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Abstract 
A new solver is presented for transonic flow around cone-cylinder, axisym-
metric bodies. Ground experiments almost always suffer from uncertainty 
due to operating in the presence of high levels of facility noise. Besides, expe-
rimental measurements of these mechanisms are not available at high-speed 
flows. Direct Numerical Simulations have made it possible to compute details 
of the transonic mechanisms but still a significant challenge due to the cost. 
This study aims to present a new solver to model transonic flows. To assess 
the new solver, the surface Mach number and the drag coefficient are investi-
gated as the freestream Mach number varies. The results are in excellent 
agreement with experimental data, indicating the new model is capable of 
accurately predicting the aerodynamics coefficients at transonic flow regimes. 
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1. Introduction 

Transonic flow past certain two-dimensional bodies has been studied extensive-
ly, and therefore, the phenomena are well understood. Some of the earliest theo-
retical studies are done by Cole [1], Guderley [2], and Vincenti [3], which ap-
plied to two-dimensional wedge airfoils. The theory and experimental results 
conducted by Bryson [4] and Griffith [5] agreed well. Two-dimensional and 
axially symmetric bodies are of considerable theoretical and practical interest to 
study since these two cases are simplified cases of the problem around complex 
and arbitrary geometries.  

The study of transonic flow around axisymmetrical bodies is not as complete 
as two-dimensional bodies. The similarity physicals of axially symmetric tran-
sonic flow studied by Von-Karman [6] and Oswatitsch [7] discuss general tran-
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sonic flow past finite cones. The first theoretical results for supersonic flow past 
a cone were presented in 1929 by Busemann [8]. The Busemann’s solution pre-
dicts the smooth shock-free compression from supersonic to subsonic flow for 
specific combinations of cone angle and freestream Mach number. The conical 
solution also showed that for a given freestream Mach number and cone angle, 
the surface Mach number is less than the freestream Mach number right behind 
the conical shock wave; as the freestream Mach number decreases, the surface 
Mach number also decreases and finally changes from supersonic to subsonic 
values. It was concluded that the conical solution for the semi-infinite cone is 
valid for a finite cone only when the flow is supersonic everywhere. However, 
when the surface Mach number becomes subsonic, the perturbation due to the 
corner or the cone’s shoulder propagates forward through the subsonic field and 
therefore interrupts the conicity of the flow. Thereby, the conical solution ap-
plies only for large enough freestream Mach numbers so that the freestream 
Mach number is supersonic. 

For the first time, Taylor and Maccoll [9] presented the numerical solution of 
the axisymmetric conical flow around semi-infinite cones and validated their 
experimental data results. The experiments and theoretical results showed nota-
ble discrepancies, especially in the shockwave form when the surface Mach 
number is subsonic. Yoshihara [10] computed the flow around a cone cylinder 
at the sonic Mach number, which was verified experimentally. The theoretical 
solution, however, has not been developed for transonic flow around finite con-
es. Solomon [11] reported the experiment results on several interesting characte-
ristics of the transonic flow around finite cones. The experiment evaluated the 
deviation of Mach number from the predicted value of conical theory for the 
transonic freestream Mach number, which leads to an evaluation of drag coeffi-
cients. 

In the design of aerodynamic vehicles such as missiles, rockets, space shuttles, 
etc., various shapes are used to reduce the aerodynamic drag to achieve the best 
performance. Investigating the different parameters on the flow/shock characte-
ristics, such as the shape of the shock wave near the nose, shock detachment dis-
tance, and the local Mach number is of special importance in order to determine 
the parameters that provide minimum aerodynamic drag since drag reduction is 
essential for the better performance of the aerodynamic vehicles. The formation 
of the bow shock in the vicinity of the nose, shock detachment distance, shock 
layer, flow turning angle, etc. plays a substantial role in modifying the aerody-
namic characteristic to achieve better cones’ performance.  

Despite several studies that have been done on flow past different cones num-
bers, detailed numerical investigation of transonic and supersonic flow with at-
tached shock wave past a circular cone at zero incidences is of fundamental im-
portance both from a theoretical point of view and for practical applications. 
The present work deploys a new numerical solver for the compressible Navi-
er-Stokes equations to model the transonic flow past cone cylinders. The model 
is based on a central differencing scheme developed by Kennedy and Gruber 
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[12] for complex geometries. Unlike the existing methods, it does not involve 
Riemann solvers or characteristic decomposition; therefore, suitable for complex 
geometries. This unique is particularly essential to achieving an approach to in-
corporate in standard industrial solvers. 

2. Computational Methodology 
2.1. A Hybrid-Energetic Numerical Model 

To address the conflict between turbulence modeling and shock capturing 
schemes, a hybrid algorithm is a natural solution, where a dissipative scheme can 
capture discontinuities at shocks, and the non-dissipative scheme resolves the 
small scales at the turbulent region. Here an energy conserving scheme is 
achieved in a finite volume frame-work through hybridization of convective 
terms, which is evaluated as the inviscid flux, within the Navier-Stokes equations 
as follows: 

( )Hybrid-Energetic Central-nondissipative Shock-capturing1∅ = −∈ ∅ +∈∅         (1) 

The non-dissipative component is based on an improved skew-symmetric 
formulation developed by Kennedy and Gruber [12] for convection terms. In 
this respect, for the quadratically nonlinear terms, the following single genera-
lized expression is used: 

( ) ( ) ( )[ ]1u u u uϑ α ϑ α ϑ ϑ∇ = ∇ + − ∇ + ∇                (2) 

where u is the velocity vector and ϑ  denotes a generic transport variable. The 
skew-symmetric form is obtained by setting 1 2α =  to minimize aliasing er-
rors during numerical simulation within the Navier-Stokes equations. In order 
to reduce to a minimum unphysical energy transfer and growth at the high wa-
venumbers, convective formulations with the α  set to values near 1 2α =  
should be employed. This form is proved to minimize the aliasing errors that are 
associated with low-order non-dissipative schemes. Here, a modified form is 
used to compute the convection terms as: 

Central-nondissipative 2 2
P N P Nu u ϑ ϑ+ +

∅ =                  (3) 

where P and N are cell centroids (Figure 1). The cubically non-linear terms can 
be discretized in the same manner. It is noted that using second-order methods 
are common within applications in complex geometries, even for LES applica-
tions [13].  

A key role in shock-capturing schemes is played by “shock sensors,” that must 
be defined to confine numerical dissipation in shocked regions effectively and, at 
the same time, not to effect smooth parts of the flow field [14]. The pertinence of  

the choice of a sensor based on the pressure gradient, 1 1

1 1

2
2

i i i
i

i i i

P P P
P P P

δ + −

+ −

− +
=

+ +
, to  

capture shock discontinuities usually found in aerodynamics is discussed by 
Swanson and Turkle [15]. Ducros et al. [13] developed a new correction to the  
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Figure 1. Computational domain with structured mesh. The gridding is coarsened for 
visual clarity. 
 
sensor by multiplying the standard sensor by the local function κ , which is de-
fined as the following: 

( )
( ) ( )

2

2 2
i

i
i i

u

u u
κ

ε

∇ ⋅
=

∇ ⋅ + ∇× +
                        (4) 

where 1e 23ε = −  is a small positive real number chosen to prevent numerical 
divergence in regions where 2 2

i iu u∇⋅ +∇×  is zero. The sensor is able to eva-
luate the smoothness if the numerical solution by 0κ =  in the smooth zones, 
and 1κ =  in the presence of shocks [13]. This function alters between 0 for 
weakly compressible regions to about 1 in shock regions. Here the following 
modified shock sensor is used as follows: 

( )1 1max ,i i i iκ δ κ δ+ +∈= × ×                         (5) 

The modified sensor shows smooth correction, proportional to the degree of 
local compressibility and is proved to predict the right decay of turbulence ki-
netic energy in turbulent regions out of the shock [13]. 

2.2. Central-Upwind Scheme for Compressible Flows 

The Shock-capturing∅  component in the hybrid algorithm in Equation (1) is based 
on a model introduced by Kurganov et al. [16] [17]. The main advantage of these 
central schemes is the high resolution, due to the minimal numerical dissipation, 
and the simple application. Because there are no Riemann solvers and characte-
ristic decomposition involved, and this makes it an appropriate model for vari-
ous types of applications. The shock capturing component is based on the use of 
accurate information about the local speeds of propagation. Figure 1 shows the 
grids of polyhedral cells with an arbitrary number of faces and vertices. 

An owner cell and a neighbor cell were assigned for each face. fS  is a vector 
normal to the face surface pointing out of the owner cell. The magnitude of the 
vector is the area of the surface. In such a collocated system, all properties and 
dependent variables are located at each cell centroid, p. The discretization of a 
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general dependent tensor field Ψ  is described by interpolation of values pΨ  
at cell centroid to values fΨ  at cell faces. The Integral of convective term over 
a control volume is linearized as [18]: 

[ ] [ ]d d f f f f ff fV S
u V S u S u φ∇ ⋅ Ψ = ⋅ Ψ ≈ Ψ = Ψ⋅∑ ∑∫ ∫          (6) 

where fφ  is volumetric fluxes. For compressible flows, however, fluid proper-
ties are transported by the propagation of waves in addition to transport by the 
flow. Therefore, the flux interpolation should be stabilized based on transports 
in any direction [19]. Since the interpolation is done to a given face only from 
neighboring cell values, the original form of Kurganov and Tadmor (KT) and 
Kurganov, Noelle, and Petrova (KNP) methods are used [19]. The interpolation 
procedure is based on splitting into two directions corresponding to flow out-
ward and inward of the face owner cell. The discretization is as follows:  

( ) ( )1f f f f f f f f ff fφ αφ α φ ω+ + − − − +Ψ = Ψ + − Ψ + Ψ −Ψ∑ ∑      (7) 

The last term in the above equation is volumetric fluxes associated with the 
local speed of propagation. It is an extra diffusion term related to the maximum 
speed of propagation of any discontinuity that may occur at a face. Therefore, 
the value is interpolated in the f −  and f +  directions. The diffusive volu-
metric flux is calculated according to: 

( )
( )( )
max , for KT method

1 for KNP method

f f
f

f f

α ϕ ϕ
ω

α α ϕ ϕ

− +

− +

= 
− +

           (8) 

where fϕ −  and fϕ +  are defined as: 

( )
( )

max , ,0

max , ,0

f f f f f f f

f f f f f f f

C S C S

C S C S

ϕ φ φ

ϕ φ φ

+ + + + − − −

− + + + − − −

 = + +


= − −

            (9) 

Here f fC RTγ=  is the speed of sound of the gas at the face, with respect 
to outward and inward of the owner cell. A flux limiter function, ( )rβ , is used 
in the interpolation procedure to switch between low and high-order schemes 
where r represents the ratio of successive gradients of the interpolated variable. 
It can be described according to: 

( )
( )

2 1p

d f

d
r

⋅ ∇Ψ
= −

∇ Ψ
                         (10) 

where ( ) p∇Ψ  is the full gradient calculated at the owner cell, P, and 
( )d N Pf
∇ Ψ = Ψ −Ψ . Then, the f +  interpolation of Ψ , for example, is eva-

luated as: 

( )1f f P f Ng gϕ + + += − Ψ + Ψ                     (11) 

where ( )1f fg β ω+ = − , and the symmetric TVD limiter is ( )
1
r r

r
r

β
+

=
+

, from  

van Leer et al. [20]. The resolution of this semi-discrete central-upwind scheme 
can be further improved, especially of the contact waves, by adding a correction 
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term, fq , which is anti-diffusion to numerical fluxes in Equation (7) as: 

( ) ( )1f f f f f f f f f ff f qφ αφ α φ ω+ + − − − +Ψ = Ψ + − Ψ + Ψ −Ψ −∑ ∑   (12) 

The “correction” term, fq  is, in fact, a built-in anti-diffusion term, can be 
computed as [21]: 

( ) ( )min mod , , 0,1f f f f fq w wγ γ+ −= Ψ − −Ψ ∈           (13) 

where: 

( ) { }1f f f f f f fw α α φ φ+ − + + − −= Ψ + − Ψ − Ψ − Ψ  

These terms help to reduce the numerical dissipation present in the original 
form of the semi-discrete central-upwind scheme. Finally, the Laplacian term on 
the polyhedral cell is discretized by splitting into orthogonal and non-orthogonal 
components as following: 

[ ] ( ) ( ) ( ){ }d г г гf N Pf ff fS
S S A a⋅ ∇Ψ ≈ ∇Ψ = Ψ −Ψ +⋅ ⋅ ∇Ψ∑ ∑∫   (14) 

where г  is the diffusion coefficient which is interpolated linearly from the cell 
center values, ( )2

f fA S S d= ⋅  and fa S Ad= − .  

2.3. Implementation in OpenFOAM 

The new framework is developed using C++ code and linked to the existing den-
sity-based library (rhoCentralFoam) for compressible flows in the open-source 
toolbox, OpenFOAM [22], as Hybrid-Energetic algorithm. For time advance-
ment, the original Euler implicit scheme is preserved. However, a higher-order 
Runge-Kutta scheme can be employed in the future for more accurate temporal 
discretization. 

rhoCentalFoam comprises a dissipative model based on original central-upwind 
KT schemes, which initially is developed for laminar compressible flow prob-
lems and hence ineffectual for resolving turbulence. Therefore, the new hybrid 
model can potentially be a practical implementation for modeling interactions of 
shocks and turbulence for OpenFOAM users. The model is already compared 
with the original solver [23] for transonic flows and validated on numerous cases 
[24] [25].  

2.4. Computational Domain 

The flow around the axisymmetrical cone-cylinder is investigated with semi-angles 
of 20 and 25 deg. The base diameter is 20 mm. And the total length of the model 
is 50 mm. For the discretization of the computational domain, structural grids 
are employed. The grid size uniformly expands in the wall-normal direction in 
order to cluster grid points near the wall; therefore, the grid size changes from 

1.3y+ =  near the wall to 5y+ =  at the top of the domain. The transonic Mach 
number, 1.4M∞ = , changes from 0.6 to values close to 1.4, similar to the ex-
perimental setup [11]. The Reynolds number varies from 50000Re =  to 

500000Re = . The flow is assumed to be Newtonian and the specific heat ratio 
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and Prandtl number are 1.4γ =  and 0.72Pr = , respectively. The no-slip and 
adiabatic conditions are enforced on the surface of the cones. The origin of the 
coordinate system is the leading edge of the cone. As shown in Figure 1. Only 
the axisymmetry model about z-axis was simulated due to symmetry. 

3. Results 

Figure 2 shows supersonic flow at infinity, 1.4M∞ = , past the cylindrical cone 
for the semi-angle cone of 25 deg with an attached curved shockwave and sub-
sonic flow between the initial portion of the shock wave and the cone.  

3.1. Local Mach Number Contours 

Figure 3 (Left) shows the example of the sonic-line location when the flow at the 
infinity is supersonic with a detached shockwave and subsonic flow between the 
cone and the shockwave. It is apparent that the sonic-line location originates 
slightly upstream the cone shoulder which is due to the effect of boundary-layer 
rounding the cone shoulder. Figure 3 (Middle) illustrates the case with nearly 
attached curved shockwave with a small supersonic to subsonic compression re-
gion on the front section of the sonic-line. The sonic-line initiates at the cone 
shoulder before it terminates on the shockwave. The freestream Mach number, 

1.273M∞ = , is slightly less than the detachment Mach number predicted by the 
exact conical theory [22]. Figure 3 (Right) depicts the sonic-line location for the 
attached shockwave when the flow at the infinity is supersonic, 1.41M∞ = , a 
mixed supersonic and subsonic flow regime is present between the cone and the 
shockwave. The sonic-line again originates at the corner and now terminates at 
the cone tip and not on the shock wave, unlike the two previews cases. In this 
case, a shock-free supersonic to subsonic compression happens at the front sec-
tion of the sonic-line.  
 

 
Figure 2. The 25 deg semi-angle cone at 1.41M∞ = . 
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Figure 3. The location of the sonic-line for 25 deg semi-angle cone cylinder at 1.229M∞ =  (Left), the location of the 
sonic-line for 25 deg semi-angle cone cylinder at 1.273M∞ =  (middle), the location of the sonic-line for 25 deg 
semi-angle cone cylinder at 1.41M∞ =  (right). 

 
Figure 4 shows the sonic-line for a 20 deg semi-angle of the cone. The prob-

lem of the smooth shock-free supersonic to subsonic compression is subjected to 
discussion for many decays. The numerical results prove that such a smooth 
flow transition occurs on the transonic cone. The condition is a sonic-line 
bounds the zone of subsonic flow enclosed by supersonic flow. It is noted that 
the transonic flow on an airfoil is an example of the non-shock free supersonic 
to subsonic compression. A smooth compression through sonic condition does 
not occur since the shockwave terminates the local supersonic flow on the air-
foil. 

3.2. Surface Mach Number Distribution  

The distribution of the surface Mach number, on a 20 deg cone versus various 
values of the freestream Mach number at different stations, x/c, where c is the 
length of the model, is shown in Figure 5 and for the 25 deg cone in Figure 6. 
The values of Surface Mach number close to the tip agrees well with the experi-
mental values (Solomon, 1955 [11]). At the corner of the cone, the Mach num-
ber should approach sonic, although the boundary layer can affect that. As the 
freestream Mach number reaches the sonic condition, the surface Mach number 
approaches a constant value. The behavior is more apparent for the cone angle 
of 25 deg. This concept is proven from conical theory and is established for axi-
symmetric flows. The stationary concept can be generalized to three-dimensional 
bodies for some selective ranges of near sonic velocity. 
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Figure 4. Sonic-line location for 20 deg semi-angle cone cylinder at 1.247M∞ =  (Left), 
Sonic-line location for 20 deg semi-angle cone cylinder at 1.293M∞ =  (right). 

 

 
Figure 5. Surface Mach number on 20 deg semi-angle cone. 

 

 
Figure 6. Surface Mach number on 25 deg semi-angle cone. 
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Figure 7. The drag coefficient for cone cylinders. 

3.3. Drag Coefficient 

Figure 7 shows the variation of the drag force coefficient of the cone cylinder 
with the freestream Mach number. The slope of the drag coefficient agrees with 
the experimental value (Solomon, 1955 [11]). The drag coefficient’s numerical 
values in the transonic region are well predicted, especially for the semi-angle 
cone of 25 deg. 

4. Conclusion 

Numerical results are presented for transonic flow over axisymmetric cone cy-
linder. The smooth transition from the supersonic to subsonic compression is 
determined by the numerical results in agreement with the experimental obser-
vation. The surface Mach number and the drag coefficient are evaluated as the 
freestream Mach number is varied, and the results are compared with the expe-
rimental data. The variation of the drag force with freestream Mach number is 
calculated from the numerical values. Results show as the freestream Mach 
number reaches the sonic, the surface Mach number approaches a constant val-
ue. The stationary concept can be generalized to three-dimensional bodies for 
some selective ranges of near sonic. The results are in excellent agreement with 
experimental data, indicating the new model is capable of accurately predicting 
the aerodynamics coefficients at transonic flow regimes. The model can be used 
to investigate different parameters on the flow/shock characteristics, such as the 
shape of the shock wave near the nose, shock detachment distance, and the local 
Mach number to determine the parameters that provide minimum aerodynamic 
drag since drag reduction is essential for the better performance of the aerody-
namic vehicles. 
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