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Abstract 
In the scenery of the oil industry, the remaining resources associated with light 
oils have an increasingly smaller share in the natural energy resources available 
to man, and in return the importance of resources associated with heavy oils 
has increased significantly. One of the drawbacks of this type of oil is associated 
with its low mobility due to the high viscosity in reservoir conditions, making 
the transport in pipelines very difficult, especially through pumping methods 
that require high powers. Thus, the development of new techniques and opti-
mization of some existing technologies, aiming at the commercial use of heavy 
oil accumulations plays an important role. A viable technique that has been 
used is the core annular flow, in which small amounts of water are injected 
close to the pipe wall, lubricating the oil core, reducing friction and decreas-
ing the pressure drop during the flow. In this sense, this work aims to per-
form, numerically, an energetic and hydrodynamic analysis of a heavy 
oil-water two-phase flow, using the core-flow technique, in curved pipes, in 
the Ansys CFX software. Results of the velocity, pressure, and volume frac-
tion distribution of the involved phases are presented and analyzed. It was 
observed that the proposed mathematical model was able to accurately 
represent the analyzed phenomena and that a reduction factor in the pressure 
drop of 28.4 was obtained as compared to the heavy oil single-phase flow. 
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1. Introduction 

In the world oil production scenario, light oils, also called conventional oils, 
have dominated the market throughout history. These oils are technically easier 
to produce, have a lower production cost, higher performance after being re-
fined, in addition to providing high-value products [1]. However, in recent dec-
ades its accumulations have been reduced gradually. Thus, there is an interest in 
potential heavy oil reserves, estimated by the IEA (International Energy Agency) 
at around 6 trillion barrels around the world [2]. 

Heavy oils are composed of high molecular weight hydrocarbons, conse-
quently, they have a high relative density, related to the presence of unwanted 
product contents such as asphaltenes, metallic components (nickel and vana-
dium) and sulfur. Furthermore, they are characterized by having a low API de-
gree, between 10 and 20, and high viscosity ranging from 100 cP (0.1 Pa·s) to 
10,000 cP (10 Pa·s). The production of this type of oil is, on average, twice as ex-
pensive in terms of production cost and energy consumption. This fact is related 
to low mobility due to its high viscosity in reservoir conditions, along with the 
presence of unwanted components already mentioned, making it more difficult 
to produce, transport and refine these oils. 

In Brazil, the Campos Basin is the location that contains the largest amount of 
heavy oil in deep waters, being responsible for approximately 90% of the oil 
production in the country [3]. Producing heavy oil in deep waters and trans-
porting it in pipelines are expensive and highly complex tasks. The main prob-
lems are related to guarantee the flow of oil in severe conditions, subject to the 
hydrate formation and the paraffin deposition on the inner walls of the pipeline, 
and ensure the proper pressure drop in the flow. In some cases, problems such 
as the paraffin deposition can cause an increase in the pumping power require-
ment, decreasing in the volumetric flow rate, and even causing the complete 
blockage of the pipeline. 

Core Annular Flow (CAF) can be defined as an alternative technique for 
transporting heavy oils. This technique uses parietal lubrication, that is, the an-
nular flow of water in the pipe to carry the heavy oil in the center, thus, reducing 
friction effects [4], and the lowest amount of energy required for pumping [5]. 
Due to its high potential, several researchers have given the great interest in de-
veloping works related to this technique [6]-[16]. Unfortunately, several works 
are related to horizontal and vertical pipes, and few researches are focused on 
non-conventional geometries [17] [18] [19] [20] [21]. 

Sarmadi et al. developed a methodology for transporting heavy oil using an 
annular flow with three layers. The third layer, next to the wall, is a lubricating 
layer. These authors verified that the addition of the extra layer ensures the sta-
bility of the transport, allowing a stable annular flow. Furthermore, they authors 
verified that the method produces a significant reduction in pressure drop. 

Ameri et al. [22] studied the core-flow system in a vertical pipe in a configura-
tion with onlulated nucleus. These authors found that the ideal proportion for 
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water and oil input ranged from 0.07 to 0.5 depending on the surface velocity of 
the oil transported. Furthermore, in the research was verified that a higher oil 
flowrate requires smaller amounts of water to reach the minimum friction pres-
sure gradient. 

Strazza et al. [23] carried out a trial study of resuming a core-flow system 
starting from a stratified flow. The authors comment about the importance of 
the water injection velocity in removing the oil that is trapped to lipophilic wall, 
and to keep the stable oil core. 

During the Core Annular Flow, numerous difficulties related to the transpor-
tation of heavy oils are encountered. Given the importance of the physical prob-
lem under discussion, there is a need for further studies on the development and 
optimization of existing techniques, thus allowing the commercial use of these 
reserves from a technical and economic point of view. Therefore, in complement 
of this topic, this work aims to perform, numerically, an energetic and hydrody-
namic analysis of a heavy oil-water two-phase flow, using the core-flow tech-
nique, in non-conventional ducts (curved pipes). 

2. Methodology 
2.1. The Physical Problem and the Geometry 

The physical problem to be studied herein consists of the two-phase flow 
(core-flow type) of heavy oil in a curved pipe (Figure 1). For this propose was 
used the computational fluid dynamics (Ansys CFX commercial software).  

In the present work, a structured three-dimensional mesh representing the 
study domain was generated in the ICEM CFD module of the ANSYS CFX 12.0 
software. This mesh was created using a set of points, curves, surfaces, and solids 
describing its shape (curved pipe) and dimensions (diameter and length). The  
 

 
Figure 1. Mesh used in the simulations. 
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modeling of the physical problem with appropriated boundary conditions were 
specified in the Ansys CFX. 

Figure 1 shows the numerical mesh from the curved pipe with a total length 
of 12 m and a curvature radius equal to 0.2 m. In the oil inlet regions, an internal 
diameter (Di = 0.14 m) and the external diameter of the pipe (De = 0.15 m) were 
adopted, where the annular region (De – Di) refers to the water inlet. This ar-
rangement causes water to flow in the annular region, lubricating the oil core 
and thus reducing friction between the oil and the pipe wall. This mesh was ob-
tained after the grid and time refinements.  

2.2. Mathematical Modeling  

The heavy oil-water two-phase flow in curved pipes is governed by general con-
servation laws, as follows: 

1) Mass Conservation Equation: 

( ) ( )
1

pN

MSf f S
t α α α α α α αβ

β
ρ ρ

=

∂
+∇ = + Γ

∂ ∑U                  (1) 

where the sub-indices α and β correspond to the involved phases; f is the volume 
fraction, ρ  is the density, U  is the velocity vector; MSS  is the mass source 
term and αβΓ  is the mass transfer term between the fluid phases. 

2) Momentum Equation: 
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where µ  is the dynamic viscosity, p is the pressure, ⊗  is tensor product, MS  
represents the term of the external forces acting on the system per volume unit. 
In the term referring to the momentum transfer induced by the interfacial mass 
transfer (the third term on the right side of the equation), αβ

+Γ  corresponds to 
the mass flow rate per unit volume of the phase β to phase α and vice-versa. 

The tensor product of two vector is given by: 
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and the term ( )f ρ∇ ⋅ ⊗U U  can be obtain by: 
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In Equation (2), M  describes the interfacial force per unit volume over the 
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phase α due to the interaction with the phase β. This parameter represents the 
sum of several forces, such as wall lubrification force, lift force, interfacial drag 
force, virtual mass force, turbulent dispersion force and solids pressure force. In 
the work, we use the mixing model at the interface between the phases. In this 
case, only the interfacial drag force is considered, being given by: 

( )DC Aα αβ αβ β α β αρ= − −M U U U U                  (5) 

where CD = 0.44 is the drag coefficient [24], and αβρ  is the density of the fluid 
mixture, given as follows: 

f fαβ α α β βρ ρ ρ= +                          (6) 

The viscosity of the fluid mixture is given by: 
f fαβ α α β βµ µ µ= +                          (7) 

The interfacial area density per volume unit, Aαβ , defines the treatment 
model for interfacial transfer (particle, mixture and free surface models). In this 
research we use the following equation: 

A fαβ α= ∆                             (8) 

3) Turbulence equations: 
The k-ε turbulence model was used to describe the flow of the water phase. 

This is a turbulent viscosity model where Reynolds tensors are assumed to be 
proportional to the mean velocity gradients, with the constant of proportionality 
being characterized by the turbulent viscosity (idealization known as Boussi-
nesq’s hypothesis). 

The characteristic of this type of model is that two transport equations mod-
eled separately are solved for the turbulent length and the time scales or any two 
combinations linearly independent of them. The variable k represent the trans-
port equation for the turbulent kinetic energy, and ε represent the turbulent ki-
netic energy dissipation rate, as follows: 
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where Gα is the generation of turbulent kinetic energy within phase α, C1 and C2 
are empirical constants. The dissipation rate of turbulent kinetic energy and the 
turbulent kinetic energy of phase α, are, respectively, defined by: 

3c q
l
µ α

α
α

ε =                             (11) 

2

2
q

k α
α =                              (12) 

where lα is the length of the spatial scale, qα is the velocity scale and, cμ is an em-
pirical constant, being as follows: 
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24c cµ α=                              (13) 

where cα is an empirical constant and μtα corresponds to turbulent viscosity, de-
fined by: 

2

t
k

c α
α µ α

α

µ ρ
ε

=                           (14) 

The value of the constants used in the Equation (7) and Equation (8) are: C1 = 
1.44, C2 = 1.92, Cμ = 0.09, σk = 1.0, and σε = 1.3. These information can be found 
in the literature. 

2.3. Initial and Boundary Conditions 

As an initial condition, it was considered that the entire pipe was filled with wa-
ter. The boundary conditions applied to the study domain are as follows: 

1) An annular section for the inlet of water: 

0 0
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2) An inlet section for oil: 
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where t is the time. 
3) At the boundaries of the pipe wall: a roughness value of 4.5 × 10−5 m and 

the no-slip condition were considered. 

0 0 0

0

0

r z
w w w
r z

U U U
r

U U U
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θ

 = = == 
= = =

                        (17) 

2.4. Fluid Properties and Numerical Procedures 

The properties of the fluids used in the numerical simulation of the heavy 
oil-water two-phase flow, using the core-flow technique, are shown in Table 1. 

Regarding the numerical simulation of the physical problem, some assump-
tions were made, which are shown in Table 2. 

3. Results and Discussion 

The numerical simulation was carried out in a transient state with a total process 
time equal to t = 10 s and a time-step Δt = 0.05 s. As evidenced in the initial and 
boundary conditions, the water flow rate is constant (iqual to 4 kg/s), while the 
oil flow rate is a time-dependent function with decreasing behavior (decreasing 
from 15 to 0 kg/s), as shown in Figure 2. This type of simulation tries to show 
the behavior of the core-flow when the pumping of oil decreases in the course of 
the process keeping the water flow rate to be constant. The idea is to approach  
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Table 1. Thermophysical properties of the fluids used in the numerical simulation. 

Property Heavy oil Water 

Density (kg/m3) 989 997 

Dynamic viscosity (Pa·s) 10 8.89 × 10−4 

Surface tension (N/m) 0.072 

 
Table 2. Assumptions made to solve the governing equations. 

Properties Assumptions 

Classification of fluid flow 
Two-phase flow (oil-water), three-dimensional, transient,  

incompressible, isothermal, turbulent (water)/laminar (oil) 

Turbulence model k-ε Standard 

Multiphase model Non-homogeneous 

Interfacial transfer model Mixing model 

Interfacial force Drag 

Pressure interpolation scheme Trilinear 

Velocity interpolation scheme Trilinear 

Advection scheme High Resolution 

 

 
Figure 2. Transient behavior of mass flow rates of oil and water phases. 

 
this physical situation to a real process such as a performance reduction of the 
oil pump due to a problem in the suction of the pipeline or even a variation in 
the engine rotation velocity done manually to attend operational requirements. 
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Figure 3 illustrates the behavior of the pressure drop and the required power 
as a function of time. From the analysis of this figure, it is observed that maxi-
mum value is obtained and it can be used as a parameter for dimensioning the 
system. The maximum pressure drop obtained for oil transportation using the 
core-flow technique was ΔP = 2879.37 Pa, which corresponds to the maximum 
power required of 41.14 W. Note that length of the pipe is 12 m only. The pipe is 
full filled with water in t = 0 s and following, the oil and water starts to flow 
along the pipe, simultaneously. 

The pressure field at time t = 3 s and 6.5 s are shown in Figure 4. By analyzing 
the figure, we can see a decrease in fluids flow pressure due to friction along the  
 

 
Figure 3. Transient behavior of the pressure drop and pumping power required during 
10 s of process. 
 

 
Figure 4. Pressure field along the pipe at different moments. 

https://doi.org/10.4236/ojfd.2020.102008


B. F. Silva et al. 
 

 

DOI: 10.4236/ojfd.2020.102008 130 Open Journal of Fluid Dynamics 
 

pipe wall, especially in the curvature region, as expected for at this geometry 
type. 

In the petroleum industry always is desirable to transport crude oil as possible 
at fixed pressure drop. Thus, to compare the performance of the core-flow tech-
nique plays important role. For heavy oil single-phase flow, the pressure drop 
achieved was ΔP = 81780.9 Pa. Therefore, a reduction factor of 28.4, which is the 
relationship between the pressure drop of the oil single-phase flow and the 
two-phase flow using the core-flow technique, was verified. There was a reduc-
tion in pressure drop equivalent to 96.48% when using the core-flow technique 
for transporting heavy oil, thus showing its efficiency in terms of the high-energy 
gain in the process, that is essential to make the production of heavy oils to be 
optimized and economically attractive. 

Figure 5 and Figure 6 show the volumetric fraction field of the oil along the 
pipe. Variations in volumetric fraction can be interpreted like a mixture of the in-
volved phases or even formed emulsion. From the analysis of these figures, it can be 
seen that the oil core remains stable, being lubricated by the water that flows close 
to the pipe wall in the annular region. However, the oil core is non-concentric,  
 

 
Figure 5. Volumetric fraction field of oil along the pipe at different moments. 

 

 
Figure 6. Volumetric fraction field of oil in transversal planes before and after the curva-
ture point at different moments. 

Radial plane 
(2 m before the 

curvature)

Radial plane 
(2 m after the 

curvature)

t = 3 s t = 5 s t = 6 s t = 7 s

t = 7 s t = 8 s t = 9 s t = 10 s
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mainly due to the difference in density between the two fluids, inducing interfa-
cial waves in the core-annular flow and at the same time increasing, even more, 
its hydrodynamic stability. This behavior can be seen clearly in Figure 6, espe-
cially of the times equal to 7, 9, and 10 s. 

Regarding the oil velocity behavior illustrated in Figure 7 and Figure 8, it is 
observed clearly the presence of a water stream near the pipe wall. From the 
analysis of the predicted results, the superficial velocity of heavy oil tends to be 
zero as the radius, r, increases approaching the radius of the pipe, R, evidence  
 

 
Figure 7. (a) Superficial velocity field and (b) velocity vectors of the heavy oil at t = 8 s. 

 

 
Figure 8. Oil superficial velocity profile at (a) 2 m before curvature and (b) at 2 m after curvature. 
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that it does not touch the pipe wall, not even in the curvature region, confirming 
the oil core lubrication performed by the water flow, reaching a maximum su-
perficial velocity of 0.56 m/s. 

4. Conclusions 

From the obtained results, it can be concluded that: 
1) The core-flow technique proved to be an excellent alternative solution for 

the transport of heavy oils due to the reduction in the energy consumption used 
in the process; 

2) The use of the core-flow technique for the proposed problem presented a 
reduction factor in the pressure drop of 28.4 compared to the heavy oil sin-
gle-phase flow; 

3) The use of the core-flow technique provided a maximum reduction in 
pressure drop equal to ΔP = 2879.37 Pa and the maximum required power of 
41.14 W; 

4) The reduction in pressure drop when using the core-flow technique was 
96.48%; 

5) During the entire process, the oil core was stable and non-concentric, not 
even touching the pipe wall; 

6) In pipeline projects for transporting heavy oils, the radius of curvature 
must be analyzed during the design process, to avoid breaking the stability of the 
core-flow pattern due to its high local pressure drop. 
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