCVE term must be mod-
eled. The models are described below, based on [20] work. 

4.1. Translation-Vibration Energy Exchanges 

The rates of energy exchange between the translational and vibrational modes 
QT-V are assumed to be of the Landau-Teller form, 

( )*

-
vs vs

T Vs s
s

e T e
Q ρ

τ
−

= ,                    (31) 

with T the translational-rotational temperature. The Landau-Teller relaxation 
time is given by an expression from [21], 

rr
s

r
r

sr

X
X

τ

τ

= ∑
∑

, for r e≠ ,                   (32) 

where Xr is the mole fraction and τsr is given by: 

( )1 3 0.250.015 18.42
e srA T

sr
s

B
p

µ
τ

− − −  = ,                 (33) 

with B = 1.013 × 105 Pa.s, ps is the species pressure in Pa, A is defined in [18] 

[19], s r
sr

s r

M M
M M

µ =
+

 (the reduced mass), and Ms the molecular weight. 

4.2. Electron Pressure Gradient, Se,pg 

This term is an approximation to the work done on electrons by the electric field 
induced by the electron pressure gradient [22]. Its expression is given by: 

,e pg e
u vS p
x y

 ∂ ∂
= − + ∂ ∂ 

.                    (34) 

4.3. Translational-Electron Relaxation, Se,trans 

Energy exchange between translational and electron energies [20] [22]. This term 
is defined by: 

https://doi.org/10.4236/ojfd.2022.121001


E. S. de Góes Maciel 
 

 

DOI: 10.4236/ojfd.2022.121001 10 Open Journal of Fluid Dynamics 
 

( ), 2

8
3 e e r Av

e trans e univ e err e
r

R T N
S R T T

M
ρ

ρ σ
≠

= −
π ∑           (35) 

where σer, r ≠ ions, are the collision cross sections for the electron-neutral intera-
tions, given in this work by: 

2
er r r e r ea b T c Tσ = + + ,                    (36) 

with model constants defined in Table 1. For the case of electron-ion interac-
tions, the effective Coulomb cross section is determined by: 

( )
( )34

, 2 6

98 ln 1
27 4

e
e ions

ee

kTe
N ekT

σ
 π
 = +

π  
,               (37) 

with “e” being the electron charge (1.6022 × 10−19 C), Ne is the electron’s density 
number, and k the Boltzmann constant. 

4.4. Rotational-Electron Relaxation, Sinel 

This term is related to the inelastic energy exchange between electrons and mo-
lecules [22]. The energy relaxation between the rotational and electron energies 
should be considered in the electron energy equation because of the electron in-
teractions with molecular multipoles. In order to simplify the relaxation term, an 
energy transfer rate factor, grot,r, can be employed in the expression of the rota-
tional electron energy transfer rate. The rate factor is the ratio of the rotation-
al-electron energy relaxation time to the translational-electron energy relaxation 
time for the molecular species. Therefore, the relaxation between rotational and 
electron energies can be expressed in the following form: 

( ), , 2

8
3 e e r Av

e rot e univ e rot r err e
r

R T N
S R T T g

M
ρ

ρ σ
≠

= −
π ∑ .        (38) 

For neutral species, the energy transfer rate factor is listed in Table 2. For mo-
lecular ions, we assume they have the same rate factor as their neutral molecules. 

4.5. Electron Energy Due to Chemical Reactions 

The chemistry related term gives added or removed electron energy by chemical 
reactions and can be expressed as: 

,e chem e eS eω=  .                        (39) 

 
Table 1. The coefficients of the electron-neutral collisional cross section. 

Species ar br cr 

N 5.0 × 10−20 0 0 

O 1.2 × 10−20 1.7 × 10−24 −2.0 × 10−29 

N2 7.5 × 10−20 5.5 × 10−24 −1.0 × 10−28 

O2 2.0 × 10−20 6.0 × 10−24 0 

NO 1.0 × 10−19 0 0 
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Table 2. The transfer energy rate factors of rotational-electron energy relaxation. 

Species grot 

N2 10 

O2 10 

NO 100 

NO+ 100 

5. Numerical Algorithms 

Considering the two-dimensional and structured case, the flux vector splitting 
algorithms follow that described in [7] [8] [9] [18] [19]. 

5.1. Van Leer and Liou and Steffen Jr. Schemes 

The system is solved in three parts separately, according to [23]. The first part 
takes into account the dynamic part, which considers the Navier-Stokes equations 
plus the electron energy equation, the second one takes into account the chemical 
part involving the chemical contributions, and finally, the third part considers only 
the vibrational contribution. Hence, the discrete-dynamic-convective flux, which 
solves the dynamic part, is given by: 

1 2, 1 2,1 2,

1 2,

1
2

1
2

Dyn
i j i ji j

e eL R

i j

e eR L

a a
au au

R S M av av
aH aH
ae ae

a a
au au
av av
aH aH
ae ae

ρ ρ
ρ ρ
ρ ρ
ρ ρ
ρ ρ

ρ ρ
ρ ρ

φ ρ ρ
ρ ρ
ρ ρ

+ ++

+

     
     
          = +                    

   
   
   
   − −
   
   
   
    1 2,

0

0
0

x

y

i j

S p
S p

+

  
  
    +        

       (40) 

the discrete-chemical-convective flux is defined by: 

1 1

2 2

4 4
1 2, 1 2,1 2,

5 5

6 6

7 7

1 1

2 2

4 4
1 2,

5 5

6 6

7 7

1
2

1
2

Chem
i j i ji j

L R

i j

R

a a
a a
a a

R S M
a a
a a
a a

a a
a a
a a
a a
a a
a a

ρ ρ
ρ ρ
ρ ρ
ρ ρ
ρ ρ
ρ ρ

ρ ρ
ρ ρ
ρ ρ

φ
ρ ρ
ρ ρ
ρ ρ

+ ++

+

     
     
     
     = +     
     
     
     

     

  
 
 
 

− − 
 
 
 
   L

 
  
  
   
  
  
  
  

  

          (41) 
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and finally the discrete-vibrational-convective flux is given by:  

( ) ( )

( ) ( )

1 2, 1 2,1 2,

1 2,

1
2

1
2

Vib
i j i j v vi j L R

i j v vR L

R S M e a e a

e a e a

ρ ρ

φ ρ ρ

+ ++

+

  = +  
 − −  

          (42) 

where: 
T

1 2, 1 2,i j x y i j
S S S+ +

 =    defines the normal area vector for the surface 
( 1 2,i j+ ), and the speed of sound is defined by the following expression: 

( )1 pa β
ρ

= + ,                       (43) 

with β a parameter to be defined, calculated at each interaction. The normal area 
components Sx and Sy to each flux interface are given in Table 3. Figure 1 exhi-
bits the computational cell adopted for the simulations, as well its respective 
nodes and flux interfaces. 

The same definitions presented in [7] [8] [18] [19] are valid to these algo-
rithms. The definition of the dissipation term φ  determines the particular for-
mulation of the convective fluxes. The choice below corresponds to the [7] scheme, 
according to [24]: 

( )

( )

1 2, 1 2,

2
1 2, 1 2, 1 2, 1 2,

2
1 2, 1 2,

, if 1;

0.5 1 , if 0 1;

0.5 1 , if 1 0.

i j i j

VL
i j i j i j R i j

i j L i j

M M

M M M

M M M

φ φ

+ +

+ + + +

+ +

 ≥

= = + − ≤ <


+ + − < ≤

    (44) 

and the [8] scheme is obtained by, according to [24]: 

1 2, 1 2, 1 2,
LS

i j i j i jMφ φ+ + += = ,                   (45) 

with M being the Mach number and R and L right and left states. Both schemes  
 

Table 3. Values of Sx and Sy. 

Surface Sx Sy 

, 1 2i j −  1, ,i j i jy y+ −
 , 1,i j i jx x +−

 

1 2,i j+  1, 1 1,i j i jy y+ + +−
 1, 1, 1i j i jx x+ + +−

 

, 1 2i j +  , 1 1, 1i j i jy y+ + +−
 1, 1 , 1i j i jx x+ + +−

 

1 2,i j−  , , 1i j i jy y +−
 , 1 ,i j i jx x+ −

 
 

 
Figure 1. Computational cell. 
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are first-order accurate in space and in time. The high-order spatial accuracy is 
obtained, in the current study, by the spectral method. 

5.2. Steger and Warming Scheme 

The [9] scheme was also implemented in the present work. The U contravariant 
velocity defined by the [9] scheme is 

x yU un vn= + .                        (46) 

The eigenvalues of the Euler equations are defined as 

1 Uλ = , 2 U aλ = +  and 3 U aλ = − .              (47) 

The separated eigenvalues, based on the work of [9], which defines positive 
and negative contributions, can be expressed as 

( )2 2
1 1 1

1
2

λ λ λ ε+ = + + , ( )2 2
2 2 2

1
2

λ λ λ ε+ = + + ;         (48) 

( )2 2
3 3 3

1
2

λ λ λ ε+ = + + , ( )2 2
1 1 1

1
2

λ λ λ ε− = − + ;         (49) 

( )2 2
2 2 2

1
2

λ λ λ ε− = − + , ( )2 2
3 3 3

1
2

λ λ λ ε− = − + ,         (50) 

where ε is a small parameter, adopted as 0.04. 
The coefficients of the [9] scheme, which defines the separated numerical flux 

vectors, are determined in Table 4. Six coefficients were defined. These coeffi-
cients were prescribed in terms of thermodynamic and sound speed variables. 

The numerical flux vector was decomposed in three components, based on the 
dynamic, chemical, and vibrational parcels of the flow. The flux vector to each 
parcel is separated in positive and negative contributions, based on the homo-
geneity property of the Euler flux vectors. For the dynamic parcel, where it was 
included the electron energy equation, one has: 

 
Table 4. Coefficients of the Steger and Warming scheme. 

Coefficient Expression 

C1 2

p
a

β
 

C2 2
22

pa
a
ρ β

ρ
 

− 
   

C3 ( )2
2

He a p
a

ρ β
ρ

− −
 

C4 ( )2
22

H aU a p
a

ρ β+
−

 

C5 ( )2
22

H aU a p
a

ρ β−
−

 

C6 ( )2
2

1
2

a p
a

ρ β−
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( ) ( )
( ) ( )

( )

1 1 2 2 2 3

1 1 2 2 2 3

1 1 2 2 2 3

3 1 4 2 5 3

1 1 6 2 6 3

x x

y yDyn

e

C C C
C u C u an C u an

C v C v an C v anF
C C C

C C C e

λ λ λ
λ λ λ

λ λ λ

λ λ λ

λ λ λ

± ± ±

± ± ±

± ± ±±

± ± ±

± ± ±

 + +
 

+ + + − 
 + + + −=  
 + + 
 + + 

;         (51) 

For the chemical parcel, one has for the six equations, the following numerical 
flux vector, where cs is the mass fraction and is numbered from 1 to 7, except the 
number 3, which is associated to the N2 species. 

( )
( )
( )
( )
( )
( )

1 1 2 2 2 3 ,1

1 1 2 2 2 3 ,2

1 1 2 2 2 3 ,4

1 1 2 2 2 3 ,5

1 1 2 2 2 3 ,6

1 1 2 2 2 3 ,7

s

s

s

Chem

s

s

s

C C C c

C C C c

C C C c
F

C C C c

C C C c

C C C c

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ λ

λ λ λ

± ± ±

± ± ±

± ± ±

±

± ± ±

± ± ±

± ± ±

 + +
 
 + +
 
 + + =  

+ + 
 

+ + 
 
 + + 

;              (52) 

Finally, the vibrational component is defined by the following equation: 

( ){ }1 1 6 2 6 3Vib vF C C C eλ λ λ± ± ± ±= + + ,                (53) 

where ev is the vibrational energy. For the positive components of the flux vec-
tors, the cell properties are employed, whereas for the negative components the 
neighboring cell properties are used. 

The viscous formulation follows that of [25], which adopts the Green theorem 
to calculate primitive variable gradients. The viscous gradients at the flux inter-
face are obtained by arithmetical average between cell (i,j) and its neighbors. As 
was done with the convective terms, there is a need to separate the viscous flux 
in three parts: dynamic viscous flux, chemical viscous flux, and vibrational visc-
ous flux. The dynamic part corresponds to the first four equations of the Navi-
er-Stokes ones plus the electron equation, the chemical part corresponds to the 
six equations immediately below the electron energy equation, and the vibra-
tional part corresponds to the one that follows the last chemical equation. The 
resultant ordinary differential equation system can be written as: 

( ),
, , 1 2 1 2, , 1 2 1 2, ,

d
d

i j
i j i j i j i j i j i j

Q
V R R R R C

t − + + −= − + + + = − ,       (54) 

where 1 2, 1 2, 1 2, 1 2,
Dyn Chem Vib

i j i j i j i jR R R R+ + + += + + , and the cell volume is given by: 

( ) ( ) ( )
( ) ( ) ( )

, , 1, 1, 1 1, 1, 1 , 1, 1 , 1,

, 1, 1 , 1 1, 1 , 1 , , 1 , 1, 1

0.5

0.5

i j i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

V x x y x x y x x y

x x y x x y x x y

+ + + + + + + + +

+ + + + + + + + +

= − + − + −

+ − + − + −
 (55) 

For the [7] and [8] schemes, Equation (54) can be used directly. For the [9] 
scheme, however, the R components are calculated by the following equation, 
considering the dynamic contribution: 
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( ) ( ), 1 2
Dyn
i j Dyn DynR F Q F Q+ − − +

− = + ,                 (56) 

where Q− and Q+ are computed considering Q− the cell properties and Q+ the 
neighboring cell properties. 

In the present study, the Euler backward method was employed to march the 
scheme in time. This method is first-order accurate in time, to the three types of 
complete flux. To the convective dynamic component, this method can be 
represented in general form by: 

( ) ( )
( )

( ),1
, , , ,

,

n
i jn n n

i j i j i j E i j
i j

C Q
Q Q t S Q

V
+

      = − ∆ × −  
  

,           (57) 

with SE being the modified electron source term, composed by the last line in 
Equation (14). To the convective chemical part, it can be represented in general 
form by: 

( ) ( )
( )

( ),1
, , , ,

,

n
i jn n n

i j i j i j C i j
i j

C Q
Q Q t S Q

V
+

      = − ∆ × −  
  

,            (58) 

where the chemical source term SC is defined by Equation (14) and is calculated 
with the temperature Trrc (reaction rate control temperature, see [18] [19]). Fi-
nally, to the convective vibrational component, where SV is defined by Equations 
(14) and (31), one has: 

( ) ( )
( )

( ),1
, , , ,

,

n
i jn n n

i j i j i j V i j
i j

C Q
Q Q t S Q

V
+

      = − ∆ × −  
  

.           (59) 

6. Spatially Variable Time Step 

The spatially variable time step has proved efficient gains in terms of conver-
gence acceleration, as verified by [10] [11]. Initially, the parameter σ is deter-
mined, where: 

s
s

s

c
M

σ =  and 1
ns

ssσ σ
=

= ∑ ,                  (60) 

with cs being the mass fraction and Ms the molecular weight. The total specific 
heat at constant volume due to translation is defined as: 

, , ,1v t s v t
n
s
s

sc cσ
=

= ∑ ,                      (61) 

where, for each gas constituent of the seven (7) species chemical model, the spe-
cific heat at constant volume, based on the kinetic theory of gases ([26]), is de-
fined by 

, ,
3
2v t N Nc R= , , ,

3
2v t O Oc R= , 

2 2, ,
5
2v t N Nc R= , 

2 2, ,
5
2v t O Oc R= ;      (62) 

, ,
5
2v t NO NOc R= , 

, ,

5
2v t NO NO

c R+ +=  and 
, ,

3
2v t e e

c R− −= .        (63) 
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being Rs the specific gas constant. The total pressure of the gaseous mixture is 
determined by Dalton law, which indicates that the total pressure of the gas is 
the sum of the partial pressure of each constituent gas, resulting in: 

s s sp c R Tρ=  and 1
1n

s es
sp p p−

=
= +∑ ,              (64) 

where s = 7 is related to the electron. The speed of sound to a reactive mixture 
considering thermochemical non-equilibrium is given by Equation (43), where 

,

univ

v t

R
c
σ

β = , with Runiv = 1.987 cal/(g-mol.K). Finally, the spatially variable time 

step is defined from the CFL definition: 

,
, 2 2

, , ,

CFL i j
i j

i j i j i j

s
t

u v a

∆
∆ =

+ +
,                    (65) 

where ∆si,j is the characteristic length of each cell (defined between the minimum 
cell side and the minimum centroid distance between each cell and its neighbors). 

7. Results 

The initial conditions to the circumference, to the reentry capsule, to the blunt 
body, and to the double ellipse problems, for a seven species chemical model, are 
presented in Table 5. The Reynolds number is obtained from data of [27]. 

Tests were performed in a Core i7 processor of 2.8 GHz and 6.0 Gbytes of RAM 
microcomputer, in a Windows 10.0 environment. Three (3) orders of reduction of 
the maximum residual in the field were considered to obtain a converged solution. 
The residual was defined as the value of the discretized conservation equation. 

 
Table 5. Initial conditions to the four problems studied in this work. 

Property Circumfernce Reentry Capsule Blunt Body Double Ellipse 

M∞ 14.8 10.6 8.78 15.0 

ρ∞ 0.007291 kg/m3 0.02863 kg/m3 0.00326 kg/m3 0.00922 kg/m3 

p∞ 664 Pa 3885 Pa 687 Pa 794 Pa 

U∞ 5280 m/s 4628 m/s 4776 m/s 5208 m/s 

T∞ 293 K 473 K 694 K 300 K 

Tv,∞ 293 K 473 K 694 K 300 K 

Altitude 50,000 m 40,000 m 40,000 m 50,000 m 

cN 10−9 10−9 10−9 10−9 

cO 0.07955 0.07955 0.07955 0.07955 

2Oc
 0.13400 0.13400 0.13400 0.13400 

cNO 0.05090 0.05090 0.05090 0.05090 

cNO+ 0.0 0.0 0.0 0.0 

ce- 10−9 10−9 10−9 10−9 

LREF 2.0 m 3.0 m 2.0 m 5.0 m 
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The attack angle was adopted equal to zero. For a matter of simplicity, the fol-
lowing abbreviations were used: [7] scheme = VL, [8] scheme = LS, [9] scheme = 
SW, Chebyshev-Gauss-Radau = CGR. Only some results obtained with these 
configurations are presented in this section. Converged results involve second to 
fifth orders accuracy and eighth and sixteenth orders of accuracy. It is presented 
the pressure contours, the translational/rotational temperature contours, elec-
tron temperature contours and temperature distributions at the body wall (trans-
lational/rotational, vibrational and electron temperatures). 

7.1. Circumference 

The first studied problem is the circumference configuration. Only the SW scheme 
has presented converged results for the inviscid case. Their solutions are pre-
sented in relation to the four types of results described above. 

Figures 2-5 present the 2nd order SW solutions in the CGR variant of the  
 

 
Figure 2. Pressure contours (SW-CGR-2nd). 

 

 
Figure 3. Temperature contours (SW-CGR-2nd). 
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Figure 4. Electron temperature contours (SW-CGR-2nd). 
 

 
Figure 5.Wall temperature distributions (SW-CGR-2nd). 

 
proposed spectral method. The stagnation pressure was estimated in 1585.09 
units. The maximum translational/rotational temperature was 11,378.80 K. The 
maximum electron temperature was 817.79 K. Good symmetrical properties are 
observed in all contours. 

The temperature distributions show that the vibrational temperature remains 
practically constant along the body wall. The electron temperature has an in-
creasing behavior close to the circumference’s trailing edge. The translation-
al/rotational temperature has a decreasing behavior along the body, increasing 
close to the trailing edge. 
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7.2. Reentry Capsule 

For this problem, the inviscid solutions are described. The VL and SW schemes 
have presented converged results and only the CGR variant solutions of the 
spectral method are exhibited for the VL scheme. 

Figures 6-9 present the 3rd order VL solutions for the four types of results de-
scribed above. The maximum pressure, stagnation pressure, was calculated in 
1494.54 unities, at the body’s nose, and the maximum translational/rotational 
temperature, the stagnation temperature, was observed in 9364.49 K. The tem-
perature distributions present the quasi-constant vibrational behavior and the 
increase of the electron temperature along the body. 

 

 
Figure 6. Pressure contours (VL-CGR-3rd). 

 

 
Figure 7. Temperature contours (VL-CGR-3rd). 
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Figure 8. Electron temperature contours (VL-CGR-3rd). 

 

 
Figure 9. Wall temperature distributions (VL-CGR-3rd). 

7.3. Blunt Body Problem 

Solutions of second, third, fourth, fifth, eighth and sixteenth orders of accuracy 
are obtained with the Spectral method for the inviscid and viscous cases. 

Inviscid Case. Figures 10-13 exhibit the pressure and temperature contours 
as well the temperature distribution profiles along the body’s wall obtained with 
the SW scheme as using the Spectral method of fourth order of accuracy, with 
CGR weighting function. The maximum pressure is obtained at the body’s nose 
with the value of 141.94 unities, whereas the maximum temperature is obtained  
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Figure 10. Pressure contours (SW-CGR-4th). 

 

 
Figure 11. Temperature contours (SW-CGR-4th). 

 

 
Figure 12. Electron temperature contours (SW-CGR-4th). 
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with the value of 9366.70 K. The maximum electron temperature is obtained 
with the value of 783.00 K. The wall temperature profiles are shown at Figure 
13. In this figure the vibrational temperature is not constant and has a decreas-
ing behavior. The electron profile has a typical constant profile along the wall. 
The translational/rotational temperature profile reaches a minimum at the body’s 
end, close to 5000 K. The solutions are symmetrical in relation to the body’s 
symmetry line. 

Viscous Case. Figures 14-17 present the pressure and the temperature contours  
 

 
Figure 13. Wall temperature distributions (SW-CGR-4th). 

 

 
Figure 14. Pressure contours (LS-CGR-8th). 
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Figure 15. Temperature contours (LS-CGR-8th). 

 

 
Figure 16. Electron temperature contours (LS-CGR-8th). 

 
as well the temperature distributions along the body’s wall obtained with the LS 
scheme using CGR Spectral method of 8th order of accuracy. The stagnation 
pressure is about 179.97 unites, whereas the stagnation translational/rotational 
temperature is estimated as 10,321.00 K. In Figure 16 the maximum electron 
temperature is obtained by the LS scheme with value 824.72 K. Some oscillations 
are perceptible in the electron temperature contours. 

7.4. Double Ellipse 

For the double ellipse problem, converged results were obtained with the CGR 
weighting function. It yields converged results for second, third, fourth, fifth, 
eighth and sixteenth orders of accuracy. 

Figures 18-21 exhibit the pressure and temperature contours as well the  
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Figure 17. Wall temperature distributions (LS-CGR-8th). 
 

 
Figure 18. Pressure contours (LS-CGR-16th). 

 
temperature distribution profiles along the body’s wall obtained with the LS 
scheme as using the Spectral method of 16th order of accuracy, with CGR weight-
ing function. 

The maximum pressure is obtained at the body’s nose with the value of 1822.17 
unities, whereas the maximum temperature is obtained with the value of 11,025.30 
K. The maximum electron temperature is obtained with the value of 302.40 K. 
The wall temperature profiles are shown at Figure 21. In this figure the vibra-
tional temperature is quasi-constant and is unsymmetrical due to the asymmetry 
of the configuration. The electron profile has also a quasi-constant profile along 
the wall. The translational/rotational temperature profile reaches a minimum at  
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Figure 19. Temperature contours (LS-CGR-16th). 
 

 
Figure 20. Electron temperature contours (LS-CGR-16th). 

 
the body’s end, close to 5000 K. 

7.5. Error Analysis 

In order to perform an error analysis, the present reactive results are compared 
to the perfect gas solutions. The stagnation pressure at the blunt body nose, cir-
cumference nose and reentry capsule nose were evaluated assuming the perfect 
gas formulation. Such parameter calculated at this way is not the best compari-
son, but in the absence of practical reactive results, this constitutes the best availa-
ble solution. To calculate the stagnation pressure ahead of the blunt body, for 
example, [28] presents in its B Appendix values of the normal shock wave prop-
erties ahead of the configuration. The ratio pr0/pr∞ is estimated as function of 
the normal Mach number and the stagnation pressure pr0 can be determined  
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Figure 21. Wall temperature distributions (LS-CGR-16th). 

 
from this parameter. The value of pr∞ is determined by the following expression: 

2
initialpr

pr
aρ∞

∞ ∞

= ,                       (66) 

where, for example, for the blunt body problem, prinitial = 687 N/m2, ρ∞ = 0.004 
kg/m3 and a∞ = 317.024 m/s. Considering these values, one concludes that pr∞ = 
1.709 (non-dimensional). Using the ratio obtained from [28], the stagnation 
pressure ahead of the configuration nose is estimated as 170.87 unities. Taking 
into account these calculations, it is possible to establish the following data dis-
posed in Table 6. 

Tables 7-11 compare the values of the stagnation pressure obtained from the 
simulations with these theoretical values and show the percentage errors. Table 
7 has the circumference data, Table 8 has the reentry capsule data, and Table 9 
has the inviscid blunt body data. Finally, Table 10 has the viscous blunt body 
data and Table 11 has the double ellipse data. These results are composed by all 
converged results obtained in this study, with the majority not exhibited in this 
article due to paper size. 

As can be observed, the best solution to the circumference problem was ob-
tained by the SW scheme using the CGR spectral method of second order, with 
the estimation error of the stagnation pressure of only 5.69%. To the reentry 
capsule problem, the best solution was again obtained with the SW scheme, ad-
dressing the minimum relative error of 0.11% in the estimative of the stagnation 
pressure. It was also obtained with the CGR spectral method of [6], in its fifth 
order of accuracy. To the third problem, the blunt body configuration, two error 
analysis were done: one for the inviscid case and the other for the viscous case. 
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Table 6. Values of theoretical stagnation pressure. 

Problem Minitial pr0/pr∞ pr∞ pr0 

Circumference 14.80 282.72 5.945 1680.77 

Reentry Capsule 10.60 145.46 9.664 1405.73 

Blunt Body 8.78 99.98 1.709 170.87 

Double Ellipse 15.00 290.20 7.109 2063.03 

 
Table 7. Values of stagnation pressure and respective errors (Circumference Problem). 

Method Order Scheme pr0 Error 

Spectral—CGR 2nd SW 1585.09 5.69% 

Spectral—CGR 3rd SW 1443.08 14.14% 

Spectral—CGR 4th SW 1398.89 16.77% 

Spectral—CGR 5th SW 1355.69 19.34% 

Spectral—CGR 8th SW 1341.23 20.20% 

Spectral—CGR 16th SW 1287.19 23.42% 

 
Table 8. Values of stagnation pressure and respective errors (Reentry Capsule Problem). 

Method Order Scheme pr0 Error 

Spectral—CGR 2nd VL 1610.38 14.56% 

Spectral—CGR 2nd SW 1610.86 14.59% 

Spectral—CGR 3rd VL 1494.54 6.32% 

Spectral—CGR 3rd SW 1484.87 5.63% 

Spectral—CGR 4th VL 1458.01 3.72% 

Spectral—CGR 4th SW 1445.76 2.85% 

Spectral—CGR 5th VL 1422.67 1.21% 

Spectral—CGR 5th SW 1407.27 0.11% 

Spectral—CGR 8th VL 1358.72 3.34% 

Spectral—CGR 8th SW 1376.77 2.06% 

Spectral—CGR 16th VL 1333.41 5.14% 

Spectral—CGR 16th SW 1312.50 6.63% 

 
For the inviscid case, the best value of the stagnation pressure was obtained by 

the VL scheme using the CGR spectral method in its second order of accuracy, 
with an error of 0.33%. On the other hand, for the viscous case, the best estima-
tive of the stagnation pressure was obtained by the LS scheme using CGR and 
sixteenth order of accuracy, presenting an error of 2.69%. Finally, for the fourth 
problem, the double ellipse problem, the best solution in terms of stagnation 
pressure estimation was obtained by the LS scheme using the CGR spectral method  
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Table 9. Values of stagnation pressure and respective errors (Blunt Body Inviscid Problem). 

Method Order Scheme pr0 Error 

Spectral—CGR 2nd VL 170.31 0.33% 

Spectral—CGR 2nd LS 188.32 10.21% 

Spectral—CGR 2nd SW 160.88 5.85% 

Spectral—CGR 3rd VL 157.07 8.08% 

Spectral—CGR 3rd LS 178.41 4.41% 

Spectral—CGR 3rd SW 146.52 14.25% 

Spectral—CGR 4th VL 153.46 10.19% 

Spectral—CGR 4th LS 175.29 2.59% 

Spectral—CGR 4th SW 141.94 16.93% 

Spectral—CGR 5th VL 149.24 12.66% 

Spectral—CGR 5th LS 172.19 0.77% 

Spectral—CGR 5th SW 137.47 19.55% 

Spectral—CGR 8th VL 143.88 15.80% 

Spectral—CGR 8th LS 168.14 1.60% 

Spectral—CGR 8th SW 131.80 22.87% 

Spectral—CGR 16th VL 138.86 18.73% 

Spectral—CGR 16th LS 164.38 3.80% 

Spectral—CGR 16th SW 126.50 25.97% 
 

Table 10. Values of stagnation pressure and respective errors (Blunt Body Viscous Problem). 

Method Order Scheme pr0 Error 

Spectral—CGR 2nd LS 206.32 20.75% 

Spectral—CGR 3rd VL 203.65 19.18% 

Spectral—CGR 3rd LS 192.33 12.56% 

Spectral—CGR 3rd SW 203.21 18.93% 

Spectral—CGR 4th VL 198.50 16.17% 

Spectral—CGR 4th LS 188.44 10.28% 

Spectral—CGR 4th SW 198.68 16.28% 

Spectral—CGR 5th VL 193.66 13.34% 

Spectral—CGR 5th LS 184.72 8.11% 

Spectral—CGR 5th SW 194.44 13.79% 

Spectral—CGR 8th VL 187.40 9.67% 

Spectral—CGR 8th LS 179.97 5.33% 

Spectral—CGR 8th SW 186.65 9.24% 

Spectral—CGR 16th VL 181.74 6.36% 

Spectral—CGR 16th LS 175.46 2.69% 

Spectral—CGR 16th SW 181.21 6.05% 
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Table 11. Values of stagnation pressure and respective errors (Double Ellipse Problem). 

Method Order Scheme pr0 Error 

Spectral—CGR 2nd VL 2166.61 5.02% 

Spectral—CGR 2nd LS 2099.83 1.77% 

Spectral—CGR 2nd SW 2183.46 5.84% 

Spectral—CGR 3rd VL 2001.37 2.99% 

Spectral—CGR 3rd LS 1978.05 4.12% 

Spectral—CGR 3rd SW 1992.25 3.43% 

Spectral—CGR 4th VL 1952.03 5.38% 

Spectral—CGR 4th LS 1939.83 5.97% 

Spectral—CGR 4th SW 1934.12 6.25% 

Spectral—CGR 5th VL 1901.87 7.81% 

Spectral—CGR 5th LS 1902.05 7.80% 

Spectral—CGR 5th SW 1877.56 8.99% 

Spectral—CGR 8th VL 1840.69 10.78% 

Spectral—CGR 8th LS 1855.22 10.07% 

Spectral—CGR 8th SW 1807.75 12.37% 

Spectral—CGR 16th VL 1815.57 11.99% 

Spectral—CGR 16th LS 1822.17 11.68% 

Spectral—CGR 16th SW 1746.49 15.34% 

 
in its second order accuracy, with an error of 1.77%. 

7.6. Grid Convergence Index (GCI) 

The discretization error ([29]) will be estimated using a method popular in the 
Computational Fluid Dynamics (CFD) community called the Grid Convergence 
Index (GCI), due to [30]. Two analyses are possible: constant grid refinement ra-
tio and non-uniform grid refinement ratio. In the present study, the constant 
grid refinement ratio was considered and will be presented in this section. The 
property under analysis is the maximum pressure, stagnation pressure, of the 
blunt body problem, obtained by the [9] flux vector splitting scheme using the 
CGR spectral method of 2nd order. 

Constant Grid Refinement Ratio. For the special case where the meshes are 
constructed with a constant grid refinement ratio, r, e.g. r = h2/h1 = h3/h2 = con-
stant where h1 < h2 < h3, for a finite volume formulation, the convergence rate, p, 
can be estimated as 

( )

3 2
10

2 1

10

log

log

f f
f f

p
r

 −
 − = .                     (67) 
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where f1, f2 and f3 are numerical values of the property under investigation for 
each mesh. Once the observed order-of-convergence is known, an estimate of 
the error between the fine grid solution and the unknown exact solution can be 
done. The relative error between the two finest grids is given by 

2 1
21

1

f fe
f
−

= .                        (68) 

The Grid Convergence Index (GCI) provides an estimate of the amount of 
discretization error in the finest grid solution relative to the converged numeri-
cal solution. Note the discretization error is with respect to the convergent nu-
merical solution, as the exact solution is generally unknown. The GCI is given by 

21
21

21

GCI
1s p

eF
r

=
−

.                      (69) 

where Fs is a “safety factor” multiplying the relative error term. The safety factor, 
Fs = 1.25, is based on experience applying GCI in many situations, [30]. The 
safety factor should be thought of as representing a 95% confidence bound on 
the estimated relative error. Example: say f1 = 5 with a GCI = 2%, then the fol-
lowing statement can be made: 

The converged numerical solution lies in the interval [4.90, 5.10], i.e. [f1 (1 − 
GCI), f1 (1 + GCI)], with a 95% confidence level. 

Finally, based upon the two finest mesh solutions, and the estimate of the ob-
served convergence rate, an extrapolation of the numerical solution is possible: 

* 21 1 2
21

21 1

p

p

r f ff
r

−
=

−
.                       (70) 

The extrapolation solution, *
21f , provides a useful estimate of the converged 

solution, [29]. 
For the present work, it was chosen three meshes to observe the behavior of 

the maximum pressure in the simulations. The meshes are composed of 14,518 
cells (123 × 120), 3658 cells (63 × 60), and 986 cells (35 × 30). The numerical 
values of the maximum pressure observed in the simulations were: f1 = 188.89, f2 
= 160.88, and f3 = 118.94. The ratio r21 = h2/h1 = 2.0 and the ratio r32 = h3/h2 = 
2.0, where r is constant. Hence, the value of the convergence rate is calculated by 

( ) ( )

3 2
10 10

2 1

10 10

118.94 160.88log log
160.88 188.89 0.17532 0.58240

log log 2.0 0.30103

f f
f f

p
r

 − −    − −   = = = = .  (71) 

The relative error e21 is calculated as 

2 1
21

1

160.88 188.89 0.14829
188.89

f fe
f
− −

= = = .            (72) 

and GCI21 can be calculated as 

21
21 0.58240

21

0.14829GCI 1.25
1 2.0 1s p

eF
r

= = ×
− −

 21GCI 0.37231∴ = .      (73) 
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The interval of solution for this parameter is 

( ) ( ) [ ]1 21 1 211 GCI , 1 GCI 118.56436,259.21564S f f= − + =   ,     (74) 

with a 95% confidence level. Finally, the extrapolation solution is calculated by: 
0.58240

* 21 1 2
21 0.58240

21

2.0 188.89 160.88 245.21
1 2.0 1

p

p

r f ff
r

− × −
= = =

− −
.        (75) 

This value corresponds to the expected numerical solution to be obtained. 
This also suggests that the more realistic value to the stagnation pressure, taking 
into account the chemical effects, should be higher than 200.00 unities in place 
of 170.87 unities. The solution presented in this manuscript assumed the value f2 
= 160.88 and the error in relation to the extrapolation solution is 34.39%. How-
ever, it pertains to the 95% confidence level, which suggests that a more refined 
mesh is optional. 

7.7. Three-Temperature Effect 

The three-temperature effect can be seen in Table 12 and Table 13, where the 
values of the minimum errors committed by each scheme are compared with the 
present paper and the reference [31], which was an old work of the present au-
thor. Comparing the two tables, it is possible to highlight the better performance 
of the three-temperature model in relation to the two-temperature model of 
[31]. Of course, this comparison is not the best because such study should be 
accomplished with 4th order of accuracy by both works, for example. But as the 
4th order study of [31] incorporated the best results for the inviscid case for each 
problem, so, the present results compare better than the old work. The unique 
loss of accuracy in relation to the old work (0.23%) was for the blunt body prob-
lem in its inviscid case (0.33%). All other comparisons exhibit the best perfor-
mance of the three-temperature model, with maximum error of the order of  

 
Table 12. Values of stagnation pressure and respective errors (Inviscid case). 

Problem Method Order Scheme Error Reference 

Reentry Capsule Spectral—CGR 4th LS 5.06% [31] 

Reentry Capsule Spectral—CGR 5th SW 0.11% This one 

Blunt Body Spectral—CGR 4th VL 0.23% [31] 

Blunt Body Spectral—CGR 2nd VL 0.33% This one 

Double Ellipse Spectral—CGR 4th LS 2.71% [31] 

Double Ellipse Spectral—CGR 2nd LS 1.77% This one 

 
Table 13. Values of stagnation pressure and respective errors (Viscous case). 

Problem Method Order Scheme Error Reference 

Blunt Body Spectral—CGR 16th LS 3.42% [31] 

Blunt Body Spectral—CGR 16th LS 2.69% This one 
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2.69%. Finally, it is important to highlight better performance of the three-tem- 
perature model in the determination of the stagnation pressure for the studied 
configurations, than the two-temperature model. 

In summary, the paper has presented results for the four studied cases and has 
compared them with literature theoretical results of [28]. The advantage of the 
present implementation is evident by the minimum errors found in each case in 
the present study and for the comparison of results with another reference [31], 
also of this author, that presented worse values for the stagnation pressure esti-
mation in relation to this paper. The three-temperature model performance was 
highlighted in this section, emphasizing this one as more accurate them other 
two-temperature models. Particularly, the results of [31] were obtained with a 
computational code written in FORTRAN language and the present results with 
a code written in OBJECT PASCAL language. So, the performances are different 
and the realistic comparison between codes are evident, with better behavior for 
the later implementation with the proposed three-temperature model. 

The advantages of the present formulation with a three-temperature model is 
highlighted by the good numerical results obtained in terms of percentage er-
rors, with values close to 0.11% in the best case, and in comparison with other 
references as [31]. About the effectiveness of the proposed model, this can be 
observed that the implemented spectral method, used to high order analysis, has 
presented converged results for the majority of the studied cases, evidencing the 
appropriated formulation presented here. Moreover, the three algorithms have 
presented converged results, emphasizing the correct implementation and, as 
they are upwind and flux vector splitting schemes, don’t requiring artificial dis-
sipation to guarantee convergence, they are also cheaper than the flux difference 
splitting counterparts. The fact of not requiring artificial dissipation is a critical 
advantage of these schemes, eliminating the phase of user trial and error ap-
proaches to convergence and providing a solution with the appropriated level of 
dissipation. 

8. Conclusions 

In this work, a study involving the fully coupled Euler and Navier-Stokes reac-
tive equations is performed. These equations, in conservative and finite volume 
contexts, employing structured spatial discretization, on a condition of thermo-
chemical non-equilibrium, are analyzed. High-order studies are accomplished 
using the spectral method of Street et al. The high enthalpy hypersonic flows 
around a circumference, around a reentry capsule, along a blunt body, and along 
a double ellipse in two-dimensions are simulated. The Van Leer, Liou and Stef-
fen Jr., and the Steger and Warming flux vector splitting algorithms are applied 
to execute the numerical experiments. The Euler backward integration method 
is employed to march the schemes in time. The convergence process is accele-
rated to steady state condition through a spatially variable time step procedure, 
which has proved effective gains in terms of computational acceleration (see 
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Maciel). The reactive simulations involve Earth atmosphere chemical model of 
seven species and eighteen reactions, based on the Blottner model. Three tem-
peratures are used to accomplish the numerical comparisons. 

The results have demonstrated that the Liou and Steffen Jr. and Steger and 
Warming schemes were the best in the estimative of the stagnation pressure 
ahead of the hypersonic geometries studied in this work. For the circumference 
problem, the best solution was obtained by the Steger and Warming scheme us-
ing the CGR spectral method of second order, with the estimation error of the 
stagnation pressure of only 5.69%. To the reentry capsule problem, the best solu-
tion was again obtained with the Steger and Warming scheme, addressing the 
minimum relative error of 0.11% in the estimative of the stagnation pressure. It 
was also obtained with the CGR spectral method of Street et al., in its fifth order 
of accuracy. To the third problem, the blunt body configuration, two error anal-
ysis were done: one for the inviscid case and the other for the viscous case. For 
the inviscid case, the best value of the stagnation pressure was obtained by the 
Van Leer scheme using the CGR spectral method in its second order of accuracy, 
with an error of 0.33%. On the other hand, for the viscous case, the best estima-
tive of the stagnation pressure was obtained by the Liou and Steffen Jr. scheme 
using CGR weighting function and sixteenth order of accuracy, presenting an 
error of 2.69%. Finally, for the fourth problem, the double ellipse problem, the 
best solution in terms of stagnation pressure estimation was obtained by the 
Liou and Steffen Jr. scheme using the CGR spectral method in its second order 
accuracy, with an error of 1.77%. 

The main contribution of this work to the CFD community was the imple-
mentation of three-temperature model coupled with three flux vector splitting 
algorithms to the solution of reentry flow problems in 2D and the use of a spec-
tral method to error analysis. With it, numerical tools are available to study ther-
mochemical non-equilibrium flows in two-dimensions more realistically. The 
detailed source terms implemented to consider electron temperature and more 
realistic simulations were remarkable contributions from this work. Finally, this 
in house code was implemented in Object PASCAL language, with the use of 
Delphi software produced by Borland. 
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