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Abstract 
A well-known cornerstone in fluid mechanics is the equations that relate the 
friction factor to the Reynolds number obtained from the measurements in 
cylindrical cross-sectional tubes. The extension of these equations to different 
geometries failed to give reliable results. The introduction of the Hydraulic 
Diameter has fixed this issue particularly for the square ducts. However, for 
non-symmetric flows, as in concentric annuli, the discrepancies were unac-
ceptable. Several attempts have been made to fix these problems with finally 
the introduction of a new concept like, “Laminar Equivalent Hydraulic Di-
ameter” or “Efficient Hydraulic Diameter” provided satisfactory results. This 
approach seems to have fixed the problem and hence has been widely ac-
cepted. Nevertheless, it is based on a non-robust theoretical argument. In the 
present paper, it has been demonstrated that the solely use of the “Hydraulic 
Diameter” concept is insufficient to describe non-symmetric flows as in con-
centric annuli. It appears the need to use the Z axis component of the skew 
driving force for the laminar flow and the parameter λ  for the turbulent 
one. At the same time, instead, it has been shown that in the case of flow in 
square and rectangular ducts, the “Hydraulic Diameter” is sufficient to de-
scribe it. In this case, the flow is practically symmetric. Moreover, several new 
straightforward equations are provided, which simplify a lot dealing with non- 
cylindrical cross-sectional conduits. In doing so, the concept of “Eigenvectors- 
Eigenvalues” has been implemented. This theoretical approach could help to 
simplify other non-symmetric cases in fluid dynamics. To mention, “Flow 
past immersed non-symmetric bodies”, “Flow in curved conduits” etc. 
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of Two Adjacent Immiscible Fluids, Eigenvectors-Eigenvalues 

 

1. Introduction 

There are many milestones in the fluid dynamics history. To mention the mas-
terpiece of Navier-Stokes’ equation and the extensive work by many to under-
stand the turbulent flow and provide the engineers with reliable design methods. 

Among these are the well-known equations provided by Prandtl in 1935 for 
smooth pipes and Colebrook for rough pipes [1] [2] 

( )1 2.0 log 0.8= −
hdRe f

f
 

 1 2.512.0 log
3.7
ε 

 = − +
 
 hdf Re

d
f

                (1) 

Given Re, these implicit equations to the friction factor f offer a way to calcu-
late the pressure drop in a cylindrical tube under laminar and/or turbulent flow. 

Although Equation (1) is accurate for cylindrical tubes, all attempts to extend 
its use to pipes and channels of different geometry have failed to provide satis-
factory accuracy. 

For example, the use of Equation (1) for concentric annuli shows a scattering 
from −25% to +35%. Attempts to cure this problem even by introducing the 
concept of the “hydraulic diameter” did not gave consistent results particularly 
for low Reynold’s’ numbers [3] [4] [5] [6]. 

As a matter of fact, this situation was to be expected for the following reasons: 
First, Reynolds’ number is defined as a unique dimensionless combination of 

the governing parameters of the flow, i.e., if two or more developed flows share 
identical Reynolds’ numbers, then the final velocity distribution should be iden-
tical. 

However, the definition of Re includes a linear quantity directly dependent on 
the geometry of the conduit. For instance, for a flow in a cylindrical pipe, the 
characteristic linear quantity is undoubtedly the diameter of the pipe. Hence, 
geometric similarity is guaranteed for all cylindrical pipes. The same reasoning 
applies to square ducts, where the characteristic linear dimension is just the side. 

On the contrary, for other geometrical sections, like concentric annuli or rec-
tangular ducts, a more specific definition is needed to keep the geometric simi-
larity, specifically the K parameter for the annuli and the ratio a/b for the sides 
of a rectangular duct. 

Therefore, for geometries which are other than cylindrical, the use of Equa-
tion (1) is wrong. Nevertheless, the engineers were reluctant to drop the use of 
Equation (1) and miss the benefit from the available work. They tried hard to 
attenuate the problem by introducing the idea of the “Hydraulic Diameter”. The 
results were acceptable for the square ducts, but unacceptable for non-symmetrical 
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flows. Furthermore, it is unrealistic to produce an equation similar to Equation 
(1) for any geometric shape. Hence, the problem to relate successfully Equation 
(1) with other geometric shapes remains open.  

On the same track, the work of Jones O. C. Jr. and Leung J. C. M [3] [4] in-
troduced the idea of the “Laminar Equivalent Diameter”. This method is sup-
posed to give excellent correlation to Equation (1) and so has been widely ac-
cepted [2]. 

In the present paper, it will be demonstrated that the main reason of these 
discrepancies is the non-symmetry of the flow (i.e., the skewness of the velocity 
distribution) rather than the lack of geometric similarity. In fact, the geometric 
similarity is cured well enough by just using the concept of the Hydraulic Di-
ameter.  

2. The Method 

In the present paper, the approach to the flow in non-circular conduits problem 
is completely theoretical and based on the classical theoretical mechanics. The 
approach is different and the use of the Navier-Stokes’ equation and the relative 
concepts of Momentum Transfer, have been deliberately avoided. Finally, the 
concept of “Eigenvectors-Eigenvalues” has been implemented. The idea behind 
this decision is that by using a completely different route than the standard one 
the final comparison of the results will be fair. 

First, a stress tensor is defined, and the relative Eigenvectors-Eigenvalues have 
been calculated. Consequently, the stress tensor has been diagonalized to find 
the direction in the fluid where shear stresses are nullified. What is left is just 
driving forces. Next, an equation is proposed, which provides the average veloc-
ity V (m/sec) as a function of the pressure gradient ∇p  (N/m3). Hence, for a 
given average velocity the pressure gradient is calculated, or vice-versa. The re-
sults are compared with the ones provided in the literature, which make use of 
the widely accepted “Laminar Equivalent Diameter” concept [4]. For the laminar 
flow the exact analytical solutions, based on Navier stokes equation, are used for 
comparison. Moreover, it is assumed that the results of the work [3] [4] based on 
experimental data are corelating well enough with Equation (1). Hence, the re-
sults of the present work are compared with the results in [3] [4]. 

In the following illustrative examples this original approach becomes clearer. 

2.1. Flow through an Annulus-Laminar Flow 

As a first attempt, the case of flow through a concentric annulus (presented in 
Figure 1) is analyzed. In this case “non-symmetry” prevails. 

Consider the case, 0.3=K , 0.05 m=oR , 30.1 N m∇ =p  and water as the 
fluid 310 kg m secµ −= ⋅  and 3 310 kg mρ =  

Calculating, λ . From now on we nominate Ro as R for simplicity. 
Given the parameter K, the dimensionless parameter λ  depends only to the 

geometry of the annulus and nothing more. It is calculated by the following for-
mula, 
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Figure 1. Flow in a concentric annulus. 

 
2

2

2

1
1ln

λ −
=

K

K

                             (2) 

So, 0.615λ = . 
Equation (2) practically defines 2λ  as the logarithmic mean between the 

quantities (R2) and (K2R2) i.e., the logarithmic mean of the first moment for the 
two wetted areas (see also Appendix A). 

Now there is need to calculate the stress on the walls τ w . Attention is re-
quired in this case as there are two different τ w . Hence, the inner wall stress as 
τ w

i  and the outer one as τ w
o  are designated.  

Given that on the virtual cylindrical surface of radius λR , the shear stresses 
are zero (maximum velocity), it is allowed to make an independent balance to 
the forces. 

( )2 2 22 τ λπ ∝ π − ∆w
oRL R R p                       (3) 

( )2 2 2 22 τ λπ ∝ π − ∆w
iKRL R K R p                     (4) 

By dividing Equation (3) with Equation (4), the ratio of the two wall stresses is 
provided, 

2

2 2

1τ λ
τ λ

−
=

−

w
o
w
i

K
K

                           (5) 

At the same time, by applying a total force balance,  

( )2 2 22 2τ τπ + π = ∆ π −w w
o iRL KRL p R K R  ⇔  

( )2 21 0.002275 N m
2

τ τ ∇
+ = − =w w

o i
pK R K              (6)  
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From Equation (5) and Equation (6), the wall stresses for this particular case are, 
20.0024 N mτ =w

i  and 20.00155 N mτ =w
o  

As expected, τ τ>w w
i o  since inner tubular surface is smaller. 

The aim is to calculate the average velocity in this annulus. If the flow is a fully 
developed turbulent one, almost every point in the core of the fluid should share 
the same average velocity. In other words, in the case of the fully developed tur-
bulent flow, the average velocity is not just a mathematical quantity, but has a 
physical meaning as well. 

On the contrary, in the case of laminar flow, the average velocity is just a ma-
thematical quantity, however, useful. In the core of the fluid there is a velocity 
distribution. In fact, due to the velocity variation there are shear stresses in the 
fluid. Nevertheless, a mass flow rate will be achieved at the end directly related to 
a theoretical average velocity. 

Following the average velocity’s V definition as an invariant quantity in the 
core of the whole fluid, there is another quantity as well invariant for incom-
pressible fluids. 

21 Kinetic Energy
2
ρ =V  

At the same time, any element in the liquid’s core experiences stresses, which 
can be organized into a tensor form. There are tensile and shear stresses, which 
in this case, do not deform, just move the element. 

1 12

21 2

σ τ
τ σ

=σ  

Considering the element is touching the walls where there are the maximum 
shear stresses, 

τ
τ
−

=
−

w
i

w
o

p
p

σ  

Moreover, it is understandable that the absolute magnitude of the pressure at a 
certain section (e.g., 0=Z ) Inside the tube, it has absolutely no influence on 
the flow behavior for an incompressible fluid. Hence, this pressure tensor can be 
subtracted, 

0 0
0 0

τ τ
τ τ

−−
= − =

−−

w w
i i

w w
o o

pp
pp

σ  

Finally, 

0
0
τ

τ
=

w
i

w
o

σ                         (7) 

This is the deviatoric stress tensor, which describes the maximum shear forces 
experienced by an element in the core of the fluid. When the fluid is immovable 
this tensor is zero everywhere in the fluid. Hence, it is directly related to the ve-
locity of the fluid. 
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It is well known that there are some tensor invariants like the trace and the 
determinant. Herein, a definition is proposed, 

21 1
2
ρ =V

f
σ                        (8) 

i.e., the kinetic energy is proportional to the square root of the absolute value of 
the tensor’s σ  determinant σ . Practically, Equation (8) connects two inva-
riant quantities for a given pressure gradient and geometry for a non-compressible 
fluid. 

The coefficient 1/f identifies to the Fanning’s (not Darcy’s) friction factor and 
guarantees the steady state. Boundary conditions are satisfied given that at zero 
velocity the right-hand side of Equation (8) is zero, as shear stresses appear only 
and only if the fluid is in motion. 

Before proceeding with the annuli problem, which illustrates the present me-
thodology, consider a simple case, laminar flow in a cylindrical tube. Start by 
rearranging Equation (8),  

2 2
ρ

=V
f

σ                           (9) 

For this case, σ  is symmetric. Thus, 

0
0
τ

τ
=

w

wσ                           (10) 

calculating the determinant, 

( )20 0 N m
2

τ τ τ ∇
= × − × = =w w w p Rσ             (11) 

Same time, for laminar flow, from the empirical equation, 

1
16

=
Re

f
                          (12)  

Combining Equation (9), Equation (11) and Equation (12),  

2 2 2 2
2 16 2 16 2

ρ
ρ ρ ρ µ

∇ ∇ ∇
= = =

p Re p VD pV R R R
f

 ⇒  

8 2µ
∇

=
D pV R                        (13) 

Attention is needed to the fact that diameter D in Equation (12) is defined 
through the Re number and has a precise meaning. It is the quantity, which un-
iquely defines the area of the flow. In this case, the circular area of the tube is 
well defined by D (in order to define, for instance through R, we would need 
more parameters like 2R etc. For other less simple shapes it is trickier to define 
D). 

Finally,  

2

8µ
∇

=
pV R                          (14) 
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This last equation identifies with the well-known, analytically obtained, equation 
for the average velocity in a circular tube in laminar flow. 

In a similar way the following well known equation was obtained which will 
be referred hereafter as the “classic one” for laminar flow, 

21 1 4
2
ρ τ= wV

f
 with 1

64
=

Re
f

 

wall averageτ τ≡w  

and defined by the following equation, 

( ) ( )2 2 22 2τ π + π = ∆ π −w R KR L p R K R  

( )2 2 2

wetted2 2
τ

π −
= ∇ = ∇

π + π
w

R K R Ap p
R KR P

 

wetted

44τ = ∇ = ∇w h
Ap pD

P
 

Hence, 
22

64µ
= ∇hD

V p                          (15) 

To find the diagonal matrix of the symmetric tensor Equation (10). 
Let, 0.05 m=R , 30.1 N m∇ =p , From (6) and 0=K , 

20.0025 N m
2

τ ∇
= =w p R  

0 0.00250
0.0025 00

τ
τ

= =
w

wσ                (16)   

and 1
diagonal

2

0
0
λ

λ
=σ  

where 1λ  and 2λ  are the two eigenvalues of σ  and thus,  

diagonal

0.0025 0
0 0.0025

=
−

σ                   (17)  

and the eigenvectors are, 

 1

1
1

=v  and 2

1
1
−

=v                    (18) 

1tan 1 4 45− =  

so, 45θ = . 
In this case what happened is a rotation of an element under stresses that it is 

described by the stress tensor in Equation (16) and by an angle 45θ = . In this 
new virtual position, the element suffers no more shear stresses, just tensile 
stresses which are normal to the surface of the element. 

Clearly shear stresses are due to the relative velocity, which exists in the lami-
nar flow between adjacent elements, somehow proportional to the velocity as 
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described in Equation (8). 
However now the eigenvector indicates a new direction, at 45˚ where shear 

stresses should disappear. The plains where shear stresses disappear are called 
“Principal-Plains”. What does it mean?  

It is clear now from Figure 2 what is happening. The eigenvector tells an ele-
ment at the point A, “If you run faster than your neighbor bearing 45˚ to the left 
than you suffer no more shear stresses and you arrive to the point C where shear 
stresses do not exist as well”. 

At point C the two neighboring elements are running with almost the same 
velocity (stationary point), thus shear stresses disappear. The situation is the 
same at point A, where the velocity is zero. Thus, line AC unites all points with 
zero shear stresses. 

What is the gain finding a zero-shear stress direction?  
Back to the less trivial situation, which reigns in an annular flow with 0.3=K . 
The parameters are (see Figure 3)  

0.05 m=R , 0.015 m=KR , 
30.1 N m∇ =p , 0.615λ = , 0.03075 mλ =R  

Calculating,  
20.0024 N mτ =w

i  and 20.00155 N mτ =w
o   

with the help of Equation (5) and Equation (6), 

0 0.00240
0.00155 00

τ
τ

= =
w
i

w
o

σ                 (19)   

 

 
Figure 2. The velocity distribution for laminar flow in a cylindrical cross-sectional pipe. 
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Figure 3. Annular flow 0.3=K , 0.05 m=R .  

 
The eigenvalues are, 2

1 0.00193 N mλ =  and 2
2 0.00193 N mλ = −  

diagonal

0.00193 0
0 0.00193

=
−

σ                  (20) 

and the eigenvectors are, 

 1

1.244
1

=v  and 2

1.244
1

−
=v                 (21) 

Leading to an angle 1tan 1.244 1 51.2− = . So, 51.2θ = . 
Although the tensor in Equation (19) is not symmetric, the eigenvectors do exist 

but are not orthogonal. In fact, they form an angle of 2 2 51.2 102.4θ = × =   
(see also Appendix B). 

From Figure 3, it is clear that in this case the eigenvectors indicate a different 
direction than in the symmetric one, which is precisely the point F at a distance 
of 0.03075 m from the central axes Z. 

In fact, there is a geometric relation between the angles and the parameter λ . 
Following a rough approach, the point A sees CB  at an angle of 45˚ and re-

spectively BF  at an angle of 51.2˚  

51.2
0.017545

= =




BF BF
CB

 

Hence, 0.0199=BF   

0.05 0.0199 0.0301= − =OF  

However, λ=OF R . Therefore, 0.6λ ≈ .  
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In other words, the eigenvector indicates a direction to a point with cardinal 
significance for this kind of problems i.e., the point at maximum velocity. 

It is worth pointing out that as 1→K , this very rough geometric approach 
used to identify parameter λ , becomes accurate. Instead, for 0.0→K , there is 
lack of accuracy most likely due to the increasing asymmetry of the stresses. In 
Appendix B, there is a precise geometrical approach that demonstrates the rela-
tion of the angle θ  and the point of maximum velocity. Basically, it turns out 
that θ  is the average of the complementary angles the two eigenvectors pro-
duce. 

At this point, it is useful to produce an approximative geometric equation that 
relates the angle θ  with the parameters λ  and K. 

From Figure 3,  

45
Θ

=


BF
CB

 

and   

 ( )1
2 2

−−
= =

R KR KRCB , ( )1 λ= −BF R   

Finally,  

11
245

λ Θ −
= −



K                       (22) 

Equation (22) calculates λ  with good accuracy particularly for 0.3 0.9≤ ≤K . 
Moreover, Equation (22) demonstrates that λ  is somehow related to θ , a 

property which will be useful later in the turbulent flow. 
At this point, to calculate the average velocity for this annulus, the proposed 

Equation (8) for a supposed laminar flow is used, 
Given,  

21 1
2
ρ =V

f
σ  and 

1
16

=
Re

f
 

From the above two,    

( )1m sec
8µ

−= ⋅
DV σ  

An issue appears here; how to define D. Remember D comes from the definition 
of the Re and one must be very careful. A straightforward approach says that here 
the significant distance is the clearance of the annulus (the gap) i.e., ( )−R KR . 
However, on the r axis and by symmetry (see Figure 1) there are two gaps.  

So, ( )2 0.07 m= − =hD R KR , hD  is called the Hydraulic Diameter. 
On the other hand, the standard approach is to define the Hydraulic Diameter 

as,  

( )4 m=h
AD

P
 

with P the wetted perimeter and A the cross-section area of the flow.  
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Fortunately, in this case above equation gives the same result, so 0.07 m=hD  
is accepted. 

The invariant determinant of either matrix Equation (19) or Equation (20) is, 

( ) ( )0.0024 0.00155 0.00193 0.00193= − × = − ×σ  

Finally, 2
1 2or 0.00193 N mλ λ= =σ . 

From Equation (21),    

3

0.07 0.00193 0.017 m sec
8 8 10µ −= = × =

×
hD

V σ           (23) 

From the exact analytical solution [7], 

4 2
2 2

2 3

1 1 0.1 0.05 0.33 0.01 m sec
18 1 8 10lnµ −

 
 ∇ − −

= − = × × = 
− ×  

 

p K KV R
K

K

  (24) 

Also, from the classical approach, Equation (15), 
2 2

3

2 2 0.07 0.1 0.0153 m sec
64 64 10µ −

×
= ∇ = × =

×
hD

V p  

Therefore, although the classical approach gives closer results to the analytical 
solution than Equation (23), they are still higher. There is need to investigate what 
is the issue here. 

The first incorrect step was the use of the experimental Equation (12) coming 
from the measurements on cylindrical cross section pipes. The very definition of 
the Reynolds number demands geometric similarity. In fact, we cannot claim 
geometric similarity between an annulus and a circular pipe. The second incor-
rect step was the very fact that due to the non-symmetry of the wall stresses the 
velocity profile is skew. The simple use of the Hydraulic Diameter concept seems 
not to be sufficient to cure either problem. Practically this is exactly what the 
present work claims.  

At this point, the definition of the traction vector responsible for the fluid’s 
motion is recalled, 

λ= = ⋅ =T n nr

z

T
T

σ                         (25) 

In this case, n  is the normalized eigenvector that defines the surface on which 
the traction vector applies. It is understood that on the principal plane the trac-
tion vector T  and the eigenvector n  are aligned. 

The eigenvectors already provided this vector, however not in a normalized 
form. Therefore, to normalize it just remember that the angle θ  must be 51.2˚.  

Moreover, there is the trigonometric identity, 2 2cos sin 1θ θ+ =  so, inserting 
51.2θ =   

2 20.627 0.779 1+ =                        (26) 

0 0.0024 0.627 0.627
0.00193

0.00155 0 0.779 0.779
= = × = ×T r

z

T
T
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0.00193 0.627 0.00121
0.00193 0.779 0.0015

×
= =

×
r

z

T
T

 

Given that 51.2 45θ = >  , the smallest component should identify with the 

zT . 
To remember that the components of the traction vector are, by definition, 

orthogonal, and parallel to the relative axes. 
Finally,  

0.00193 0.627 0.00121
0.00193 0.779 0.0015

×
= =

×
z

r

T
T

 

Coming back to Equation (22), 

3

0.07 0.00193 0.627 0.0106 m sec
8 8 10µ −= = × × =

×
hD

V σ  

An excellent fit with the analytical one. 
Therefore, the equation proposed for a laminar flow should be, 

cos
8

θ
µ

= hD
V σ                       (27) 

Or in a more explicit way, 

cos
8

λ θ
µ

= ∇hD
V p                       (28) 

I.e., just the component along the z axis of the traction vector maters. 
Equation (27) gives an excellent correlation with the analytical Equation (24), 

for the whole range of the parameter K as we can observe from Table 1 (A more 
extensive theoretical explanation is given in Appendix B). It is now evident that 
the Hydraulic Diameter concept cures satisfactorily the similarity problem, how-
ever, the main problem due to the skew profile is cured by considering just the Z 
component of the traction vector. 

In Table 1, it is evident that Equation (15) fails consistently. This is reasonable 
due to the fact that it is based on the semiempirical Equation (12), which in turn  
 
Table 1. Average velocities m/sec for different K parameters and for laminar flow. 

K Equation (24) Equation (28) Equation (15) Φ* 
Equation (15) 

xΦ* 
Duct Flow 

0.1 0.018 0.01845 0.0253 0.716 0.0181 0.017 

0.2 0.014 0.014 0.02 0.692 0.0138 0.0133 

0.3 0.0103 0.0105 0.0153 0.682 0.0104 0.0102 

0.4 0.0075 0.0075 0.01125 0.676 0.0076 0.0075 

0.5 0.00524 0.00537 0.0078 0.672 0.00524 0.0052 

0.6 0.00328 0.0034 0.005 0.669 0.00335 0.0033 

0.7 0.001875 0.00194 0.0028 0.668 0.00187 0.001875 

0.8 0.0008 0.00087 0.00125 0.667 0.00083 0.00083 
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is based on values obtained in circular pipes. This problem is supposedly cured 
given the adoption of the Hydraulic Diameter, instead it is not. We believe that 
the cause of the insisting discrepancies is the skew velocity profile due to the 
non-symmetry of the flow. 

For this reason, the correction factor *Φ  to Equation (15) as suggested and 
defined in [4] is introduced (see Appendix B), 

*= Φeff

h

D
D

                           (29) 

It seems that in [4] (Jones et al.) practically tried to correct the problem aris-
ing from the lack of geometric similarity and the skewness, as explained, mod-
ifying Reynolds number by reducing the Hydraulic Diameter of the flow. Instead, 
in the present method just the component of the traction force along the z axis 
has been considered. Finally, it appears that this very component is responsible 
for the motion of the fluid forwards. Hence, two distinct approaches are recog-
nized here. 

Moreover, in Table 1, it has been included the average velocity, calculated as 
“Flow in a duct” by the well-known and analytically obtained equation, 

2

3µ
= ∇

hV p                          (30) 

Here h equals half the clearance i.e., 

( )1
2

= −h R KR  

Equation (30) is obtained on the assumption that the clearance 2h is substan-
tially smaller than the wide of the duct. It is interesting to observe that for 0.3≥K , 
Equation (30) provides the most reliable and easy way to calculate the average 
velocity for flow through concentric annuli, at least for laminar flow. Therefore, 
a promising idea could be to transform a “duct problem” into an annular flow 
problem with 0.8≥K  and vice-versa. To see how the above Equation (27) 
works for laminar flow (see Appendix E). 

2.2. Flow through an Annulus-Turbulent Flow 

To continue with the illustrative examples to better understand this new method, 
consider the case of turbulent flow. As it is mentioned in laminar flow, the con-
cept of average velocity is a mathematical one. On the other hand, in the devel-
oped turbulent flow this concept has, along with the mathematical meaning, a 
physical one. The reason for this is that in the so-called “plug flow” the velocity 
is quasi constant at any point in the core of the fluid, except of course very close 
to the walls. 

So, in a similar way with Equation (8), 

 21 1
2
ρ =V

f
σ                        (31) 

with the parameter f to be function of, 
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( ) ( ), , , , ,µ ρ ε ε= =h hf F V D F Re                 (32) 

At the same time, there is the classical definition, 

2 41 4
2 4

τ
ρ ∇

= =w pV D
f f

                    (33) 

In Equation (33) f stands for Darcy’s friction factor and it is 4 times greater than 
the f in Equation (31) that stands for Fanning’s factor. 

From Equation (33),  

 1 2
ρ
∇

=
D pV

f
                       (34) 

Now, in order to compare Equation (31) and Equation (34) in turbulent flow, 
the velocity should be fixed so to define the Reynolds number, i.e., we will solve 
the above equations for ∇p   

From Equation (5) and Equation (6) we have, 

( )21
2

τ λ∇
= −w

o
p R                       (35) 

2

2
λτ

 ∇
= − 

 
w
i

p R K
K

                     (36) 

In turbulent flow, the shear stresses in the core of the fluid due to cohesiveness 
do not exist. Under high pressure to achieve higher velocities the fluid lost cohe-
siveness. It is not any more considered a continuum according to the meaning 
we give in mechanics. Shear stresses, such as these defined in laminar flow, due 
to the relative velocities between adjacent fluid elements, do not exist. The fluid 
is in a new and different state. Looking on Moody’s diagram, the sharp discon-
tinuity between laminar and turbulent flow is evident. Imagine the transforma-
tion happening to the soil under high stresses during a strong earthquake. The 
soil fluidifies and behaves like moving sand. The fluid in turbulent flow behaves 
like a cluster of moving particles (the eddies) with high velocity and friction oc-
curring from the collisions with each other and the wall. A similar situation ex-
ists during heat transfer in turbulent flow. In this case, the heat transfer is almost 
exclusively due to convection and not to conduction, which needs the concept of 
a mutual contact.  

Finally, the stress tensor becomes, 
2

2

0 0
20 1 0

λτ
τ λ

∇ −
= =

−

w
i

w
o

p KR Kσ                (37)   

From Equation (37) it is more than clear that the orientation of the eigenvectors 
is now just a matter of geometry. 

And the determinant, 

( )
2

21
2 2

λλ
 ∇ ∇

= − − − 
 

p pR R K
K

σ  
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( ) ( )
2 2

2 21 1
2 2 2

λ λλ λ
   ∇ ∇ ∇

= − − − = − −   
   

p p pR R K R K
K K

σ  

Inserting this into Equation (31), 

( )
2

2 21 1 1
2 2

λρ λ
 ∇

= − − 
 

pV R K
f K

 

Finally, Equation (31) becomes, 

( )
2

21
12

λλ

ρ

 
− − 

 
= ∇

R K
K

V p
f

            (38)  

In Equation (38), the Darcy’s friction factor is now accepted. It can be obtained 
through Equation (40) or Equation (1). The extra factor 2 in Equation (38) takes 
care of the fact that the Fanning’s friction factor is 4 times smaller the Darcy’s 
one. 

Similarly, Equation (34) becomes, 

1 2
ρ

= ∇
DV p

f
                    (39)  

Ready now to compare the two approaches for the case of 0.2=K  annular 
flow of water with 510=Re . 

Parameters given, 31000 kg mρ =  
310 kg m secµ −= ⋅ , 0.05 m=R  

0.546λ = , 0.08 m=hd  

5
3

1000 0.08 10
10

ρ
µ −

× ×
= = =h

d
Vd VRe  →  1.25 m sec=V  

with the help of Equation (35), Equation (36), 

1.29
2

τ ∇
= ×w

i
pR  and 0.702

2
τ ∇

= ×w
o

pR  

Hence,  

0 1.290
0.702 020

τ
σ

τ
∇

= =
w
i

w
o

pR  →  

1λ  or 2 0.952
2

λ ∇
= ± ×

pR   

 1

1.356
1

=v  and 2

1.356
1

−
=v     

and, 53.6θ =  . 
To calculate the friction factor, the approximative but explicit, equation from 

Haaland [8] and for smooth pipes, is used, 

1 6.91.8log
 

= −  
 dRef

                     (40) 
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Valid for, 4 84 10 10× < <Re  

5

1 6.91.8log 7.49
10
 = − = 
 f

                  (41) 

Now ready to calculate the ∇p , firstly from Equation (38), then with the me-
thod proposed by Jones et al. [4], and finally compare.  

2 0.952 0.952
2 2

1.25 2 7.49
1000

∇ ∇  × × − ×  
  

= × ×

p pR R
 

0.9521.25 2 7.49
1000
×

= × × × ∇
R p  

0.05 0.9521.25 2 7.49
1000
×

= × × × ∇p  →  3146 N m∇ =p      (42) 

At this point following the route proposed (Jones et al.) [4], which has been 
generally accepted [2] (see Appendix B) 

*∗ = ×Φd dRe Re   

For 0.2=K  →  * 0.692Φ = . Thus, 69200∗ =dRe  

( )1 2log 0.8∗= × −dRe f
f

                  (43) 

Guess, 0.0193=f  →  7.2 7.916 0.8 7.17= − =   

       →  0.0195=f  

Enter, 0.0195=f  →  7.16 7.97 0.8 7.17= − =     

                   →  0.0195=f  O.K. accepted. 

And from Equation (39), 

2 0.081.25 7.16
1000
×

= × ∇p  →  3191 N m∇ =p       (44) 

So, there is here an unacceptable difference of almost 40%.  
In Table 2, one can observe interesting outcomes. 

- Equation (38) always gives lower results than Equation (39)*. 
- The differences decrease as Κ parameter increases. 
- Most probably the discrepancies are related to the geometry of the annulus. 

The discrepancies due to the non-geometric similarity are cured, given that 
the concept of Hydraulic Diameter has been used. Hence, the insisting dis-
crepancies are to be attributed to the non-symmetry of the flow. 

- As 0→K , the annulus practically tends to become a standard cylindrical 
cross-section tube, not geometrically similar to an annulus. Hence, it is rea-
sonable that Equation (38) is not behaving correctly.  

- On the other hand, as 1→K , the annulus tends to become a perfect duct, 
geometric non-similarity remains, however, skewness is reduced. This fact 
explains the convergence of Equation (38) to Equation (39)*. 
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Table 2. Pressure gradient in N/m3. 

K Φ* p∇  Equation (39)* p∇  Equation (38) 

0.05 0.7419 111 60 

0.1 0.7161 132 87 

0.2 0.692 192 146 

0.3 0.682 287 237 

0.4 0.676 445 394 

0.5 0.672 776 713 

0.6 0.669 1520 1375 

0.7 0.668 3591 3250 

0.8 0.667 12,157 111,120 

0.9 0.6668 97,350 89,000 

 
- So, there is need to correct Equation (38), however, not in the Jones’ way; just 

by changing the Hydraulic Diameter, and then altering Reynolds number. 
Instead, correct by using a correction factor, which helps to reduce the problem 
due to the skewness of the velocity’s profile coming from the non-symmetric 
wall stresses. 

- The correction factor should be strongly related to this new geometry, i.e., it 
should best describe the geometry.  

- The correction factor should converge to zero as 0→K  
- The correction factor should converge to unity as 1→K , i.e., to the duct 

flow where skewness disappears. 
So, the best candidate according to the Equation (22) seems to be λ . Moreo-

ver, it is this parameter that describes the peculiar geometry of the system to its 
fullest. In fact, from the approximative Equation (22), 

11
245

λ Θ −
= −



K                         (22) 

as,  

1→K , 1λ →  and 45Θ→   

0→K , 0λ →  and 90Θ→   

So, Equation (31) could become, 

21 1
2
ρ λ=V

f
σ  

And, finally, from Equation (38), 

( )
2

21
12

λλ
λ

ρ

 
− − 

 = × ∇

R K
K

V p
f

           (45) 

For 1→K  and 1λ → , we get 0→V , which is acceptable, because the flow 
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turns into duct flow and the duct’s gap is going to close. On the contrary, as 
0→K  Equation (45) blows up, it is not any more well defined. This is a rea-

sonable and a well expected outcome for Equation (45), i.e., Equation (45) doesn’t 
work for 0=K . It doesn’t make sense. The geometry is a perfect circular cross 
section pipe, and the standard equations are valid (see Appendix D). The matrix 
for 0=K  is not diagonalizable. Moreover, at 0=K  even λ  does not make 
sense as a logarithmic average. 

So, in this case, 0.546 0.86λ = =  

1.25 2 7.49 0.0069 0.86= × × × × ∇p  →  ( )3198 N m∇ =p  

From Table 3 interesting facts appear (see also Figure 4 and Figure 5). 
∇p -Equation (39) the classic and ∇p -Equation (39)* the classic* diverge as  

 

 
Figure 4. ∇p  in N/m3 for ( 0.05 0.6≤ ≤K ). Data from Table 3. 
 

 
Figure 5. ∇p  in N/m3 for ( 0.05 0.8≤ ≤K ). Data from Table 3.  
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Table 3. The pressure gradient p∇  in N/m3, turbulent flow in annuli ( 510dRe = ) and 
for 0.05 0.9K≤ ≤ . 

k 
p∇ ,  

Equation (39) 
p∇ ,  

Equation (39)* 
p∇ ,  

Equation (38) 

p∇ , Equation 

(38) λ  

p∇ , Equation 

(38) cosθ  

0.05 103 111 60 94 89 

0.1 122 132 87 128 120 

0.2 174 192 146 198 190 

0.3 262 287 237 302 299 

0.4 412 450 390 474 485 

0.5 713 776 713 831 874 

0.6 1393 1520 1375 1547 1688 

0.7 3294 3591 3250 3534 3920 

0.8 11,141 12,157 11,120 11,747 11,500 

0.9 89,200 97,350 89,000 91,400 106,500 

 
0.9→K , compelling the fact that the Prandl’s Equation (1), corrected with the 

help of the correction factor *Φ , [4] does not seems to hold good for ducts, i.e., 
where the non-symmetry is not the main issue. 

Instead, ∇p -Equation (39) the classic and ∇p -Equation (38) λ  con-
verge quickly as 0.9→K  compelling the fact that the two approaches (i.e., 
Equation (39)* the classic* and Equation (38) λ ) are not equivalent. 

∇p -Equation (38) λ  correlates very well with the generally acceptable data 
that the ∇p -Equation (39)* the classic* provides, particularly for 0.1 0.9≤ ≤K . 
However, ∇p -Equation (39)* the classic* diverges slightly as 0.9→K . 

An interesting, yet weak correlation appears also with ∇p -Equation (38)
cosΘ . In fact, just remembering that the tensor σ  is built on the two ei-

genvectors, cosΘ  has to do with the dot product of these eigenvectors. In fact, 
the angle of these two vectors is exactly 2Θ . This fact explains the presence of 
the correlation coefficient as λ  (see also Appendix C). 

3. About Rectangular Ducts 

Obviously, rectangular ducts are not geometrically similar to a cylindrical cross 
section and the use of the Hydraulic Diameter concept is necessary. Moreover, it 
will be shown immediately that in this case it is also sufficient given the flow is 
symmetric. So, will be evident how the simple use of Hydraulic Diameter is suf-
ficient to describe this kind of flow. These findings are in contrast with [3] 
(Jones et al.) and [2] that claim there is need for a correction factor function to 
the apex ratio of the duct. 

3.1. Turbulent Flow in Rectangular Ducts 

The findings about the concentric annuli, Equation (45) in particular, could be a 
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useful platform to calculate friction factors for turbulent flow in any kind of rec-
tangular ducts. For a laminar flow, there is a simple and precise analytical solu-
tion, however, this subject is coming later.  

Considering the simplest case of a duct with a width much larger than the 
spacing, i.e., w s . 

Same time imagine an annulus with 0.9=K , 10 m=R . In this case, the gap 
(spacing) 1 m=s  and 63 m=w . Therefore, the condition w s  is almost 
met. 

It is possible to compare the two approaches (the present method against [3] 
(Jones et al.), by calculating the pressure drop in turbulent flow with these two 
distinct methods. Suppose the parameters are,  

0.9=K  annular flow of water 0.5 m sec=V , 31000 kg mρ =   
310 kg m secµ −= ⋅ , 0.95λ = , 10 m=R  

6
3

1000 0.5 2 10
10

ρ
µ −

× ×
= = =h

d
Vd

Re  

From Equation (40), 

6

1 6.91.8log
10

= −
f

 →  1 9.29=
f

 

From Equation (45), 

( )
2

2 0.9510 1 0.95 0.9
0.9

0.5 2 9.29 0.95
ρ

 
− − 

 = × × ∇p  →  30.74 N m∇ =p  

Hence, using Equation (45) as a platform, a pressure gradient 0.74 N/m3 has 
been obtained for a duct with w s  and 1=s .  

And now using the approach by [3] (Jones et al.) (see Appendix B, Equation 
(B8)). 

For 1
63

=
s
w

 →  * 0.68Φ =  

4 1 2 m
2
× ×

= =h
wd
w

 

* *
3

1000 0.5 2 0.68
10

ρ
µ −

× ×
×Φ = Φ = ×

h
h

d
Vd

Re  

680435∗ =dRe  

1 6.91.8log 9
680435

= − =
f

 

From Equation (39),  

2 20.5 9
1000
×

= × ∇p  

30.77 N m∇ =p  
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So, we observe an excellent fit. 
Moreover, checking this approach for a real rectangular duct with 1 3=s w . 
From Figure 6, it is clear what is the idea. The fact is that Equation (45) for 

concentric annuli with 0.9=K  could be a promising platform to find an exact 
solution for any rectangular duct in turbulent flow. 

Obviously, any point in the annulus shares the same ∇p  and this is also valid 
inside the element with 3 m=w  in Figure 6. 

The similarity condition for the platform is met, given that the decision was to 
transform any rectangular duct to an annulus always with 0.9=K . What is left 
is to adapt the geometry of the annulus to share the same hd  with the duct. 

Find the Hydraulic diameter of the duct, 

4 3 1 12 1.5 m
2 3 2 1 8

× ×
= = =

× + ×hd  

For the annulus, it should be,  

( )2 1 1.5 m− =R K  

7.5 m=R  

 

 
Figure 6. Annulus with 0.9=K  as a platform to calculate turbulent flow in rectangular 
ducts. 
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Remember, for the annuli, 2= ×hd gap  

5
3

1000 0.5 1.5 7.5 10
10

ρ
µ −

× ×
= = = ×

h
h

d
Vd

Re  

And from Equation (40) 1 9.06=
f

.  

Hence, from Equation (45), 

( )
2

2 0.957.5 1 0.95 0.9
0.9

0.5 2 9.06 0.95
1000

 
− − 

 = × × ∇p  

31.04 N m∇ =p  

Similarly, in [3] (Jones et al.) (see Appendix B, Equation (B8)). 

* 5
3

1000 0.5 1.5 0.92 6.9 10
10

ρ
µ

∗
−

× ×
= Φ = × = ×

h
h

d
Vd

Re  

1 9=
f

 →  2 1.50.5 9
1000
×

= × ∇p  31.03 N m∇ =p  

Again, an excellent fit. 
Interesting facts appear in Table 4: 

- Seems now possible to calculate with excellent accuracy the pressure drops in 
any rectangular duct using as a platform an annular geometry with 0.9=K  
and a radius, such as both Hydraulic Diameters be the same. 

- The correlation between the two methods is excellent, except for the case of 
the square ducts where we see 4.5% difference. It is possible to improve this 
by eliminating the curvature factor λ  from Equation (45) in all the cas-
es, which deal with square ducts.  

- Moreover, the correlation with [4] (Jones et al.), for the case 0→
s
w

 or  

s w  is not good. This fact is strange, given it is under such a condition the 
duct tent to identify with an annulus. An applaudable explanation could be 
that in this case the flow is quasi symmetrical, and the method proposed in [3] 
is not behaving well. 

- Notice, that although the two-aspect ratios 2/2 and 1/4 are different still have 
same cross section area. Nevertheless, they give different pressure drop. This 
is exactly the reason why we need the concept of the Hydraulic Diameter.  

- Furthermore, the square geometry 2/2 gives lower pressure drop than 1/4, 
because the wetted perimeter is smaller. The circular cross section tube, which 
Colebrook used, will provide the lower pressure drop relative to the involved 
cross section area. Hence, it is evident that the circular cross section is the 
best choice to design an efficient hydraulic conduit. 

Simplifying: having defined as platform an annulus with 0.9=K  with the 
help of the following equation, the R of the annulus is obtained. 

( )2 1− = hR K d  
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Table 4. p∇  in N/m3 turbulent flow in rectangular ducts with different aspect ratio. 
Equation (45) is used with 0.9K = . 

s/w 0.0 1.0/5.0 1.0/4.0 1.0/3.0 1.0/2.0 2.0/2.0 1.0/1.0 

Equation (45) 0.74 0.92 0.96 1.04 1.2 0.74 1.67 

jones 0.77 0.92 0.96 1.03 1.17 0.71 1.6 

 
In this case, hd  is the Hydraulic Diameter of the duct under consideration and 
since 0.9=K  is always maintained the above equation becomes, 

0.2
= hd

R    

Thus, the Equation (45) suggested as platform to solve any duct problem, will 
simply be, 

1 0.12 0.987
ρ
×

= × × ∇
RV p

f
 

or 

21 0.987
ρ

= × × ∇hd
V p

f
                  (46) 

Valid for any rectangular duct in turbulent flow. 
Practically, Equation (46) almost identifies with Equation (39) for cylindrical 

cross section pipes in turbulent flow, except for the coefficient 0.987. 
This remarkable finding demonstrates that the use of the Hydraulic Diameter 

is sufficient to correlate Equation (39) to real rectangular ducts problems. Both 
equations, Equation (46) and Equation (39), depend only to the hd  and nothing 
more. In fact, this is compelling evidence that the skewness of the profile matters 
more than the lack of geometric similarity. In this case, skewness is absent. There-
fore, it seems that there is no need to recur to the coefficient *Φ  [2] [3] or fur-
ther complications, at least for rectangular ducts. 

And for a square duct, in turbulent flow, 

21
ρ

= × ∇hd
V p

f
                 (47) 

with ≡hd side .  
Solving by this method the example 6.15 on page 344 in [7]  
It is a square duct 0.25 m × 0.25 m  
The fluid is air 31.22 kg mρ = , 5 21.45 10 m secν −= ×  

30 m=L , 11.2 m sec=V , 41 10 mε −= ×  

Find the pressure drop ∆p  in N/m2 
First find the hd  
For this square duct 0.25 m=hd  
Now, an annulus with the same hd  given that the 0.9=K  should be de-

fined, 
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Thus, ( )2 1 0.25 m− =R K  →  1.25 m=R  
Also, the gap = 0.125 m 
Finding Reynolds number, 

5

11.2 0.25 193100
1.45 10−

×
= =

×hdRe  

Using the Haaland formula [8], 
1.1141 6.9 10 0.251.8log

193100 3.7

−   = − +  
   f

 

1 7.42=
f

 

Hence, from Equation (47), 

2 0.2511.2 7.42
1,22
×

= ∇p  

35.5 N m∇ =p  or 2165 N m∆ =p  

From the book, 2163 N m∆ =p . 

3.2. Laminar Flow in Rectangular Ducts 

For laminar flow in rectangular ducts exact analytical solutions are available. 
The general Equation (27) correlates quite well with the analytic solutions. 

cos
8

θ
µ

= hD
V σ                     (27)  

It is not claimed here that using Equation (27) is more practical than the known 
analytical equations, however, it helps to view the problem under a different 
perspective and understand better the dynamics of the flow. On the other hand 
Equation (27) is useful in cases the flow in a conduit is skewed for other reasons 
(see paragraph 4). 

Therefore, Equation (27) for laminar flow in a duct becomes, 

cos
8 8

τ θ θ
µ µ

= = ∇h h
w

D D
V h pcos  

Given that, for the conjugate annulus, 0.9=K  then cos 0.698θ =  

0.698
8µ

= ×hD
V σ                     (27a) 

0.698
8µ

= ∇ ×hD
V h p                     (27b) 

Both equations are valid for any rectangular duct in laminar flow. 
In this case, h is half the gap of the duct. It is claimed here that (27b) is more 

reliable than the exact analytic equation for a duct, i.e., Equation (30). Practically, 
although Equation (27b) almost identifies with Equation (30), the former has 
been obtained without the condition s w . 
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Indeed,  

40.698 0.698
8 8µ µ

= ∇ × = ∇ ×hD hV h p h p  

2 2

0.698 ~ m s
2 3µ µ

= ∇ × ∇
h hV p p  

4. Other Findings 

Another case of a non-symmetrical flow is the flow of two adjacent immiscible 
fluids in a duct [7] [9]. However, in this case, the non-symmetry comes from the 
differences on the viscosities, instead of the geometry. It would be interesting to 
observe how the present method could figure out the average velocities in this 
classic problem.  

The expected velocity distribution at a steady state for the two fluids is represented 
by the curve ( ), , ,α β γ δ . 

At the point, =x L , the shear stresses, disappear, point of maximum velocity. 
The first step is to calculate the stresses on the walls. 

τ∇ = ∇p  →  d dτ = ∇p x  →  

τ ′ ′= ∇ × +p x C  and τ ′′ ′′= ∇ × +p x C   

At 0=x  →  τ τ′ ′′=  and so, 
′ ′′= = −∇ ×C C p L  

Finally, 

( )τ ′ = ∇ −p x L  and ( )τ ′′ = ∇ −p x L   

So, 

( )τ ′ = −∇ +w p b L  

 ( )τ ′′ = ∇ −w p b L                        (47) 

Now,  

2τ τ′ ′′− = −∇ ×w w p b                       (48) 

2τ τ′ ′′ ×+ = ∇w w p L                       (49) 

Hence, there are two equations in two unknowns and a parameter L. 
At the same time, 

2τ τ′ ′′− = ∇ ×w w p L                      (50)  

From Equation (50), it is evident that L is proportional to the difference of the 
absolute values of the wall stresses, i.e., L is proportional to the non-symmetry of 
the flow therefor, to the difference of the viscosities. 

( )µ µ′ ′′∝ −L  

Or to get rid of the problem with the units, 

µ µ
µ µ
′ ′′−

∝
′ ′′+

L
b
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However, for µ µ′ ′′
  the flow should become a normal laminar flow in a rec-

tangular duct with 2=L b .  
Finally, 

( )1 m
2

µ µ
µ µ
′ ′′−

= ×
′ ′′+

L b                     (51) 

Let now, 
31 10 kg m secµ −′ = × ⋅  

30.5 10 kg m secµ −′′ = × ⋅  

0.025 m=b , 30.1 N m∇ =p  

From Equation (51), 0.0042 m=L . 
For to find the average velocity ( )m sec′′V  focus on the curve (α, β) in Fig-

ure 7. Imagine that the fluid with µ′′  is moving in a rectangular duct with a 
gap equal to b. So, Equation (27a) can be used even though the flow is skew. 

0.698
8µ

= ×hD
V σ                  (27a) 

However, to proceed it is necessary to build the stress tensor, 

?

0
0
τ

τ
′′

=
′′

wσ  

the stress on the wall it is known, 

( ) 20.00208 N mτ ′′ = ∇ − =w p b L  

However, there is need to know the conjugate stress, which provides the rest 
of the velocity distribution (α, β) in Figure 7. To figure out this stress, there are 
two ways. Either to imagine that the fluid has a skew distribution (α, β, ζ) or just 
to increase the space and imagine a symmetric laminar flow with new symmetric 
and an almost parabolic distribution (α, β, ξ) (see Figure 8). 

First route,   
0.025 0.0042tan 1.664

0.0125
θ −
= =  

59θ =   

From Equation (E.2), 

( )
12 21

tan 2 90

2

σθ
τ τ

− =
−

                (E.2) 

( ) ?

12 21 12 21

tan 2 90 59 2 2
τ τσ

τ τ τ τ
′′ ′′

− = =
− −

×w  

Or ?0.00208
1.88 2

0.00208
τ
τ
′′×

=
′′− w

 obviously two values for ?τ ′′  are provided, 

2
? 0.00576 N mτ ′′ =  and 2

? 0.000746 N mτ ′′ =  
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Figure 7. Flow of two immiscible fluids with different viscosities ( ), kg m secµ µ′ ′′ ⋅  with µ µ′ ′′> . 

 

 
Figure 8. Flow of two immiscible fluids with different viscosities ( ), kg m secµ µ′ ′′ ⋅ . 

 
The correct value should be greater than 0.00208 N/m2, 

0 0.00576
0.00208 0

=σ  

0.00346λ =  and 1

1.664
1

=v  or 59θ =   

From Equation (27a) with 2=hD times b  

3

2 0.025 0.00346 0.698 0.03 m sec
8 0.5 10−

×′′ = × × =
× ×

V  

On the other hand, for the second and easier route, imagine increasing the space 
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symmetrically. The flow is transformed into laminar flow in a duct with a  
2 0.0208 mαξ= = ×gap  and a velocity distribution α, β, ξ. 

The flow now is symmetric and so, 

0 0.00208
0.00208 0

=σ  

And back to Equation (27a), 

( )
3

2 2 0.0208
0.00208 0.69 0.03 m sec

8 0.5 10−

× ×
′′ = × × =

× ×
V  

Finally, both methods provide the same result.  
Crosschecking this value with that from the exact analytic solution [7], 

2 7 0.031 m sec
12

µ µ
µ µ µ

′ ′′ ∇ +′′ = = ′′ ′ ′′+ 

pV b  

Find the average velocity ′V  in the section where the fluid has viscosity µ′ . 
From Figure 7, appears that in the cases where there is a substantial difference 

in the fluid viscosities, i.e., µ µ′ ′′
 , the velocity gradient at the point γ is al-

most zero. This means that one can imagine a symmetric laminar flow in a duct 
with the total gap equal to 2b. The tensor in this case is symmetric, 

0
0
τ

τ
′′

=
′′

w

w

σ  and ( ) 0.00292τ ′′ = ∇ + =w p b L  

So, again from Equation (27a), 

( )
3

2 2 0.025
0.00292 0.698 0.0255 m sec

8 10−

× ×
′ = × × =

×
V  

And the exact analytic solution gives [7], 

2 7 0.026 m sec
12

µ µ
µ µ µ

′ ′′ ∇ +′ = = ′ ′ ′′+ 

pV b  

Moreover, given that the calculations are based on symmetric laminar flow in a 
duct and, hence, the velocity distribution is almost parabolic, it is possible to 
calculate even the maximum velocity as simply as,  

max
3 3 0.03 0.045 m sec
2 2

′′ ′′= = × =V V  

And from the analytical solution [7], 
2

2
max 2

2 0.0434 m sec
2

µ
µ µ µ

 ′′∇′′ = + = ′′ ′ ′′+ b
LpV b  

Respectively, for max′V .  
Moreover, given velocity’s distribution is almost a parabola of which the apex 

( max′′V ) and the base are known it is feasible to build back the parabola and cal-
culate the velocity at any point with good approximation. 

Unfortunately, a check of this method, for a turbulent flow and at least for the 
part µ′′  has not been made due to the lack of experimental data. 
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5. Model Validation 

In doing so the proposed model (practically Equation (45)) has been checked 
against the method proposed by Jones et al. [4] and generally accepted [2] and 
with some experimental data [4] [10]. Obviously for the laminar flow the check 
was realized against the analytically obtained exact solutions. 

Suppose there is a situation to calculate pressure gradient in an annulus. The 
geometry of the annulus is: 0.8=K  annular flow of water 510=hRe ,  

31000 kg mρ = , 310 kg m secµ −= ⋅ , 0.9λ = , 0.05 m=R , hence  
5 m sec=V .  

1) Jones (et al.) approach. For 0.8=K  they propose a correction factor 
* 0.667Φ = , (see Appendix B Equation (B.7)). Hence, * ∗×Φ =

h hd dRe Re ,  
66700∗ =

hdRe . With this number one can enter to the Moody’s chart to find the 
friction factor. Alternatively, there is a chart prepared with experimental data by 
Leung [10] for an annulus with 0.8=K  (also in Figure 8 in [4]) and can be 
used. 

Both give, 0.019=f  and from Equation (39),  

2 0.025 7.25
1000
×

= × ∇p  hence 311980 N m∇ =p . 

2) Implementing the present method and 510=hRe  enter Moody’s or use 
Equation (40). Find friction factor 0.0178=f . Enter directly to Equation (45) 
and find the gradient.  

5 2 7.49 0.00317 0.974= × × × × ∇p  hence 311686 N m∇ =p  

Hence, this result identifies with the previous based on real data [10] and/or the 
well accepted Jones (et al.) method. 

The present approach is more straightforward, no need to define and calculate 
the correction factor *Φ  or prepare a chart for every different Κ. 

Repeating as above but for 410=hRe  the results are respectively, 
3208 N m∇ =p  and 3205 N m∇ =p . 

6. Conclusions and Discussion 

It has been shown, herein, that in a non-symmetrical flow just the use of the 
Hydraulic Diameter concept is not sufficient to describe the flow. More infor-
mation is required. The approach is based on classical mechanics, while the two 
flow types, laminar and turbulent, have been considered separately. 

In laminar flow, the fluid was considered as a continuum with cohesive forces 
present. So, the stresses, instead of deforming an element of the fluid, can move 
it. With the help of Eigenvectors-Eigenvalues, a direction was found where shear 
stresses disappear. Finally, the driving force has been calculated. It turned out 
that the net moving force forward is just the Z component of the driving force, 
i.e., to fully describe the flow, the value of the angle θ  is needed. Finally, Equa-
tion (27) and/or Equation (28) relate the average velocity to the pressure gra-
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dient in a straightforward way. 
In turbulent flow, as it has been explained in detail, there are no cohesive forces 

and therefore, the previous mechanical approach has no sense. Fortunately, the 
Eigenvector keeps indicating the point of maximum velocity. This point is a func-
tion of λ . I.e., the point of maximum velocity or zero shear stresses is just a 
function of the geometry of the annuli. This very fact also explains the success of 
the “Laminar equivalent diameter” concept. Both laminar and turbulent, al-
though completely different flows, share the same annuli geometry.  

Another possible explanation could be that the present approach is focused on 
the wall stresses and more precisely to their difference. Nevertheless, a different 
but real stress distribution still exists in turbulent flow. Hence, a point of maxi-
mum velocity does exist in the turbulent case as well.  

To point out that in this approach the stress tensor has been calculated on the 
non-symmetrical wall stresses. For more complicated cases, the stress tensor can 
be defined at any point in the core of the liquid. This tensor of course will be 
function of the point, exactly like the metric tensor on curved surface in the dif-
ferential geometry. 

Definitely Equation (45) relates with great accuracy the average velocity to the 
pressure gradient in turbulent flow and for any kind of concentric annuli. At the 
same time, the eigenvectors show the direction of the driving force in the core of 
the fluid. 

The advantage against the existing method to calculate average velocity in 
annuli is that there is no need to deal with correction coefficients etc. or “equiv-
alent hydraulic diameter” anymore. In fact, it is positive to get rid of definitions 
that complicate with no reason the already difficult fluid mechanics science.  

Hence, it is had been shown that just the use of the “Hydraulic Diameter” con-
cept is not sufficient for non-symmetric flows like in annuli.  

Instead, was found that for either laminar or turbulent flow in rectangular or 
square ducts, the concept of “Hydraulic Diameter” is sufficient. This fact is in line 
with the topic of the present paper given the fact that the flow in a duct is sym-
metric. Hence, several new equations have been provided. Equation (46) is valid 
for any rectangular duct in turbulent flow. Equation (47) is valid for any square 
duct in turbulent flow as well. Moreover, both Equation (27a) and Equation (27b) 
are valid for any rectangular duct in laminar flow.  

Therefore, again has been shown that there is no need of the suggested route 
[2] [3] along with the use of “laminar equivalent diameter” concept and further 
complications for the rectangular ducts. 

To conclude the approach, based on the “laminar equivalent diameter” con-
cept proposed by Jones et al. [3] [4] and generally accepted [2], is more compli-
cated, for no reason than the present one and with a non-robust theoretical ar-
gument. 

Moreover, the present original method, based on Eigenvalues and Eigenvec-
tors, is a promising method to simplify problems in fluid mechanics. In addition, 
it will help engineers to comprehend fluid dynamics in a different way. This 
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could be very useful and, although most of these problems are already success-
fully solved, a deeper understanding is always welcome. Additionally, heat transfer, 
mass transfer and others are strongly linked to fluid dynamics. 

In addition, the experts in the field could possibly benefit from the present ap-
proach in dealing with non-symmetric flow like, flow of immiscible liquids, flow in 
a curved conduit, flow around non-symmetric objects, flow with non-symmetric 
heat exchange, flow with chemical reactions etc. [11] [12] [13] [14]. 
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Nomenclature 

A = cross section area (m2) 
dh or Dh = Hydraulic Diameter (m)  
f = friction factor 
h = half a duct’s gap (m) 
K = radius ratio Ri/R0  
L = length (m) 
ʟ = Max. velocity coordinate to adjacent immiscible fluids flow (m) 
P = pressure (N/m2) 
P = cross-section wetted perimeter (m) 
r = the radial coordinate (m) 
R = the radius (m) 
Re = Reynolds’ number 
Reh =Reynolds’ number defined using dh. 
Re* = modified Reynolds’ number 
V = average velocity (m/sec) 

1 2,v v  = the eigenvectors 
ε/d = roughness ratio  

1 2,λ λ  = the eigenvalues 
λ  (in bold) defines as λR  the coordinate of max. velocity 
μ = dynamic viscosity (kg/m sec) 
ρ = density (kg/m3) 
σ = stress (N/m2) 
τ = shear stress (N/m2) 

*Φ  = geometry coefficient in [2] and [3] 

Appendix A 

Calculating λ  
Imagine there is need to transform a biplane into a single wing plane (see 

Figure A1). 
In doing so, it is necessary not just the area of the new wing to be equivalent 

to the two ex-areas, but also there is need to consider the position and the dis-
tance from the center of mass. 

Same reasoning applies in the concentric tubes and thus,  

( ) ( ) ( )
( )

( )

2 2
2

2
ln

2

λ λ
π − π

π =
π

π

RL R KRL KR
RL R

RL R
KRL KR

 →  
2

2

2

1
1ln

λ −
=

K

K

 

I.e., the wind passes through the wings and creates moments relative to the 
mass center and proportional to the areas involved. There is a similar situation 
in the annulus. Practically there is need to calculate an equivalent or an average 
of the first area moment. In fact, the “logarithmic mean” is the most appropriate 
to be used in such geometry problems. 
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Figure A1. Transforming a biplane into a single wing plane. 

Appendix B 

Trying to explain the adopted method in [4]. 
In paper [4], Darcy’s definition for the friction factor is used,  

2 41 4
2 4

τ
ρ ∇

= =w pV D
f f

 

2 1 2
ρ

= ∇
DV p

f
                      (B.1) 

Together with the semiempirical equation for the laminar flow, 

64
=f

Re
                          (B.2) 

Accepting the definition of hD  in annuli, 

( ) ( )2 2 1= − = −hD R KR R K                (B.3)  

From Equation (B.1), Equation (B.2) and Equation (B.3) we have, 

( )222 1
64µ
−

= ∇
D K

V p                    (B.4) 

Considering the analytical solution as well [7], 

4 2
2

2

1 1
18 1 lnµ

 
 ∇ − −

= − 
−  

 

p K KV R
K

K

                 (B.5)  

Or 

 
2

2 2 11
18 lnµ

 
 ∇ −

= + − 
  
 

p KV R K

K

                 (B.6) 

Everything in the parenthesis has to do with geometry. 
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In [4], a correction factor is defined as, 

( )

2
* 2

2

1 11
11 ln

 
 −

Φ = + − 
−   

 

KK
K

K

                (B.7) 

Now multiplying the semiempirical Equation (B4) with Equation (B7) we get, 

( )2 2 2
* 2 2

2 1 11
164 8 lnµ µ

 
−  ∇ −

= ∇ Φ = + − 
  
 

D K p KV p R K

K

 

I.e., with this definition of the correction factor *Φ  it has been possible to 
transform a semiempirical equation to an analytical one at least for the laminar 
flow. Extrapolating this idea to the turbulent flow seems working well enough. 
Keeping in mind that Equation (B.2) is based on experiments to a circular cross 
section pipe. 

The corresponding correction factor by Jones for flow in a rectangular duct [3] 
is given by, 

* 2 11~ 2
3 24

 Φ + − 
 

s s
w w

                   (B.8)  

Appendix C 

Herein, the derivation and the validity of Equation (28) will be explained. 
Consider the case of 0.2=K  water in laminar flow 

0.05 m=R , 0.546λ = , 31 N m∇ =p  

( )2 21 0.0175 N m
2

τ λ∇
= − = ∇ ×w

o
p R p  

2
20.0323 N m

2
λτ

 ∇
= − = ∇ × 

 
w
i

p R K p
K

 

0 0.03230
0.0175 00

τ
τ

= = ∇
w
i

w
o

pσ  

1
diagonal

2

0 0.0238 0
0 0 0,0238
λ

λ
= ∇ = ∇

−
p pσ  

1

1.3586
1

=v  and 2

1.3586
1

−
=v  

And 53.6θ =   
Using Equation (28) to calculate the average velocity,  

cos
8

λ θ
µ

= ∇hD
V p                       (28) 

3

0.08 0.0238 0.593
8 10−

× ×
= ∇

×
V p  

0.141 m sec=V  
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Excellent fit with the analytical solution. 
It is necessary to try to understand what is happening.  
From Figure C1, we see that the angle 53.6θ =   indicates the direction to 

point M, which is the coordinate of maximum velocity and/or zero stresses. 

sin 0.805
0.0238 0.0238

cos 0.593
θ
θ

= = =T r

z

T
T

 

0.019
0.0141

=r

z

T
T

 →  20.0141 N m=zT  

It seems that this traction vector component is an average value of what is hap-
pening in the fluid. 

Finding the angle φ of the two normalized eigenvectors, 

1 2cos
1 1

ϕ =
×

v v  

2 2
1 2 0.805 0.593 0.2964= − + = −v v  

107.24ϕ =   

Therefore, the angle of the two eigenvectors is 107.24˚. So, the eigenvectors are 
not orthogonal, which is reasonable given that the stress tensor is not symmetric. 
Given the above, the construction of a new triangle (AM’E) is needed (see Fig-
ure C2). For this new triangle the angle, the base, and the point N are known. 

The triangle (AM’E) can be constructed graphically using a protractor or by 
solving the following implicit equation,  

tan 0.0225 1.286
tan 0.0175

= =




A
E

 

along with, 

72.76+ = 

 A E  
 

 
Figure C1. Annular flow, K = 0.2, R = 0.05 m. Eigenvectors supposed to be orthogonal. 
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Figure C2. Annular flow, K = 0.2, R = 0.05 m. Eigenvectors not orthogonal. 
 

 
Figure C3. Annular flow, K = 0.2, R = 0.05 m. Traction vectors not orthogonal. 
 

Solving the system by trial and error, 

39.5= 

A , 32.5= 

E , 0.0143 m′ =NM  

In Figure C3, the two eigenvectors are aligned with the traction vectors 1 2,T T . 
Given that the eigenvectors are normal (in fact they define it) to the principal 
planes, the traction vectors are also normal to the principal planes. 

1
1 1

1

sin 57.5
cos57.5

λ= = ⋅ =T v




r

z

T
T

σ  

or 

1
1

1

0.843
0.0238

0.537
= =T r

z

T
T

 

2
1 0.0238 0.537 0.0128 N m= × =zT  

In the same way, 
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2
2 0.0238 0.636 0.0151 N m= × =zT  

And the geometric mean, 
2

. 0.0128 0.0151 0.014 N m= × =aver zT  

So, the average value of the Z component of the two traction vectors identifies 
with the value obtained from Equation (28).  

In fact, the angle 53.6θ =   is half of 107.24ϕ =    
Moreover, the average of the complementary angles to , A E  is exactly 

53.6˚. I.e., the two non-orthogonal eigenvectors define the point M’ into the 2D 
space. 

Appendix D 

What happens in the case of 0→K ? 
From Equation (22), 0λ →  and 90θ =    
From Figure D1, now 0τ =i  
And the stress tensor must be, 

2

0 0
1 02 λ

∇
=

−
p Rσ  

And for 0λ =   
0 0
1 02

∇
=

p Rσ  

This tensor is not diagonalizable, but without changing the substance of the 
tensor, filling back with the static pressure assuming to be 1 N/m2 

 

 
Figure D1. Flow in a circular tube with 0.05 mR = . 
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1 0
1 12
−∇

=
−

p Rσ  

This tensor is still not diagonalizable, but has a non-zero determinant, one ei-

genvalue 1λ = −  and just one eigenvector, 1

0
1

=v . 

So, 0θ =  and cos 1θ = . 
From Equation (27), 

cos
8

θ
µ

= hD
V σ  →  

2

8µ
= ∇

RV p  

I.e., the analytic equation for laminar flow in a circular tube. 
What about turbulent flow? Going back to the definition in Equation (31), 

21 1
2
ρ =V

f
σ  

21 1
2 2
ρ ∇

=
pV R

f
  →  

1
ρ

= ∇
RV p

f
 

Inserting coefficient 2 to fix the problem with the friction coefficient definition,  

12
ρ

= ∇
RV p

f
 or 

1 2
ρ

= ∇
DV p

f
 

This last equation identifies with Equation (39); the classic one for turbulent 
flow in a circular pipe. 

Appendix E 

Solving the problem (2A-3) page 62 [7]. 
To better understand the use of Equation (27) for laminar flow in an annulus, 

the above problem is solved. The units are converted to SI. 
Data: 0.0124 m=iR , 0.0275 m=oR   

380.3 lb ftρ = , ( )0.05738 kg m secµ = ⋅   

237163 N m∆ =p , 8.23 m=L   

Find: 3? m sec=Q   

So, 0.45= =i

o

R
K

R
 

From Equation (2), 0.706λ =  

34516 N m∆
∇ = =

pp
L

  

From Equation (5) and Equation (6), 
241 N mτ =w

i   
231.1 N mτ =w

o   

Ready to build the tensor, 
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0 410
31.1 00

τ
τ

= =
w
i

w
o

σ   

There are many online algorithms to diagonalize the tensor σ , 

1
diagonal

2

0 35.7 0
0 0 35.7
λ

λ
= =

−
σ   

And the eigenvectors are, 

1

1.148
1

=v  and 2

1.148
1

−
=v  

1tan 1.148θ− =  →  48.9θ = 

 
Or, cos 0.657θ =   

cos
8

θ
µ

= hD
V σ                      (27)  

For an annulus, the Hydraulic Diameter is 2 times the gap, 

( )2 1 0.03 m= − =hD R K   

The determinant of diagonalσ  or σ  is, 

( )35.7 35.7= × −σ   

So, 

0.03 35.7 0.657 1.53 m sec
8 0.05738

= × × =
×

V
  

( )31.53 1.53 0.00189 0.003 m sec= × = × =Q A
  

Or ( )30.11 ft sec=Q . 
In the case a computer algorithm is not available, how one can find the 

diagonalσ  and θ ? 
Observing that,  

 35.7 41 31.1= ×  

I.e., the quantity 35.7 is just the geometric average of the two shear stresses. 
To find the angle θ , the classical formula which provides the rotation angle 

to the principal planes in the “Strength of Materials” theory, is used. 

12

1 2
tan 2

2

τ
θ

σ σ
=

−
                     (E.1) 

Equation (E.1) is useful for symmetric tensors for which, 12 21τ τ= . 
In this case the tensor is not symmetric, however, one can imagine he is al-

ready on the principal plains, and wants to rotate back, 

( )
12 21

tan 2 90

2

σθ
τ τ

− =
−

                 (E.2) 

Hence, Equation (E.2) becomes, 
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( ) 35.7tan 2 90
41 31,1

2

θ− =
−

 →  48.9θ =    

Alternatively, in cases 0.3≥K , use Equation (22). 
Finally, now a formula based on continuum mechanics can be introduced that 

calculates the average velocity in any annulus in laminar flow, 

( ) ( )
2 2

21
1 cos

8
λλ θ

µ
−  

= ∇ − − 
 

R K
V p K

K
           (E.3) 

Along with, 

( )
( )

( )

2
2

2
2

1
tan 2 90 2

1

λλ
θ

λ λ

 
− − 

 − =
 

− − − 
 K

K

K

K
             (E.4) 
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