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Abstract 
Background: When continuous scale measurements are available, agree-
ments between two measuring devices are assessed both graphically and ana-
lytically. In clinical investigations, Bland and Altman proposed plotting sub-
ject-wise differences between raters against subject-wise averages. In order to 
scientifically assess agreement, Bartko recommended combining the graphi-
cal approach with the statistical analytic procedure suggested by Bradley and 
Blackwood. The advantage of using this approach is that it enables signific-
ance testing and sample size estimation. We noted that the direct use of the 
results of the regression is misleading and we provide a correction in this re-
gard. Methods: Graphical and linear models are used to assess agreements for 
continuous scale measurements. We demonstrate that software linear regres-
sion results should not be readily used and we provided correct analytic pro-
cedures. The degrees of freedom of the F-statistics are incorrectly reported, 
and we propose methods to overcome this problem by introducing the cor-
rect analytic form of the F statistic. Methods for sample size estimation using 
R-functions are also given. Results: We believe that the tutorial and the R-codes 
are useful tools for testing and estimating agreement between two rating pro-
tocols for continuous scale measurements. The interested reader may use the 
codes and apply them to their available data when the issue of agreement be-
tween two raters is the subject of interest.  
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1. Introduction 

The subject of agreement between two or more raters is of interest to investiga-
tors who work in medical research as well as physical sciences. When continuous 
scale measurements are available, agreements between two measuring devices or 
medical diagnostic tools are assessed both graphically and analytically. In clinical 
investigations, Bland and Altman proposed [1] [2] suggested plotting subject-wise 
differences between raters against subject-wise averages. Bartko [3] recommend-
ed combining the graphical approach with the statistical analytic procedure based 
on linear regression models that were suggested by Bradley and Blackwood [4]. 

According to Stephenson & Babiker [5], “Clinical epidemiology can be defined 
as the investigation and control of the distribution and determinants of disease”. 
Last [6] felt that the term was an oxymoron, and that its increasing popularity in 
many different medical schools was a serious issue.  

Clinical epidemiology aims to optimize the diagnostic, treatment and preven-
tion processes for an individual patient, based on an assessment of the diagnostic 
and treatment process using epidemiological research data [7]. A central tenet of 
clinical epidemiology is that every clinical decision must be based on rigorously 
evidence-based science. The objectives of clinical epidemiology are primarily to 
develop epidemiologically sound clinical guidelines and standards for diagnosis, 
disease progression, prognosis, treatment and prevention. The data obtained in 
epidemiological studies are also applicable to the epidemiological justification of 
preventive programs for communicable and noncommunicable diseases [8].  

A key aspect of clinical epidemiology is the evaluation of the effectiveness of 
treatment and prevention medicines [8]. To deliver reliable results, the diagnos-
es must be reported error-free. Measures of reliability and agreements among 
diagnostic tools play an important role in this regard.  

Reliability and agreement are important issues in disease diagnosis and classi-
fication, the development of screening tools, quality assurance, and the evalua-
tion of diagnostic tools for clinical investigations (Kottner et al. [9]).  

When the responses are interval scale measurements the intraclass correlation 
is used to quantify reliability. When the measured responses are categorical the 
agreement between raters is quantified by the well-known “Kappa” coefficient. 
On the other hand, reliability is measured by the ICC. The concept of agreement 
between two raters when the responses are interval scale measurements is quan-
tified by assessing both the bias and accuracy of the rating devices. The approach 
proposed by Bradley and Blackwood [4] is used to simultaneously test for bias 
and accuracy. Their test is obtained from the simple regression of the case-wise 
differences between the raters against the case-wise means of the ratings. In oth-
er words, we say that agreement between measuring devices or two raters exists 
if three conditions are satisfied: The two sets of measurements are highly corre-
lated; the two methods are equally precise, and the two methods are unbiased 
relative to each other. The approach applies statistical testing jointly on the in-
tercept and the slope. Testing the intercept equals zero is equivalent to testing 
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for the absence of bias, while testing the slope equals zero is equivalent to equal-
ity of precisions. This joint test of intercept and slope coefficients in simple li-
near regression are not straightforward. Our main objective in this paper is to 
caution against the automatic results produced by commercial statistical pro-
grams for regression analysis and present alternative approaches. Issues of sam-
ple size estimation are discussed as well.  

2. Methods 
2.1. Wilk’s Tests 

Let ( )1 2, , 1,2, ,i ix x i n=   denote a random sample of size n drawn from a biva-
riate normal distribution whose parameters are ( )2 2

1 2 1 2 12, , , ,µ µ σ σ ρ . 
The summary statistics of the data are:  

( ) ( )1 1 2 2,X mean X X mean X= = , ( ) ( )2 2
1 1 2 2,S variance X S variance X= = , 

and 12ρ  is the correlation between 1X  and 2X . 
The ultimate goal is to test the simultaneous null hypothesis 0 1 2:H µ µ= 

2 2
1 2σ σ= , evaluate its power and determine approximately the sample size 𝑛𝑛 to 

achieve prespecified levels of power. 
The above hypothesis has two components; the first is 2 2

0 1 2: 0H σ σ− = , which 
is testing the hypothesis that the two raters have equal precision. The second is 

0 1 2: 0H µ µ− = , which is testing the hypothesis that the two raters are unbiased 
relative to each other. 

The null hypothesis 2 2
0 1 2 1 2:H µ µ σ σ= =  is an extension of the parallel 

test. Bradley and Blackwood [4] proposed a simple statistic to test the above hy-
pothesis. This test has applications in agreement studies. Needless to say that 
separate statistics tests for the equality of the two means or the two variances are 
well-documented in statistical literature. To avoid multiplicity, researchers used 
Bonferroni correction by conducting separate tests of equality of means followed 
by testing equality of variances. This requires that the test size α be split into α/2 
for testing the mean (using paired t-test) and α/2 is the size of the test of equality 
of two correlated variances (Morgan [10] and Pitman [11]) known as Mor-
gan-Pitman test. 

The separate statistical tests for the equality of means or variances of two de-
pendent variables are well-known, and using both of them for a simultaneous 
test of both null hypotheses requires the use of a Bonferroni correction. 

The null hypothesis of equality of means is tested using the following statistic: 

 1 2
2 2

1 2 1 2 122 1
m

X XZ
S S S S nρ

−
=

+ − −
 (1) 

which has t-distribution with ( )1n −  degrees of freedom when 0 1 2:H µ µ=  is 
true. 

On the other hand, the null hypothesis of equality of variances (equality of 
precisions) is tested using the statistic: 
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( )2 2

1 2

2
1 2 12

2

2 1
v

n S S
z

S S ρ

− −
=

−
 (2)  

which has t-distribution with ( )2n −  degrees of freedom when 2 2
0 1 2:H σ σ=  

is true. 
Earlier, Wilks [11] [12] suggested tests of equality of correlated means and 

correlated variances using the statistic: 

 
( )

( ) ( )

2 2 2
1 2 12

2 2
12 12

1

1 1mp

S S
Z

S S C

ρ

ρ ρ

−
=

 + − + 
 (3) 

where 

2 2 2
1 2

1
2

S S S = +   

( )1
2

2 2C X X= −  

Then ( ) ( )
2
22log ~mvZQ X−= . 

2.2. Example 

We apply the methodology presented in this paper on Serum Alanine amino- 
transferase (ALT). The ALT is a critical parameter for both the assessment and 
follow-up of patients with liver disease. Therefore, establishing the repeatability 
and the precision of ALT measurements as a diagnostic marker is of paramount 
importance. Regardless of gender or body mass index (BMI) [13], the normal 
range was most often estimated from a population that included patients with 
subclinical liver disease, including non-alcoholic fatty liver disease (NAFLD), 
which is now documented as the greatest prevalent cause of chronic liver disease 
worldwide [14]. Recent studies have recommended establishing normal ranges 
for ALT separately in males and females [15]. 

In a large tertiary hospital-based registry, the available data were collected 
from 30 males. The ALT levels were evaluated twice, once in the department of 
laboratory medicine (rate 1, and the values are denoted by 1iX ) and once by the 
department of pathology (rater 2 and the values are denoted by 2iX ). 

Rater 1: Department of laboratory medicine.  
Rater 2: Department of pathology. 
ALT1<-c (6, 6, 67, 97, 57, 63, 55, 192, 212, 182, 317, 303, 62, 64, 64, 54, 54, 67, 

68, 135, 68, 191, 262, 151, 70, 75, 76, 5, 6, 61, 74). 
ALT2<-c (8, 8, 69, 99, 59, 63, 57, 191, 211, 184, 319, 305, 64, 66, 66, 56, 56, 69, 

70, 137, 70, 193, 261, 153, 72, 77, 78, 5, 8, 63, 73). 
The ALT data has the following summary statistics: 

1 2 1 2106.967, 108.500, 81.91, 81.56X X S S= = = =  and 12 0.999ρ = , and the 
sample size 30n = . 

Therefore 

7.686 and -value 0.00001,mZ p= − =  

This means that the hypothesis of the two raters are not unbiased relative to 

https://doi.org/10.4236/ojepi.2024.141005


M. M. Shoukri 
 

 

DOI: 10.4236/ojepi.2024.141005 60 Open Journal of Epidemiology 
 

each other is supported by the data. On the other hand:  
1.82, -value 0.078pZ p= =  

This means that the two raters are equally precise. 
The omnibus test of equality of the two means and the two variances is: 

0.469mpZ = , and Q = 1.52, with p-value = 0.468, and we Therefore, we accept 
the hypothesis that the two raters are unbiased relative to each other and are 
equally precise. In addition to the fact that 12ρ  is quite high we may be tempted 
to conclude that there is strong agreement between the two raters. This conclu-
sion is flawed since the two raters are not unbiased relative to each other. 

3. Bland & Altman’s and Bradley-Blackwood (1989)  
Methodologies 

Bradley-Blackwood [4] proposed using the F-statistic for testing the significance 
of the simple regression parameters in order to assess agreement between the 
two raters. Here we summarize their methods. 

Let 1 2y x x= − , and ( )1 2
1
2

x x x= + . 

From the multivariate normal theory, the regression of y on x is given by the 
conditional expectation: 

 [ ] ( )| y
y xy x

x

yE x x
σ

µ ρ µ
σ

= + −  (4) 

Moreover, 

 [ ] ( )2 2var | 1y xyy x σ ρ= −  (5) 

The regression Equation (4) has parameters that can be easily expressed as 
functions of bivariate norma parameters BVN ( 2 2

2 1 2 12, , , ,µ µ σ σ ρ ) where BVN 
stands for bivariate normal: 

Form the algebra of bivariate normal distribution we have: 

( ) 1 2yE y µ µ µ≡ = −  

( ) 2 2 2
1 2 12 1 2var 2yy σ σ σ ρ σ σ≡ = + −  

( ) ( )1 2
1
2xE x µ µ µ≡ = +  

( ) 2 2 2
1 2 12 1 2

1var 2
4xx σ σ σ ρ σ σ≡ = + +   . 

We can also show that the correlation between x and y is given by: 

 ( )
( )

2 2
1 2

1 222 2 2 2 2
1 2 12 1 2

corr ,
4

xy x y σ σ
ρ

σ σ ρ σ σ

−
≡ =

 + −  

 (6)  

We also note that: 

 
( )

( )

22 22
1 2

2 2 2 2
1 2 121 4 1

xy

xy

σ σρ
ρ σ σ ρ

−
=

− −
 (7) 
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The quantity in (7) mimics the effect size, or the non-centrality parameter 
which is usually used to evaluate the power of the test of significance on the re-
gression parameters when the null hypothesis does not hold. Writing Equation 
(4) in a simple linear regression format we get: 

 [ ] ( )| xE y x xα β µ= + −  (8) 

Comparing (4) and (8) we have: 

 1 2α µ µ= −  (9)  

 y
xy

x

σ
β ρ

σ
 

=  
 

 (10) 

In terms of the bivariate normal population parameters we can write: 

 
( )

( )

1 22 2 2 2
1 2 1 2 12 1 2

1 22 1 22 2 2 2 2 2 2
1 2 12 1 2 1 2 12 1 2

2 2

4 2

σ σ σ σ ρ σ σ
β

σ σ ρ σ σ σ σ ρ σ σ

 − + − =
   + − + +   

 (11)  

As can be seen from (8), that the two raters are deemed unbiased relative to 
each other whenever:  

1 2 0α µ µ= − = . 

That is when the intercept of the linear regression equation is 0. From Equa-
tion (11) the slope of the regression model β is identically 0, when 2 2

1 2σ σ= , that 
is when the two raters are equally precise. Hence, testing the null hypothesis: 

2 2
0 2 1 2: 0 0H µ µ σ σ− = − = ,  

is equivalent to testing: 

 0 : 0 0H α β= =  (12) 

We shall test this hypothesis against the general alternative: 

1 1 1: 0 0H α α β β= ≠ = ≠ . 

The analytic expression of the statistic used to test the omnibus null hypothe-
sis (12) is given by Equation (13) and was derived by [16] given in: 

 ( )2 2 2 2
2

ˆ ˆˆ ˆ2
ˆ2 x

y

nF x S xα αβ β
σ

 = + + +   (13) 

The elements of the R. H. S. of (13) are:  
2
x xS SS n=  

 ( )22 1ˆ
2y y xy xSS SS SS

n
σ  = −  −

 (14) 

1

1 n

i
i

x x
n =

= ∑  

( )2

1

n

x i
i

SS x x
=

= −∑  

ˆ
xy xSS SSβ =  
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( )( )
1

n

xy i i
i

SS x x y y
=

= − −∑  

and 
ˆˆ y xα β= − , 

where n is the sample size. 
In the context of agreement between two raters Bland and Altman [2] pro-

posed a graphical plot, whereby the horizontal axis represents the subjects mean  

of the two measurements taken by each of the two raters ( )1 2
1
2

x x+  and the  

vertical axis represents the difference 1 2y x x= − , between the two ratings for 
each individual. Bartko [3] recommended that in agreement studies where mea-
surements are reported on the continuous scale both graphical and ANOVA of 
regression be used as a formal test on the absence of bias of ratings and equal 
precision. 

The null hypothesis is rejected when the test statistic: 
Exceeds the critical value of the 2, 2nF − , That is 0H  is rejected at a signific-

ance level α  if 

,2, 2nF Fα −> , 

where ,2, 2nFα −  is the upper ( )1 100α−  percentile of the 2, 2nF −  distribution. 
When the null hypothesis is not supported by the data, then the non-null dis-

tribution of the test statistics is that of a non-central F-distribution ( )2 , 2,F n λ−  
with non-centrality parameter λ , is 

 
( )( )2 2 2

1 1 1
2

x

y

E xα β β σ
λ

σ
+ +

=  (15) 

The elements of λ  are given by: 

1 2α µ µ= −  

( ) ( )1 2
1
2

E x µ µ= +  

1 22 2
1 2 12 1 22yσ σ σ ρ σ σ = + −   

1 22 2
1 2 12 1 2

1 2
2xσ σ σ ρ σ σ = + +  , 

and  

1
y

xy
x

σ
β ρ

σ
= . 

The power of the test statistic or the probability of the false hypothesis is 

[ ]2 21 , , , ,rP F Fα ν λ ν α− = >  

with 2nν = −  being the degrees of freedom of the denominator of the F statis-
tic. 

We propose the following flowchart (Figure 1) to guide the testing of agree-
ment. 
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Figure 1. The sequential approach to report continuous scale agreement results. 
 

We illustrate the methodology using biological data given in example 1. 
Example 1 continued: Unified approach to testing agreement using the ALT 

data: 
We have two data sets of ALT measurements from the same 30 subjects. We 

shall use R to plot Bland and Altman levels of agreement and use ANOVA to 
analyze the simple linear regression of the pair-wise difference on the pair-wise 
average. 

df=data.frame(ALT1,ALT2) 
x1=as.numeric(df$ALT1) 
x2=as.numeric(df$ALT2) 
df=data.frame(x1,x2) 
head(df) 
df$x=(df$x1+df$x2)/2 
df$y=df$x1-df$x2 
N=nrow(df) 
N 
Analysis: 
Step 1: Bland and Altman graphical representation (R code) 
ssy=N*var(df$y) 
ssy 
ssxy=sum((df$x-mean(df$x))*(df$y-mean(df$y))) 
ssxy 
ssx=N*var(df$x) 
ssx 
sig=(ssy-(ssxy^2/ssx))/(N-2) 
sig # residual sum of squares 
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library(ggplot2) 
library(sadists) 
df$x<-rowMeans(df) 
df$y<-df$x1-df$x2 
head(df) 
cor(df$x,df$y) 
mean_diff<-mean(df$y) 
lower<-mean_diff-1.96*sd(df$y) 
lower 
upper<-mean_diff+1.96*sd(df$y) 
upper 
lower<-mean_diff-1.96*sd(df$y) 
lower 
upper<-mean_diff+1.96*sd(df$y) 
upper 
ggplot(df,aes(x=x,y=mean_diff))+ 
geom_point(size=5)+ 
geom_hline(yintercept=mean_diff)+ 
geom_hline(yintercept=lower, color=“red”,linetype=“dashed”)+ 
geom_hline(yintercept=upper, color=“red”,linetype=“dashed”)+ 
ggtitle(“Bland-Altman Plot”)+ 
ylab(“Difference Between X1 and X2”)+ 
xlab(“Average X1 and X2”) 
From Figure 2, one may conclude that there is strong agreement between the 

two sets of reading since all the points fall within the limits of agreements. 
Step 2: Testing for agreement using the ANOVA of regression and setting the 

Type I error rate at 25%. 
Residual standard error: 1.032 on 28 degrees of freedom. 
Anova of Regression: 
Table 1 provides the results of the regression analysis produced by R, and ta-

ble 2 summarizes the ANOVA results of the regression model.  
 
Table 1. The results of the regression of the difference “y” on the pairwise mean “x”. 

 
Estimate Std. Error t value Pr (>|t|) 

(Intercept) −1.99848 0.313822 −6.368 6.83E−07 

df$x 0.005784 0.003121 1.853 0.0744 

 
Table 2. The results of the ANOVA of regression. 

 
Df Sum Sq Mean Sq F-value Pr (>F) 

df$x 1 3.6566 3.6566 3.4346 0.07441 

Residual 28 29.8101 1.0646 
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Figure 2. Bland and Altman’s plot of the ALT dada. 
 

The results of the hand calculation of the F-statistic and the corresponding 
p-value: 

error=sum((df$y-predict(model_test))*(df$y-predict(model_test))) 
MSE=error/(N-2) 
total=sum((df$y-mean(df$y))*(df$y-mean(df$y))) 
reg=total-error 
MREG=reg/2 
F_full model=MREG/MSE 
F_full model = 1.717 which is identical to F-ANOVA/2 = 3.436/2 
SSE_full model = 29.8 
Error mean square = 29.8/28 = 1.113 
When we use any of the statistical program available in R, SAS or SPSS, we 

obtain exactly the same output shown in Table 1 and Table 2. The correct value 
of the F statistic is 1.717. This can be verified by direct calculation of F from the 
analytic expression in (13).  

Therefore, the F-statistic and the corresponding p-value produced by the 
software are not correct. We can then obtain the correct p-value using the func-
tion: 

p_value=pf(1.717, 2, 28, ncp=0, lower.tail = FALSE, log.p = FALSE) 
p_value= 0.198 
Based on the above p-value of the global test of agreement, one may conclude 

that there is agreement between the two sets of ALT measurements. 
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However, when we examine the equality of precisions and the equality of 
means separately we get different conclusions. It is of interest now to see if the 
two methods are equally precise. 

That is we would like to test the hypothesis 2 2
01 1 2:H σ σ= , or equivalently:  

01 : 0H β = . 

To test this hypothesis, we fit a regression model, without intercept, where the 
dependent variable is the difference (y) and the independent variable is the mean 
of two observations per subject (x). The R code to fit a linear model without in-
tercept is given as: 

model_noint=lm(df$y~0+df$x,data=df) 
summary(model_noint) 
The R-output of the regression model without intercept: 
Analysis of Variance Table 
Residual standard error: 1.586 on 29 degrees of freedom. From the ANOVA 

table, the F-statistic: 12.32 on 1 and 29 DF, p-value: 0.001483. 
We need to pay close attention to the results of Table 3 and Table 4. Analyti-

cally, the residuals sum of squares carries 28 degrees of freedom not 29 as was 
given by the R-output. Hence the Residual mean square = 72.986/28 = 2.6066. 
This means the F-statistic and the corresponding p-values are not correct. There-
fore, the Residual mean square is 2.6066, and the F-statistic = 31.042/2.6066 = 
11.898. Consequently the p-value of the ANOVA test on the hypothesis of 
equality of precisions is:  

p_value=pf(11.898, 1, 28, ncp=0, lower.tail = FALSE, log.p = FALSE).  
p_value= 0.0018. We conclude then that the two methods are not equally pre-

cise. 
We now proceed to test the hypothesis that the two methods are unbiased rel-

ative to each other. That is to test 02 2: 0H µ µ− = , or equivalently to test 

02 : 0H α = . We use R to test for the significance of the intercept, using a regres-
sion model that does not have a slope parameter: 

model_noslo=lm(df$y~1,data=df) 
summary(model_noslo) 
anova(model_noslo) 
anova(model_noslo) 

 
Table 3. The output of the regression model without intercept coefficient. 

 
Estimate Std. Error t value Pr (>|t|) 

df$x −0.01011 0.002881 −3.51 0.00148 ** 

 
Table 4. ANOVA of the regression model that has no intercept parameter. 

 
Df Sum Sq Mean Sq F-value Pr (>F) 

df$x 1 31.014 31.0142 12.323 0.001483 ** 

Residual 28 72.986 2.5168 
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The results of Table 5 and Table 6 need to be adjusted. We note that the re-
sidual degrees of freedom produced by either R or SAS are wrong and they are 
supposed to be (n − 2 = 28). Moreover, the results of this test cannot be accepted 
because the program fails to produce F-statistic. This was also the case when we 
used the SAS program.  

It is recommended to test the hypotheses of the absence of relative bias using 
the paired t-test on the original data (x1, x2). 

PAIRED-T-TEST as an alternative to testing of relative unbiasedness:  
t = −7.5692, df = 30, p-value = 1.934e−08. 
Alternative hypothesis: the true mean difference is not equal to 0. 
95 percent confidence interval: 
−1.884241 −1.083501. 
That is the two raters are not unbiased relative to each other. Similar to the 

results of Wilk’s asymptotic test. 
As we can see there is a contradiction between the results based on the omni-

bus test, where the agreement was confirmed and the results based on the indi-
vidual tests on the components of agreements. However, this contradiction can 
be resolved if we a-priori declare that agreement is declared if the p-value of the 
omnibus F-statistic exceeds 25%.  

Example 2: Agreement between two sets of “Area under receiver operating 
characteristics” AUROC: 

Accurate diagnosis of a disease is in many situations the first step toward its 
therapy. The performance of a diagnostic test is commonly compared to an in-
fallible or reference test usually called a “gold standard”, then measured by a pair 
of indices such as sensitivity (Se) and specificity (Sp). Sensitivity is defined as the 
probability of testing positive given a person is diseased, and specificity is de-
fined as the probability of testing negative given a person is disease-free. Other 
frequently used indices include positive and negative predictive values (PPV and 
NPV), and positive and negative diagnostic likelihood ratios (LR+ and LR−). 
PPV is defined as the probability of being diseased given a positive index test 
result, and NPV is defined as the probability of being disease-free given a nega-
tive index test result. An important measure of diagnostic accuracy which com-
bines both sensitivity and specificity is the Area under the Receiver Operating 
Characteristics curve, (AUROC).  
 
Table 5. Fitting linear regression model without slope parameter. 

 
Estimate Std. Error t value Pr (>|t|) 

(Intercept) −1.5333 0.1961 −7.818 1.27e−08 *** 

Residual standard error: 1.074 on 29 degrees of freedom 

 
Table 6. Analysis of variance Table of the linear model without slope parameter. 

 
Df Sum Sq Mean Sq F-value Pr (>F) 

Residuals 29 33.467 1.154 
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One of the diagnostic tools that we intend to measure diagnostic accuracies 
combined with various studies is the FibroScan. Fibroscan is the name of a 
medical device used to help determine the health of a patient’s liver. The term 
FibroScan, which is often confused for “fiber scan,” “fibro scan” or even “fibro 
liver scan,” is also used to refer to the FibroScan liver test itself. If the physician 
is recommending a FibroScan of the liver, the likely reason is to assess the health 
of the liver and detect liver fibrosis, which can indicate the presence and extent 
of liver damage or liver disease. FibroScan uses advanced ultrasound technology 
called transient elastography to measure liver stiffness.  

The diagnostic accuracy parameters of the non-invasive tests were estimated 
by comparison with liver biopsy used as the gold standard. Our aim here is to 
provide a methodology to confirm the agreement between the set of AUROC 
reported in 2006 to that reported in 2008 [17] [18]. 

One should note that the measurements are in the interval ( )0,1x∈ . To ana-
lyze this type of data it is recommended to start by applying a variance stabiliz-
ing transformation. For this type of data, the commonly used transformation is 
the ( )1sinu x−= . In this case, var(u) = ¼. This means that, for this type of data 
and after applying the variance stabilizing transformation the two raters are 
deemed to be equally precise. We also recommend that if the data are reported 
as count, the square root transformation should be applied to the data in order 
to stabilize the variance.  

The summary statistics of the transformed data given in Table 7 are: 
mean(AUROC_a) =0.969, var(AUROC_a)= 0.041. 
mean(AUROC_b) = 0.971, var(AUROC_b) = 0.044, and 

cor(AUROC_a,AUROC_b)= 0.988 
In Figure 3, we show the Bland-Altman plot. 
R-code: 
model1<-lm(df$diff~df$avg,data=df) 
summary(model1) 
The results of the omnibus tests are given in Table 8 and Table 9. The actual 

F statistic is 1.175/2 = 0.587. To find the correct p-value we use R: 
p_value=pf(0.587, 2, 18, ncp=0, lower.tail = FALSE, log.p = FALSE) = 0.566 

 
Table 7. Data of the AUROC. 

AUROC measurement in 2006 

AUROC_a = c (0.57, 0.39, 0.64, 0.81, 0.85, 0.67, 0.33, 0.80, 0.57, 0.39, 0.64, 0.81, 
0.85, 0.67, 0.33, 0.80, 0.91, 0.81, 0.85, 0.67) 

AUROC_a=asin(sqrt(AUROC_a)) 

AUROC measurement in 2008 

AUROC_b = c (0.58, 0.34, 0.61, 0.85, 0.82, 0.69, 0.35, 0.82, 0.58, 0.34, 0.61, 0.85, 
0.82, 0.69, 0.35, 0.82, 0.90, 0.82, 0.86, 0.69) 

AUROC_b=asin(sqrt(AUROC_b)) 
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Figure 3. Bland and Altman plot for the AUROC data. 
 
Table 8. Regression output for the AUROC dada. 

 
Estimate Std. Error t value Pr (>|t|) 

(Intercept) 0.03605 0.03620 0.996 0.333 

df$avg −0.03962 0.03655 −1.084 0.293 

 
Table 9. Analysis of Variance of the regression model table given in Table 8. 

 
Df Sum Sq Mean Sq F-value Pr (>F) 

df$avg 1 0.001263 0.0012626 1.1753 0.2926 

Residuals 18 0.019338 0.0010743 
  

 
Therefore, we may conclude that there is agreement between the two sets of 

ratings since the p-value exceeds the 0.25.  
## MODEL NO INTERCEPT: Test for equality of precisions. 
model2<-lm(df$diff~0+df$avg,data=df) 
summary(model2) 
anova(model2) 
lm(formula = df$diff ~ 0 + df$avg, data = df) 
Again, we must caution against using the residual degrees of freedom as given 

in R output. The correct degrees of freedom are in fact = 18. Therefore, the F 
statistic has F distribution with numerator and denominator degrees of freedom 
(1, 18), and not as shown in Table 10 and Table 11. Hence the correct p-value is 
obtained using the following R code.  
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Table 10. Output of model without intercept to test equality of precisions. 

 
Estimate Std. Error t value Pr (>|t|) 

df$avg −0.003980 0.007398 −0.538 0.597 

 
Table 11. The ANOVA table for the model without intercept. 

 
Df Sum Sq Mean Sq F-value Pr (>F) 

df$avg 1 0.000311 0.0003108 0.2894 0.5968 

Residuals 19 0.0204030 0.0010738 
  

 
p_value=pf(0.2894, 1, 18, ncp=0, lower.tail = FALSE, log.p = FALSE) = 0.597. 
The equality of variances should come as no surprise since the variance stabi-

lizing transformation produced constant variance = 1/4 for both raters. 
Similar to example 1, the ANOVA analysis of the regression without slope 

does not produce F statistics which are shown in Table 12 and Table 13. We can 
test the equality of means of two sets of measurements using the paired t-test: 

t.test(A,B, paired=TRUE) 
Paired t-test results are summarized as follows: 
t = −0.32361, df = 19, p-value = 0.7498, alternative hypothesis: true mean dif-

ference is not equal to 0. The 95 percent confidence interval (−0.01779321, 
0.01302792) with mean difference = −0.002382647. 

Note that the p-value associated with the paired t-test is identical to the 
p-value produced by the regression model without slope. 

Other asymptotic tests for equality of precision and absence of relative 
bias: 

Let SSEs define the residuals sum of squares at the model with no slope, SSEi 
to define the residuals sum of squares at the model with no intercept, and SSEg 
to define the residuals sum of squares for the full regression model. We can 
avoid the incorrect assignment of degrees of freedom by the software and use an 
asymptotic approach suggested in [19]. If we define the two tests as:  

Test_1(testing of equal precision): 
Q1= n.[Log(SSEs) - Log(SSEg)] ≥ chis-square(1,1-α),  
then we reject the hypothesis of equal precision.  
Test_2 (testing of no interrater bias):  
Q2= n.[ Log(SSEi) - Log(SSEg)] ≥ chis-square(1,1-α),  
then we reject the hypothesis of absence of bias  
The results of the three models are summarized in the following table. 
Full model No intercept (test of equal precision) No slope (test of unbiased-

ness):  

0.0193gSSE =  0.0204sSSE =  0.0206iSSE =  

For the AUROC data, Q1 = 1.1086, and Q2 = 1.3037. The Chis-square(1,1-α) 
= 3.8414. 
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Table 12. Model without slope to test of absence of bias. 

 
Estimate Std. Error t value Pr (>|t|) 

(Intercept) −0.00238 0.007363 −0.324 0.75 

 
Table 13. ANOVA of the regression. 

 
Df Sum Sq Mean Sq F-value Pr (>F) 

Residuals 19 0.0206 0.001084 
  

 
Therefore, we reach to the same conclusions that both raters have equal preci-

sion, and they are unbiased relative to each other. In other words, there is high 
agreement between the two raters. 

The issue of sample size within the context of agreement 
At the early stage of designing any clinical investigation one has to decide on 

the number of subjects to enroll in the study to ensure validity and generalizabil-
ity. In this section we shall use the R package to find estimates of the sample 
sizes for the three situations discussed. 

1) Sample size estimation to test the null hypothesis: 

0 : 0 0H α β= =   

against the general alternative hypothesis: 

1 1 1: 0 0H α α β β= ≠ = ≠ . 

We shall base the estimation on the usage of the ANOVA F-statistic. We use 
the R function (pwr.f2.test) which requires specifying the Type I error rate, the 
power, the numerator degrees of freedom of the F-statistic (u = 2), and the value 
of the non-centrality parameter λ given in (15) which is denoted by f2 in the R 
language. Cohen [20] demonstrated that the sample size needed for regression 
analysis depends on the chosen value of λ, which depends on the non-null values 
of the regression parameters. Values of λ around 20, are considered low, 35 is 
medium, and 50 is considered high. 

Using the results of the AUROC example as the values for the regression pa-
rameters, we get f2 = 0.232. We force the degrees of freedom of the numerator of 
the F-statistic u to be equal to 2. Therefore, for type I error rate =0.05, and power 
0.80, we can use the function “pwr.f2.test” to determine the number of degrees 
of freedom of the denominator of the F-statistic v. Since the sample size = de-
nominator degrees of freedom +2, we get the following results: 

library (pwr) 
pwr.f2.test(u=2, f2=0.232, sig.level=0.05, power=0.80) 
u = 2 (numerator degrees of freedom of the F statistic) 
v = n - 2 = 41.66 (denominator degrees of freedom of the F-statistic) 
Hence, sample size n= round(v) + 2 = 44. 
2) Sample size requirements for testing equality of precisions, or testing the 

null hypothesis 2 2
0 1 2:H σ σ= , or equivalently 01 : 0H β = , (see Equation (11)), 
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against the general alternative:  
2 2

02 1 2:H σ σ≠ . 

Note that to test the equality of precision we used the F-statistic of the 
ANOVA of the regression model without intercept. The numerator degrees of 
freedom are u = 1, and the denominator degrees of freedom are v = n - 2. If we 
arbitrarily select the effect size or the non-centrality parameter f2 = 0.20, the 
R-code for sample size is therefore:  

pwr.f2.test(u=1, f2=0.2, sig.level=0.05, power=0.80). 
We get v = 39.25602. Hence the sample size is: 

( )round 39.256 2 41n = + = . 

3) Sample size requirement to test the absence of bias. 
As we have indicated, to test the hypothesis that the two raters are unbiased 

relative to each other is equivalent to testing 0 1 2:H µ µ=  against 1 1 2:H µ µ≠ . 
We indicated that the ANOVA regression does not produce F-statistic, we 

tested the equality of correlated means using the paired t-test. The R function 
can still be used under different parameters set-up. For example, the meaning 
difference that we need to detect is denoted by “d”. Therefore, for power = 0.80, 
and level of significance = 0.05, the code is: 

pwr.t.test(d=.2,power=0.8,sig.level=0.05,type=“paired”,alternative=“two.s
ided”) 

n = 198, which is the number of required subjects or a number of pairs. 

4. Discussion 

Statistical analyses of measurement of the agreement are presented both graphi-
cally and analytically There is a great deal of research on the subject of agree-
ment, but to our knowledge, there is no document focusing on a unified ap-
proach to the numerical evaluations and reporting of agreement studies in the 
medical field [21] [22]. The fundamental aim of our research was to provide a 
unified and robust approach to properly estimate and test agreements within 
healthcare settings. It is not out of place to mention that Hayes et al. [16] 
claimed that the omnibus F-statistic reported in the ANOVA of the regression 
model which has a numerator and denominator degrees of freedom given re-
spectively as (2, n − 2) is the average of the two F-statistics each with (1, n − 2) 
degrees of freedom. Due to lack of mathematical rigor we did not use their re-
sults.  

5. Conclusion 

We have proposed specific guidelines to report the results of testing related to 
agreement studies. The guidelines are broadly useful and applicable to most di-
agnostic issues. To properly report the results, the user may use standard statis-
tical packages such as SAS, R, and SPSS. However, proper adjustment to the re-
sults reported by the packages is needed. We have outlined the appropriate tech-
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niques to ascertain the agreement of paired numerical data sets when assessing 
agreement is the subject of interest. We also provided two worked examples to 
illustrate these techniques, and we also provided the complete R [23] codes 
which may be readily used for data analyses of similar studies.  
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