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Abstract 
Modeling of fluids with complex rheology in the lattice Boltzmann method 
(LBM) is typically realized through the introduction of an effective viscosity. 
For fluids with a yield stress behavior, such as so-called Bingham fluids, the 
effective viscosity has a singularity for low shear rates and may become nega-
tive. This is typically avoided by regularization such as Papanastasiou’s me-
thod. Here we argue that the effective viscosity model can be re-interpreted as 
a generalized equilibrium in which no violation of the stability constraint is 
observed. We implement a Bingham fluid model in a three-dimensional cu-
mulant lattice Boltzmann framework and compare the direct analytic effec-
tive viscosity/generalized equilibrium method to the iterative approach first 
introduced by Vikhansky which avoids the singularity in viscosity that can 
arise in the analytic method. We find that both methods obtain similar results 
at coarse resolutions. However, at higher resolutions the accuracy of the re-
gularized method levels off while the accuracy of the direct method conti-
nuously improves. We find that the accuracy of the proposed direct method is 
not limited by the singularity in viscosity indicating that a regularization is 
not strictly necessary. 
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1. Introduction 

A popular way to model the stress of non-Newtonian fluids is by imposing an 
effective local viscosity. Unlike a Newtonian fluid with constant viscosity, this 
effective viscosity cannot be drawn in front of the gradient of the stress tensor of 
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the Navier-Stokes equation. Implementing non-Newtonian fluids in Navi-
er-Stokes solvers hence either requires storing the stress tensor explicitly or ap-
plying the chain rule to the effective viscosity field which can result in rather 
complicated differential operators. Being a method derived from kinetic theory, 
the cumulant LBM intrinsically stores the stress tensor separately from the pri-
mitive variables as second-order cumulants. Implementing non-Newtonian be-
havior through an effective viscosity thus comes naturally in the LBM with all 
differential operators applied in a consistent order. 

Many substances of industrial interest are subject to non-Newtonian 
stress-strain relationships. One such example is fresh concrete [1]. The devel-
opment of additive manufacturing techniques in civil engineering construction 
[2] depends critically on the availability of accurate and efficient numerical 
models for concrete. Among the many properties of freshly mixed concrete, the 
yield stress behavior is of particular importance in additive manufacturing 
processes which highly depends on a controlled transition from the fluid to the 
solid phase.  

In this work we discuss the implementation of the Bingham fluid [3] in the 
context of the cumulant LBM [4]. The Bingham fluid model is a simple yield 
stress model with linear stress-strain relationship. Below the yield stress the 
Bingham fluid essentially behaves like a solid. In an effective viscosity approach 
this is modeled by assuming an essentially infinite viscosity. The transition be-
tween non-yielded and yielded behavior appears as a singularity in the effective 
viscosity model which apparently requires regularization. The most popular re-
gularization is due to Papanastasiou [5] which relaxes the singularity by an ex-
ponential function. Ginzburg and Steiner [6] used Papanastasiou’s regularization 
to implement a Bingham fluid in the LBM. For computing the shear stress they 
used the non-equilibrium second-order moments which makes the method local 
and hence computationally efficient. However, for computing the shear stress 
locally in the LBM the viscosity has to be known. Ginzburg and Steiner used the 
local viscosity from the previous time step. Vikhansky [7] used an iterative me-
thod to recover the correct effective viscosity without further regularization. 
Tang et al. [8] introduced the He-Luo pressure based formulation [9] for a 
Bingham fluid in order to eliminate compressibility effects. For improved stabil-
ity, Chen et al. implemented the Papanastasiou regularization in the multiple re-
laxation time (MRT) LBM framework. Further studies on Bingham fluids simu-
lated with the LBM are described in [10] [11] [12]. Most of these works do not 
explicitly mention how the shear rate is numerically determined. However, the 
determination of the shear stress in the computation of the effective viscosity is 
an efficiency concern especially for large scale simulations. The local availability 
of the shear rate is one of the celebrated advantages of the LBM, but viscosity has 
to be known a priori to take advantage thereof. The two possibilities found in the 
above mentioned literature are either the one proposed by Ginzburg and Steiner 
using the viscosity of the previous time step or the one by Vikhansky solving an 
implicit relationship for each grid node at each time-step. From these two op-

https://doi.org/10.4236/ojfd.2021.111003


M. Geier et al. 
 

 

DOI: 10.4236/ojfd.2021.111003 36 Open Journal of Fluid Dynamics 
 

tions the implicit one is more compelling as the use of a previous time step in an 
Eulerian setting can cause many problems. For example, if no advection equa-
tion for the viscosity is solved, the method cannot be Galilean invariant since the 
viscosity of a moving fluid is stored at a stationary grid. On the other hand, be-
ing fully explicit is often considered a computational advantage of the LBM. Be-
ing completely explicit implies (among other advantages) that the number of 
operations per time step is constant such that the wall clock time can be precise-
ly predicted and, most importantly, maintained over the entire time simulated. 
This is by no means a minor concern, as the load balancing in high performance 
parallel computation relies heavily on the predictability of the run time of all 
subroutines. The works discussed above pay little to no attention to the parallel 
scalability of their approach. Most of them consider only two dimensional cases. 
In addition, none of these works use state of the art lattice Boltzmann kernels, 
but instead resort to simple single or multiple relaxation time variants. 

In recent years, the LBM saw some significant evolution towards improved 
accuracy and stability. This improvement is due to the usage of tensor product 
lattices (i.e. using 27 discrete velocities in 3D), moment matching equilibria in-
corporating terms of higher than second-order in velocity, multiple relaxation 
times, Galilean invariant moment transformations (i.e. central moments or cu-
mulants) and a better understanding of statistical independence of the different 
moments. These novel lattice Boltzmann methods include entropic schemes 
which typically implement tensor product lattices and tensor product equilibria 
and are primarily aimed at improving stability [13] [14] as well as central mo-
ment methods including so-called cascaded schemes [15] [16] [17] aiming par-
ticularly at improving Galilean invariance due to the observation that they are 
much more stable than moment methods in a static frame. Early multiple relax-
ation time methods [18] [19] did not pay proper attention to the correct segre-
gation of moments and advocated the use of orthogonal transformation matrices. 
Even though, some early method used a more appropriate weighted orthogonal-
ity condition [20], it is comparatively recent that the requirement of statistical 
independence between observable quantities relaxing with different relaxation 
times has been appreciated. The cumulant model is based on the statistical in-
dependence concept [4] [21] [22] [23]. It incorporates all of the above men-
tioned recent developments improving both stability and accuracy of the LBM. 

In this paper we present an implementation of the Bingham fluid in the con-
text of the cumulant LBM. Our approach starts similar to the one of Vikhansky 
[7]. We observe that the implicit problem solved iteratively by Vikhansky ac-
tually has an analytic solution. However, this analytic solution has a singularity 
in viscosity which manifests in a violation of the linear stability constraint of the 
LBM. Surprisingly, this violation is avoided by the approximate solution of Vik-
hanski even at arbitrary iteration depth. That is to say, the approximate solution 
does not converge to the analytic solution at positions where the analytic solu-
tion is not physically meaningful. Using the approximate solution can hence be 
regarded as a special form of regularization. However, to the best of our know-
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ledge the unregularized analytic solution of the implicit problem has never been 
systematically compared to the approximate solution. With its violation of the 
linear stability constraint, the analytic solution could be expected to yield unsta-
ble results. This, however, is not observed to be the case. In this paper we show 
that the effective viscosity ansatz can be reinterpreted as a generalized equili-
brium approach for which no violation of stability is indicated. 

We test our model with two simple planar flows: the flow between two infinite 
plates and the flow between a rotating and a stationary cylinder. Even though 
these cases are relatively simple, they both cover the singularity problem of the 
effective viscosity and include extended areas in which the fluid is expected to 
behave as a solid. 

In the following, we will briefly introduce the cumulant LBM, discuss the im-
plementation of the Bingham fluid and the regularization including a fixed-point 
iteration scheme which removes the singularity. Next we will discuss an alterna-
tive interpretation of the effective viscosity model as a generalized equilibrium 
model in which the singularity disappears. This is followed by a numerical com-
parison between the two possibilities and conclusions. 

2. Cumulant Lattice Boltzmann Model 

The effective viscosity of non-Newtonian fluids can vary substantially such that 
it is imperative to use a model base with a large range of attainable viscosities. 
Early lattice Boltzmann models based on single relaxation time collision opera-
tors [24] had a rather limited range of viscosity due to stability issues. In the last 
two decades substantial progress has been made, in particular regarding the ex-
tension of LBM to lower viscosity limits. It is of note that by proper scaling of 
the grid spacing and the time step any consistent numerical method with limited 
stability can, in principle, model any viscosity. However, if viscosity is not con-
stant throughout the domain, the ratio between the smallest and the largest at-
tainable viscosity determines which viscosity range can effectively be simulated. 
Therefore, it is important for the underlying fluid solver for non-Newtonian 
fluids to have good accuracy and stability properties over a large range of viscos-
ities. In this paper we use the cumulant LBM [4] which is among the LBM with 
the largest stability range as well as with the highest accuracy for the given 
D3Q27 stencil used. The cumulant LBM discretizes the Boltzmann equation in 
the hydrodynamic limit. It is a discrete velocity model using 27 discrete speeds 
on a tensor product lattice. The discrete velocity distribution function ijkf  
streams along the discrete velocity directions x y zie je ke+ +

� � �  in discrete time 
steps t∆  from lattice node to lattice node. At lattice nodes the distribution un-
dergoes a local collision which is performed in cumulant space. Cumulants are 
the statistically independent observable quantities of a statistical distribution. 
Previous lattice Boltzmann models either applied the collision operator directly 
in distribution space [24] or in moment space [18]. Moments can be defined in a 
large variety of ways [25]. Important properties of a moment base are the chosen 
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frame of reference (e.g. Eulerian leading to raw moments or Lagrangian imply-
ing central moments), their orthogonality properties ((non-)orthogonal, weighted 
orthogonal (i.e. Hermite moments)), and their grouping according to symmetry 
properties (rotational invariance). Performing collisions in moment or cumulant 
space allows for a substantially improved control of the properties of the method 
as different quantities can evolve on different time scales when using different 
relaxation times. However, for this to be consistent, the different moments have 
to be statistically independent. Traditionally this is attempted to be enforced by 
orthogonalization. However, orthogonalization has no unique definition for 
moments. Moments orthogonal in one frame of reference are not orthogonal in 
another frame of reference. Even in a Lagrangian frame of reference, moments 
which are orthogonal in equilibrium are not orthogonal when out of equilibrium. 
Cumulants overcome this inconsistency as they are derived from the definition 
of statistical independence. 

The cumulant collision operator assigns an individual relaxation rate abcω  to 
each cumulant abcC  such that the post collision cumulants abcC∗  can be com-
puted as: 

( )eq
abc abc abs abc abcC C C Cω∗ = + −                    (1) 

where the equilibrium cumulant eq
abcC  is typically zero for non-conserved cu-

mulants but can also be chosen otherwise in certain circumstances, for example 
if energy conservation is not considered as is usually the case for the incompres-
sible Navier-Stokes equation. Asymptotic analysis [26] of the lattice Boltzmann 
equation reveals two relationships of interest for the modeling of non-Newtonian 
fluids. 

The viscosity is related to the relaxation rate of second-order cumulants (i.e. 

110 101 011ω ω ω ω= = =  and the corresponding diagonal terms of second-order of 
the tensor abcω  with the exception of the trace): 

21 1 1
3 2

x
t

ν
ω

∆ = −  ∆ 
                        (2) 

The shear stress in the LBM can be written as: 

τ νργ= �                              (3) 

For a known viscosity the shear rate can be locally computed from the 
second-order cumulants: 

ji

j i

uu
x x

γ
∂∂

= +
∂ ∂

�                           (4) 
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110

2 1 3
u u C
x x

ω
ρ

∂ ∂
+ =

∂ ∂
                        (5) 

( )1 2
200 020

1 2

2
3

u u C C
x x

ω
ρ

∂ ∂
− = −

∂ ∂
                    (6) 

Here we omitted the other permutations of Equations (5) and (6). 
The LBM does not require any additional finite differencing for the calcula-
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tion of the shear rate. However, it is of note that the relaxation time, which is a 
function of viscosity, appears in the equations for the shear rate such that an im-
plicit problem arises if the viscosity depends on the shear rate. 

3. Bingham Fluid 

The Bingham fluid [3] extends a Newtonian fluid by a constant yield stress 0τ : 

0Bingτ τ ν ργ∞= + �                           (7) 

Our aim is to impose Equation (7) onto the LBM. This is done through 
equating Equations (3) and (7): 

0τ ν ργ νργ∞+ =� �                          (8) 

2 2
0 1 1 1 1

3 2 3 2
x x
t t

τ γ γ
ρ ω ω∞

  ∆ ∆ + − = −   ∆ ∆  

� �
               (9) 

According to Equation (5) γ�  is a function of ω . To make this relationship 
explicit, we define: 

( )γ γ ω∞ ∞=� �                          (10) 

( ) ωγ ω γ
ω∞

∞

=� �                         (11) 

With this Equation (9) can be stated as: 
2 2

0 1 1 1 1
3 2 3 2

x x
t t

τ γ γω ω
ρ ω ω ω ω

∞ ∞

∞ ∞ ∞

  ∆ ∆ + − = −   ∆ ∆  

� �
          (12) 

This can be solved for the relaxation rate to give explicitly: 

0
2

3
1a

t
x

ω τ
ω ω

γ ρ
∞

∞
∞

 ∆
= − 

∆ �
                    (13) 

We will call the relaxation rate in Equation (13) the analytic relaxation rate 

aω . Apparently Equation (13) allows us to simulate a Bingham fluid using only 
local operations as in a standard Newtonian LBM solver. However, we observe 
that aω  remains in the range for linear stability { }0 2aω ∈ �  only for 

03γ ρ ω τ∞ ∞<� . According to Equation (2) viscosity goes to infinity when 0ω =  
and viscosity will be negative for 0ω < . Regularization procedures like the one 
by Vikhansky [7] are imposed to avoid the singularity in viscosity. 

3.1. Regularization 

From Equation (8) it is not obvious why the effective viscosity ν  should be-
come negative before the shear rate γ�  reaches zero. The reason for the problem 
encountered in the last subsection is in the implicit dependence of γ�  on the re-
laxation rate when computed from the second-order cumulants. If we ignore this 
implicit dependence and solve Equation (9) for ω  we obtain: 

2

2
03

x
x t
ω γρ

ω
γρ ω τ

∞

∞

∆
=
∆ + ∆

�
�

                    (14) 
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This solution is always positive, but it requires γ�  which in lattice Boltzmann 
is only known through 1γ γ ωω−

∞ ∞=� � . Instead of using the apparently unfeasible 
analytic solution, we can solve Equation (14) through a fixed-point iteration as 
follows [7]: 

0ω ω∞=                          (15) 
2

1 2 2
03

n
n

n

x
x t
ω γ ω ρ

ω
γ ω ρ ω τ

∞ ∞
+

∞ ∞

∆
=
∆ + ∆

�
�

                 (16) 

Since all terms on the right hand side of Equation (16) are positive and since 
we start the iteration from a positive value 1nω +  is always guaranteed to be pos-
itive. 

In order to accelerate the execution of the fixed-point iteration we rewrite 
Equation (16): 

0
2

1

3
1 1

n n n

t
A

x
ω τω ω ω

ω ω ωγ ρ
∞∞ ∞ ∞

+ ∞

∆
= + = +

∆�
               (17) 

We note that Equation (17) has a simple analytic solution for 1n nω ω+ =  
which can easily be verified to be identical with Equation (13) which we are try-
ing to avoid. In fact a solution of Equation (17) exists only for 0nω ≠  which is 
the mathematical reason for the analytic solution appearing to be unfeasible. 

The obtained iteration can be easily unrolled for a fixed iteration depth. For 
example, the iteration of depth five reads: 

( )( )( )( )5
1 1 1 1 1A A A A A

ω
ω ∞=

+ + + + +
             (18) 

In his original paper [7] Vikhansky claims that two to three iterations are suf-
ficient to reach convergence. However, it is unclear to us whether he started 
from the relaxation rate of the previous time step which would certainly reduce 
the number of iterations but would come at additional cost in memory con-
sumption and data transfer and would not be Galilean invariant. It is of note that 
the fixed-point iteration is not expected to converge quickly. The convergence 
order can be computed directly by comparing two subsequent iterations: 

1 1
1

n

n A
ω
ω

+ =
+

                        (19) 

The rate of change is constant implying linear convergence. However, we 
should remind ourselves that we deliberately replaced the exact solution by this 
approximation for the purpose of regularization and avoiding the singularity of 
the exact solution. The use of faster converging methods like Aitken extrapola-
tion or Newton iteration would reintroduce the possibility for the relaxation rate 
to become negative and could hence eliminate the advantage of regularization. 
That is, of course, if regularization is really as advantageous as implied through 
the avoidance of the singularity in viscosity. 

Naively, one could assume that a singularity in viscosity and the violation of 
the linear stability regime should result in unstable simulations. However, in the 
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current case, as demonstrated below, this problem did not manifest in our simu-
lations. A simple reason why the violation of the linear stability constraint might 
not be relevant in the current case is seen from the fact that according to Equa-
tion (13) a problem occurs only if the shear rate is small enough. Instability 
would necessarily manifest itself in a locally increased shear rate which would 
force the relaxation rate back into its stable range. Thus, even though the linear 
stability constrained is violated, this violation is self-limiting and consequently 
non-linearly stable. 

We also have to take the nature of the LBM into consideration and how it 
compares to a classical Navier-Stokes solver. In a classical Navier-Stokes solver 
the stress tensor is constructed by computing the shear rate and multiplying it 
with the viscosity. A singularity in viscosity is numerically unmanageable in this 
context and obviously has to be avoided. However, in the LBM, viscosity is an 
emergent property of the relaxation rate. The singularity occurs when 0ω =  
which is not necessarily a problem for the lattice Boltzmann algorithm itself as it 
does not divide by ω . The problem of a singular viscosity is hence a very se-
rious numerical difficulty for the Navier-Stokes equation, but it is not necessarily 
relevant for the LBM. 

It is instructive to recall that the effective viscosity ansatz is only an algebraic 
trick to express the yield stress through the relaxation rate. Alternatively we 
could specify the yield stress in the equilibrium second-order cumulants and 
leave the relaxation rates untouched. A similar dual approach exists in the cor-
rection for cubic error terms in viscosity of the LBM. Dellar [27] decided to in-
corporate this correction into a modified relaxation rate while we implemented 
it by a modified equilibrium function of second-order cumulants [4]. Even 
though these approaches appear to be rather different in concept, a detailed in-
vestigation shows that both methods are algebraic transformations of each other 
and should hence yield identical results up to round-off errors. In the following 
we demonstrate the equivalence of the modified relaxation rate to a generalized 
equilibrium. 

3.2. Equivalence of Effective Relaxation Rate and Generalized  
Equilibrium Approaches 

Asymptotic analysis as, for example, demonstrated in appendix G of [4] can be 
used to calculate the relationship between second-order cumulants and the ve-
locity derivatives: 

( )1 2
110 110

2 1 3
equ u C C

x x
ω
ρ

∂ ∂
+ = −

∂ ∂
                 (20) 

( )1 2
200 020 200 020

1 2

2
3

eq equ u C C C C
x x

ω
ρ

∂ ∂
− = − − +

∂ ∂
            (21) 

Note that Equation (20) and (21) are identical to Equation (5) and (6), respec-
tively (up to an unspecified equilibrium cumulant each). The equilibrium here is 
understood as a generalized equilibrium as introduced by Asinari [28] for ana-
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lyzing the cascaded LBM. The generalized equilibrium is an attractor for the col-
lision operator and does not necessarily have a direct thermodynamic interpre-
tation. For the respective second-order cumulants the thermodynamic equilibria 
would be zero which is why they are omitted from Equations (5) and (6). Here 
we include them for the purpose of showing that an effective relaxation rate can 
be equivalently understood as a generalized equilibrium. For this purpose we 
consider Equation (5) with the equivalent relaxation rate aω  resulting from the 
rheology model and the fixed Newtonian relaxation rate ω∞ : 

1 2
110

2 1 3
au u C

x x
ω
ρ

∂ ∂
+ =

∂ ∂
                         (22) 

110 1103
aC C

ω ωω
ρ ω

∞∞

∞

 −
= − 

 
                   (23) 

110 110
eq aC C

ω ω
ω
∞

∞

−
=                       (24) 

It is hence seen that the equivalence between the modified relaxation rate in 
Equation (22) and the generalized equilibrium at fixed relaxation rate in Equa-
tion (22) is established by choosing the specific equilibrium Equation (24). It is 
of particular note here that this relationship is independent of how aω  was ob-
tained in the first place, implying that any method using an effective relaxation 
rate can be rewritten as a method with fixed relaxation rate and generalized 
equilibrium. This hence applies to Vikhansky’s model for Bingham fluids [7] in 
the same way as for Dellar’s Galilean correction to the viscosity [27]. The inverse, 
however, is not true as we see that the generalized equilibrium depends on the 
cumulant itself implying that only generalized equilibria of a very specific form 
can be turned into an effective relaxation rate. 

In the generalized equilibrium form, the linear stability constraint is not nec-
essarily violated if 0aω < . It hence seems to be admissible to use the analytic 
solution of the effective relaxation rate even if it might become negative. 

4. Curved Boundary Conditions 

Being a Cartesian grid based method, the LBM is applicable to real world indus-
trial problems only because effective methods to incorporate grid refinement 
and curved boundary conditions have been incorporated. Most of these methods 
are dependent on the local viscosity and their application to non-Newtonian 
fluids requires some adjustment. We leave the important topic of grid refine-
ment to future work and discuss the implementation of an off-grid velocity 
boundary conditions applicable to moving curved walls. 

In lattice Boltzmann, velocity boundary conditions are conveniently imple-
mented via a bounce back scheme with modified velocity. Bounce back is ap-
plied on links entering the fluid domain during the streaming step. In its sim-
plest implementation, bounce back returns the population leaving the domain as 
the population entering the domain in opposite direction. This results in a zero 
velocity boundary condition approximately halfway between grid nodes. The 
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no-slip (i.e. bounce back) boundary is turned into a velocity boundary condition 
by adding twice the momentum of the moving wall [29]: 

( ) ( ) 2

2
, ,

BC
ijk ijkBB

ijkijk
s

w e u
f x t t f x t

c
ρ∗ ⋅

+ ∆ = +
� �

� �              (25) 

Here ( ),f x t∗ �  is the post-collision state of the boundary node at the previous 
time step. The over bar denotes the direction opposite to the boundary. Further 
we used the lattice weights ijkw  ( 100 2 27w = , 110 1 54w = , 111 1 216w = ) and 
so on by permuting indices) and the link direction ijke� . 

For industrial applications it would be unacceptable that boundaries had to be 
set halfway between grid nodes. For this reason, interpolation bounce back 
schemes have been popular for quite some time [30] [31] [32]. For the imple-
mentation of an interpolation boundary condition, a sub-grid distance q x∆ , 

{ }0 1q∈ �  has to be specified for each link cutting into the boundary. For 
0q =  the boundary coincides with the grid node at which the boundary is ap-

plied. If 1q =  the boundary is at the neighboring node and for other values the 
boundary is located in between. Interpolation boundary conditions usually re-
quire several grid nodes for the interpolation stencil. In lattice Boltzmann, eve-
rything which is not local in space is considered to be inefficient as it compli-
cates data structures and domain decomposition for parallel computing. It is 
hence desirable to implement boundary conditions of similar accuracy using 
only locally available data. Fortunately, this is possible in LBM by interpolating 
between pre- and post-collision distributions (see appendix E in [4]). To see this 
we consider the relationship between the post-collision state of the distribution 
leaving the domain and the pre-collision state at the node beyond the boundary: 

( ) ( ), ,ijk ijk ijkf x e x t t f x t∗+ ∆ + ∆ =
� � �

                 (26) 

Instead of interpolating in space only, as done by the classical interpolated 
bounce back scheme, it is possible to interpolate in space and time towards the 
boundary: 

( ) ( ) ( ) ( ), , 1 ,BC
ijk ijk ijkf x qe x t q t qf x t q f x t∗+ ∆ + ∆ = + −

� � � �        (27) 

At the boundary the bounce back or velocity bounce back method according 
to Equation (25) can be applied to recover BB

ijkf . Next to the boundary the in-
coming distributions are recovered by interpolation from the distributions leav-
ing the boundary node in the direction opposite to the boundary: 

( )( ) ( ) ( ), ,
, 2 1

1 1

BB
ijkijk ijk

ijk

f x qe x t q t qf x t
f x t q t q

q q

∗+ ∆ + ∆
+ ∆ + = +

+ +

� � �
�     (28) 

It is observed that the population arrives at the correct location. However it 
appears to arrive at the wrong time instance ( )2 1t q t q+ ∆ +  instead of at 
t t+ ∆ . This is of minor concern as the LBM recovers the Navier-Stokes equation 
only in diffusive scaling 2t x∆ ∝ ∆ . A first-order scheme in time is as accurate as 
a second-order scheme in space. Since the linear interpolation is already 
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second-order in space, the first-order interpolation in time does not increase the 
error asymptotically compared to the classical interpolation method using sever-
al nodes. By using pre- and post-collision states, the boundary condition either 
requires the presence of both states or it has to compute and apply the collision 
operator in the boundary. Modern implementations of the LBM using in-place 
streaming methods like EsoTwist [33] keep only a single representation of the 
distribution function values in memory at any time which saves essentially 50% 
of the memory required for standard implementations. Considering computa-
tional efficiency, it is usually preferable to repeat the collision step at a limited 
number of boundary nodes rather than to double the memory requirements in 
the entire domain. A considerable simplification is obtained by replacing the 
cumulant collision operator by the single relaxation time collision operator at 
the boundary. The latter requires only the local equilibrium function eq

ijkf  and 
can be computed as: 

( )( )1 eq
ijk ijk ijk ijkf f f fω∗ = + − −                    (29) 

The non-Newtonian fluid model enters the boundary condition only in the 
determination of ω . This can be implemented for the iterative as well as for the 
analytic model of the Bingham fluid’s viscosity. 

5. Implementation Details 

The Bingham fluid model with unrolled iterative regularization according to 
Equation (18) and the method based on the analytic solution are implemented in 
the massively parallel lattice Boltzmann solver Virtual Fluids [34]. The base 
model is the cumulant lattice Boltzmann solver with 27 velocities and optimized 
relaxation rates as introduced in [35] and analyzed in [36] [37]. In this method, 
the relaxation rates of cumulants of order three and higher are selected depend-
ing on the relaxation rates of second-order cumulants and this optimization is 
only valid in a specific range of relaxation rates associated with low viscosity. For 
the high viscosity encountered below the yield threshold the optimization would 
introduce additional singularities in the higher cumulants. This is avoided here 
by selecting the relaxation rates of the higher-order cumulants according to the 
fixed asymptotic relaxation rate ω∞  which means that we are applying the ge-
neralized equilibrium instead of the effective viscosity ansatz. A caveat to this 
choice is that ω∞  is somewhat arbitrary such that the optimization obtained in 
[35] for Newtonian fluids might not be optimal for non-Newtonian fluids. 
However, the complex optimization procedure in [35] heavily relies on the li-
nearization of the LBM and requires substantial further research to be fully ap-
plied to the non-linearity of the Bingham fluid. We will hence leave a Bingham 
specific optimization of the relaxation rates to future research. 

The lattice Boltzmann algorithm including the computation of the effective 
relaxation rate for boundary conditions and the collision operator is given in 
Algorithm 1. 
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Algorithm 1. Lattice Boltzmann algorithm for Bingham uids. 

6. Numerical Validation 

The main purpose of the current paper is to demonstrate that the viscosity sin-
gularity which has to be avoided in Navier-Stokes implementations of the effec-
tive viscosity model does not arise in the LBM. For demonstration purpose we 
chose two canonical test cases which are both popular and relevant for Bingham 
fluids: Poiseuille flow and Taylor-Couette flow. Yet, even for these comparatively 
simple setups proper convergence studies for yield stress fluids are rarely found 
in literature. 

6.1. Poiseuille Flow 

A classical and simple test for the implementation of a Bingham fluid is flow 
between two infinite plates driven by a constant force. This Poiseuille type flow 
results in a parabolic flow near the boundaries and a plug flow in the center of 
the channel for a Bingham fluid as described in [38]:  

( )

( ) ( )( )

1
2 2

0 0

1
2 2 2

0 0 0

1 , 0
2

1 ,
2

x

x

x

F
H z z z

u
F

H z z z z z H

µ

µ


  − ≤ ≤   = 

   − − − ≤ ≤   

         (30) 

where xF  is the force amplitude driving the flow, 0z  is the yield point given 

by 0
0

x

z
F
τ

= , H is the half height of the channel and µ ρν=  is the dynamic 

viscosity. Driving the flow by a force xF  is typically preferred in benchmark 
simulations over the more physically correct pressure gradient as the latter can-
not be implemented with periodic boundaries and would hence introduce 
boundary effects from the pressure boundary conditions.  

We used a simulation domain of size 2 2 2H× × . The viscosity at the lowest 
resolution µ  was set to 0.005, the yield stress 8

0 3 10τ −= ×  and the force was 
96 10xF −= × . As usual in LBM literature, all quantities here are given in norma-

lized lattice units where we assume that grid spacing, time step and mass ele-
ment are all unity, i.e. 1x∆ = , 1t∆ =  and 1m∆ = . For studying the conver-
gence we varied the resolution of the problem for fixed Mach, Reynolds and 
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Bingham numbers defined respectively as: 

s

UMa
c

=                         (31) 

UHRe ρ
µ

=                        (32) 

0H
Bm

U
τ
µ

=                        (33) 

The speed of sound 1= 1 3sc x t−∆ ∆  is a constant in the LBM such that consis-
tency between the dimensionless numbers is established by scaling x xµ µ= ∆ ∆   
and x xF F x x= ∆ ∆  . This scaling implies that the time step t∆  is scaled propor-
tionally to the grid spacing x∆  which also keeps the velocity scale U constant. 
The disadvantage of this so-called acoustic scaling is that a finite error in Mach 
number persists such that absolute convergence is not expected. In order for this 
to be small we chose rather small values for the force and the yield stress. 

To quantify the error we compute the following L2 norm 

( )
( )

2

22

a
x xa

x x L a
x

u u
u u

u

−
− =

∑
∑

                  (34) 

Figure 1 shows the velocity profile of the channel flow for the Bingham fluid 
simulated with the analytic function for the relaxation rate ( aω ) and the ap-
proximated solution using 20 iterations ( 20ω ). The figure implies satisfactory 
correspondence of both solutions with the analytic solution. Differences between 
both methods become visible in the L2 norm seen in Figure 2. It is observed that 
neither methods convincingly displays second-order convergence down to a res-
olution of 256 lattice nodes in the span. While both methods give nearly identic-
al results for the lowest resolution, the approximate method levels off at higher 
resolutions. 
 

    
(a)                                 (b) 

Figure 1. Velocity profile of the Bingham fluid using four different resolutions. The left 
plot (a) shows results obtained using the analytic relaxation rate while the right plot (b) 
shows result for the iterative method using 20 iterations. The value of H given in lattice 
units indicates the resolution. Between 32 and 256 nodes across the span of the channel 
were used in this convergence study. (a) Analytic relaxation; (b) Iterative relaxation. 
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Figure 2. Convergence of the L2 norm for the flow shown in Figure 1. The dashed line 
indicates second-order convergence. 

6.2. Taylor-Couette Flow 

Our next test is a planar Taylor-Couette flow depicted in Figure 3. We investi-
gate the flow between a rotating outer and a resting inner cylinder. Perpendicu-
lar to the plane periodic boundary conditions are used such that the setup is qu-
asi two dimensional. Interpolated bounce back with and without velocity is used 
for the outer and the inner cylinder, respectively. In this test case, flow attached 
to the outer cylinder will be below the yield threshold and hence move as a solid 
with the same angular velocity as the outer cylinder. This plug flow domain at-
tached to the outer cylinder is reduced in size with higher angular momentum. 

6.2.1. Semi-Analytic Solution 
A semi-analytic solution for the laminar Taylor-Couette flow of a Bingham fluid 
is usually derived in dimensionless form scaled with the Reynolds number of the 
inner cylinder [39] [40]. This unfortunately precludes the case where the inner 
cylinder is at rest. We hence present here a semi-analytic solution for this par-
ticular case. Following Landry et al. [40] we start from the condition for statio-
nary momentum in cylindrical coordinates: 

( )2
2

10 rr
rr θτ
∂

=
∂

                       (35) 

The stress in the Bingham fluid is given in cylindrical coordinates as: 

0
r r

r
θ θ

θ

τ
τ µ γ

γ
 

= +  
 

�
�

                     (36) 

( ) ( )
0

0

0,

d
,

d

r

r
r

V r V r
r r

θ

θ

θ

τ τ
γ

τ τ

 ≤
= 

− >


�                (37) 

where ( )V r  is the tangential velocity at radius r. For the purpose of this deri-
vation we assume 0rθτ τ>  and plug Equation (36) into Equation (35). This 
gives rise to a 2nd order ordinary differential equation which we supplement  
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Figure 3. Concept of Taylor-Couette flow with Bingham fluid. An outer ring with finite 
thickness where the stress is below the yield threshold rotates like a solid body with the 
outer wall. 
 
with two boundary conditions. Unlike Bird et al. [39] and Landry et al. [40] we 
consider the case of a resting inner cylinder, i.e. ( ) 0iV R =  and a moving outer 
cylinder. For the boundary condition imposed by the outer cylinder we have to 
take our assumption of 0rθτ τ>  into consideration, meaning that the differen-
tial equation is not valid beyond the yield radius yR . At the yield radius and 
beyond the fluid moves as a solid with the angular velocity of the outer cylinder 
such that we can specify the boundary condition ( )y yV R R= Ω . This gives rise 
to the analytic solution 

( ) ( )

2 2 2
0 0

2 2

ln ln
,

,

i

y y
i y

i y

y

Rr
R R

R r RV r
r R R

r r R

α β γµ τ τ

µ

    
Ω + −            < ≤= 

−
 Ω >

  

    (38) 

With 

( )2 2 2 2
i yR r Rα = −                      (39) 

( )2 2 2 2
y iR R rβ = −                      (40) 

( )2 2 2 2
y iR r Rγ = −                      (41) 

The yield radius yR  is unknown and it is recovered from the condition of 
continuity for Equation (37). Basically we need to solve 

( ) ( )d
0

d
y y

y y

V R V R

R R
= −                    (42) 

for yR . This is done here numerically such that the final solution is only 
semi-analytic. As there are multiple solutions we have to pick the one for which 

y iR R> . 

6.2.2. Results 
Figure 4 shows the profiles of the angular velocity in between the two cylinders 
for four different angular velocities of the outer cylinder, for four different reso-
lutions ( { }2 2 , 5,8i

oR x i∆ ∈ ) and the two methods under investigation. The 
yield stress is 8

0 5 10τ −= ×  and the viscosity at the lowest resolution 31.5 10µ −= × ,  
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(a)                                    (b) 

    
(c)                                   (d) 

Figure 4. Angular velocity profiles of the Bingham fluid between two cylinders where the 
outer cylinder is rotated with the angular velocity Ω while the inner cylinder is at rest. 
The different resolutions and the two methods show reasonable agreement. (a) 

50.5 10−Ω = × ; (b) 51.0 10−Ω = × ; (c) 51.5 10−Ω = × ; (d) 52.0 10−Ω = × . 
 
both in lattice units. The same scaling as in the Poiseuille case is applied holding 
Ma, Re and Bm constant. 

We observe that a plug flow attached to the outer cylinder develops for suffi-
ciently low angular velocities and that the different resolutions and the analytic 
and iterative methods agree well with respect to the velocity profiles. 

Figure 5 depicts the convergence behavior of the L2 norm of the angular ve-
locity profiles of the Taylor-Couette solution when compared to the semi-analytic 
result. It is observed that both methods under investigation show very similar 
results at coarse resolution. However, at higher resolutions the convergence of 
the iterative method slows down substantially. It is of note that the convergence 
of the LBM using the analytic relaxation rate also deteriorates at the highest res-
olution, especially for the cases with a high proportion of non-yielded fluid in 
the domain. However, this deterioration is much less pronounced than in the 
case of the iterative method. 

7. Conclusions 

In this work we presented a cumulant LBM for the simulation of Bingham fluids. 
The ansatz used is similar to the one proposed by Vikhansky, however, in con-
trast to his work we solve the implicit problem analytically. The resulting model  
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(a)                                   (b) 

Figure 5. Convergence behavior of the L2 norm of the error in angular velocity measured 
for the Taylor-Couette flow at four different angular velocities of the outer cylinder and 
three different resolutions for the method using the analytic relaxation rate (a) and the 
iterative relaxation rate using 20 iterations (b). (a) Analytic relaxation; (b) Iterative relax-
ation. 
 
implies the existence of negative viscosities at shear rates below the yield thre-
shold. At higher shear rates the viscosity returns to a positive value such that the 
method remains stable through self-limiting even though it appears to be linear-
ly unstable. The singularity in viscosity occurring between the yielded and 
non-yielded state does not affect the performance of the lattice Boltzmann me-
thod much since viscosity is never explicitly used in the method and appears 
only as an emerging property derived from the relaxation rate. This is in stark 
contrast to an effective viscosity model implemented in a Navier-Stokes solver 
where the viscosity has to be explicitly specified such that the singularity would 
be fatal to the simulation. 

We showed that an effective viscosity model can always be translated to a ge-
neralized equilibrium model with fixed viscosity. This result can also be applied 
in other contexts, most notably for Dellar’s Galilean correction of viscosity using 
a modified relaxation rate [27]. 

Using the analytic solution for the relaxation rate has two important advan-
tages over Vikhansky’s method. First, it is simpler and more efficient since no 
iteration is required and the relaxation rate can be obtained by evaluating a sim-
ple analytic expression. Second, the analytic method is more accurate. The latter 
could appear obvious as we are evidently comparing the exact solution to a 
slowly converging approximation. However we have to recall that the necessity 
of some sort of regularization for the singular viscosity is almost universally ac-
cepted in literature. While the loss of convergence due to regularization in the 
case of high resolution is not surprising, we could show that regularization can 
be avoided altogether due to the way of how the LBM deals with viscosity and 
that avoiding regularization improves convergence and therefore overall accu-
racy. Finally, we note that more complex fluids will still require iterative func-
tion solvers to determine the effective viscosity or the generalized equilibrium. 

Even using the analytic relaxation rate, the convergence properties of our me-
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thod are below the expectation of a second order accurate method. Simulating a 
yield stress fluid includes the modeling of a quasi-solid phase which, for an ex-
plicit method on a Cartesian mesh, is not a well posed problem. Convergence 
studies are rarely shown for the simulation of such complex fluids. As the solid 
phase remains to be an approximation even with the analytic relaxation rate, it is 
essential for the underlying numerical method to support a high viscosity con-
trast. The cumulant LBM has been established for fluids with very low viscosity. 
In this paper we showed that the simulation of the solid domain is not limited by 
the requirement of a finite viscosity in this method. 
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