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Abstract 
This study explores the diversity and structure of prokaryotic communities 
(Archaea and Bacteria) of 2 tropical volcanic lakes (Nyos and Monoun) in 
Cameroon, using 16SrRNA sequences. Metagenomics analysis of sequences 
showed that most OTUs (Operational Taxonomic Units) were associated 
with 26 phyla (23 for Bacteria and 3 for Archaea) in Nyos and 36 phyla (33 
for Bacteria and 3 for Archaea) in Monoun. In both lakes, Proteobacteria for 
Bacteria and Crenarchaea for Archaea were predominant and present at all 
depths but in different proportions. Bacterial community compositions were 
generally dominated by members of Proteobacteria, Firmicutes, Actinobacte-
ria, Chloroflexi and Bacteroidetes covering about 98% of the sequences. Cre-
narchaea, Thaumarchaea and Euryarchaea were the three main phyla of Arc-
haea common to both lakes. The amount of virus and total bacteria was de-
termined by flow cytometry technic and the evaluated ratio ranged from 0.2 
to 1.2 at Nyos and from 0.6 to 2.6 at Monoun. For both lakes, the correlation 
was very significant between viruses and total bacteria. The depth-dependent 
variability is discussed with chemical and physical environmental parameters. 
These could significantly influence virus-mediated bacterial lysis and abun-
dance and vertical stratification of the prokaryotic community. 
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1. Introduction 

Crater lakes are strongly influenced by volcanic or post-volcanic activities due to 
their position, act as chemical traps for magmatic volatiles. The Eruption can 
happen if high gas fluxes from magma find favourable conditions for gas accu-
mulation into lake waters, gaseous. Lakes Nyos and Monoun (Cameroon) and 
Kivu (Republic Democratic of Congo) are the only three crater lakes in the Af-
rica known to be rich in dissolved CO2 [1]. Catastrophic CO2 outgassing oc-
curred on 15th August 1984 at Lake Monoun and on 21st August 1986 at Lake 
Nyos, killing 37 and 1746 people, respectively [2] [3] [4] [5]. From these two 
dramatic events the attention on these killer lakes has increased. 

Until now, scientific researches on these two lakes have mainly focused on the 
age of the gases at the origin of the disaster, the reverse of the CO2 supersatu-
rated hypolimnion [6] [7], the composition and concentrations of the phys-
ico-chemical elements [1], the escape chronology of gases, the presence of iso-
topes and rare gases [8], and the degassing process [9]. In the two lakes, data on 
biological communities, mainly those on microbial assemblages are scarce, with 
no interest regarding the communities of viruses. Bacterial and archaeal com-
munities of these two lakes were only recently considered by Tiodjio et al. [10] 
[11]. Using a molecular method, these authors highlighted the vertical distribu-
tion of bacterial communities and Archaea in Lakes Nyos and Monoun. They 
concluded that Lake Nyos is mostly colonized by Proteobacteria for Bacteria and 
by Thaumarcheota for Archaea [10], while in Monoun, the retrieved sequences 
were affiliated to 6 bacterial phyla dominated by Proteobacteria and to 2 ar-
chaeal phyla: Euryarchaeota and Thaumarchaeota [11]. Nyos and Monoun are 
meromictic lakes where the water masses are permanently stratified into layers 
that do not interact with each other [12]. 

Prokaryotic communities are well known as critical players in the cycling of 
energy and matter in aquatic systems, and in the related biogeochemical proc-
esses [13] [14] [15]. However, there is still a controversy about the mechanisms 
regulating bacterial production. Two major mechanisms controlling bacterial 
production have been proposed, the top-down grazing by protozoans [16], and 
the bottom-up availability of resources [16] [17]. Recent findings indicate that 
viral lysis is a further key top-down factor in the microbial food web [18] [19] 
[20]. Viruses are now considered to constitute an important component of 
aquatic microbial communities. They have been shown to be the most abundant 
biological entities in the plankton, where they play a crucial role in bacterial 
mortality and diversity [21] [22] [23]. Typically, viral infections are responsible 
for 20% - 50% of daily prokaryotic mortality, and they are a major source of 
dissolved organic matter [24] [25] [26]. 

In this study, we sampled the water column of Lake Nyos and Monoun and 
analysed viral communities with their potential prokaryotic hosts. We had four 
objectives: 1) analyze the diversity of prokaryotes (Bacteria and Archaea) by high 
throughput sequencing; 2) evaluate and compare the total abundances of pro-
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karyotes and viruses using flow cytometry 3) study the vertical distribution of 
both communities; and 4) correlate these microbiological data with phys-
ico-chemical parameters in order to understand the putative influence of abiotic 
variables on the abundance and community structure of prokaryotes and vi-
ruses. 

2. Study Methods 
2.1. Study Area 

Lakes Nyos and Monoun are volcanic crater lakes, located respectively in the 
Wum sub-division at the Northwest region and in the Noun sub-division at the 
West region of Cameroon. Both regions are located within the Oku volcanic 
field, along the Cameroon Volcanic Line (CVL) which runs from the Atlantic 
Ocean to the interior of Cameroon (Figure 1) [27]. The volcanism of the CVL is 
mostly basaltic and is about 4000 years old [28]. Lake Nyos (06˚26'23.0"N and 
10˚18'02.3"E) is a circular maar, approximately 230 m deep with a surface area of 
1.58 km2 [29] (Figure 2). Its water column can be divided into four layers sepa-
rated from each other by an upper and a lower chemocline, including three 
mixolimnic layers, i.e. epilimnion (between 0 and −55 m); metalimnion (from 
−55 to −180 m), and hypolimnion (extends from −180 to −200 m), and the deep 
monimolimnion (from −200 m to the bottom of the lake). Just like Lake Nyos, 
Lake Monoun (Figure 2) (05˚35'N and 10˚35'E, the surface area of 0.31 km2) is 
also a meromictic lake with similar layers: epilimnion (0 to −25 m), metalimnion 
(−25 to −55 m), hypolimnion (−55 to −100 m), and the deep monimolimnion 
(from −100 m to the bottom of the lake) [1] [9] [30]. 

2.2. Sampling 

The water samples were collected during the dry season in April 2015 in Lake 
Nyos and November 2016 in Lake Monoun. Water samples were collected using 
a horizontally-positioned 10 L Van Dorn bottle at 13 different depths in Lake 
Nyos and 10 depths in Lake Monoun. For each lake-water sample, 1 L was 
transferred to polyethylene bottle to measure chemical parameters. Simultane-
ously, 10 mL of sample were fixed with 0.2 mL of paraformaldehyde (PFA buffer 
1%) for analysis of microbial abundances. The samples were kept at 4˚C. Pro-
karyotic DNA was collected from 200 mL filtered on 0.2-μm-pore-size polycar-
bonate filters (Sartorius) for Bacteria and on 0.45 µm pore-size cellulose acetate 
(Whatman) for Archaea and stored at 4˚C until nucleic acid extraction. 

2.3. Physicochemical Parameters 

Water Hydrogen potential (pH) was determined using a pH-meter (SCHOTT-CG 
818). Ammonium ( +

4NH ), Nitrite ( 2NO− ), Sulfate ( 2
4SO − ), Salinity, Suspended 

Solids, Total Dissolved Solids (TDS), Electrical Conductivity (EC), Turbidity, 
Resistivity, Color and Redox Potential were analyzed spectrophotometrically 
using a HACH DR/2800® multifunction machine, according to APHA [31]. 
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Figure 1. Location of lakes Nyos and Monoun along the CVL together with other vol-
canic lakes in Cameroon [27]. 
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Figure 2. View of part of Lake Nyos (a) and (b) and Lake Monoun (c) and (d). 

2.4. Abundances of Viruses and Prokaryotes 

Abundances of prokaryotes and viruses were determined using a FACS Calibur 
flow cytometer (Becton Dickinson) equipped with an air-cooled laser providing 
15 mW at 488 nm with the standard filter set-up as described by Marie et al. [32] 
[33] [34]. Briefly, samples were diluted with 0.2 μM prefiltered TE buffer (10 
mM Tris-HCL and 1 mM EDTA, pH 8) and stained with SYBR®Green I (10,000 
fold dilution of commercial stock, Molecular Probes, Eugene, OR, USA). The 
mixture was incubated for 5 min, heated for 10 min at 80˚C in the dark and 
cooled for 5 min prior to analysis. Prokaryotes and viruses differing in fluores-
cence intensity were detected by their signature in a side scatter SSC versus 
green fluorescence plot (530 nm wave-length, fluorescence channel 1 of the in-
strument). Flow cytometry data acquisitions were analyzed using CellQuest Pro 
software (BD Biosciences, version 4.0). 

2.5. DNA Extraction, PCR Amplification of 16S rRNA Gene and  
Sequencing 

DNA extraction was performed with our previously modified protocol [35]. Fil-
ters were covered with TE 1× buffer, 60 mg of 0.1 mM Glass beads were added 
and samples were homogenized in a bead beater (3 pulses for 30 s at 30 Hz). 
Tubes were centrifuged 1 min at 600 × g and supernatant was retained. EDTA 
(0.5 M pH 8) and a lysozyme solution (final concentration 250 μg/mL) were 
added and samples were incubated at 37˚C for 30 min. Then sodium dodecyl 
sulfate (10%) and proteinase K (final concentration 100 μg/mL) were added, and 
samples were incubated at 37˚C for at least 60 min. A cetyltrimethyl ammonium 
bromide (CTAB) solution (final concentration, 1% in a 0.7 M NaCl solution) 
was added, and samples were incubated at 65˚C for 10 min. Nucleic acids were 
extracted with chloroform-isoamyl alcohol (24:1); the aqueous phase containing 
nucleic acids was kept and purified by adding phenol-chloroform-isoamyl alco-
hol (25:24:1). After isopropanol (0.6 volume) addition, the nucleic acids were 
precipitated at −20˚C for 12 h. After centrifugation, the DNA pellet was ethanol 
rinsed and suspended in 50 μL of water. The DNA yield was quantified by a 
fluorescence assay (Quant-iT Pico Green dsDNA Assay Kit), and nucleic acid 
extracts were stored at −20˚C until analysis. 
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Amplification of the V3/V4 region of the 16S rRNA was performed using the 
universal primer 515F (5’-GTGYCAGCMGCCGCGGTA-3’) and bacteria/archaea 
specific primer 909R (5’-CCCCGYCAATTCMTTTRAGT-3’) [36]. 18S rRNA gene 
was amplified with the foward universal primer 515F and the specific reverse 
primer 951R (TTGGYRAATGCTTTCGC). Primers were modified by adding bar-
codes in both cases. Each PCR was performed in a total volume of 30 μL containing 
3 μL of 10 × NH4 reaction buffer, 1.2 μL of 50 mm MgCl2, 0.15 μL of Eurobio TaqII 
(Eurobio, 5 U/μL), 0.6 μL of 10 mM of each dNTP, 0.3 μL of 50 mg/mL BSA and 1.2 
μL of each 5 μM primer. The amplification conditions consisted of initial denatura-
tion at 94˚C for 5 min followed by 30 cycles for 1 min at 94˚C, 45 s at 58˚C (Bacte-
ria and Archaea), 45 s at 55˚C (Eucaryotes) and 45 s at 72˚C, and a final elongation 
of 7 min at 72˚C. The PCR products were run on a 2% agarose gel electrophoresis, 
the amplicons were purified and concentrated using the MiniElute gel extraction 
kits (Qiagen®), and quantified using the Agilent 2200 Tape Station system and the 
D1000 Screen Tape kit (Agilent Technologies). Tagged amplicon pools were con-
structed in a concentration of 20 ng/µL for Illumina Sequencing Technology (Run 
type: Paired end-Read length: 2 × 250 bp) by GATC Biotech. 

2.6. Bioinformatic and Statistical Analysis 

The MiSEQ data were assembled with the vsearch tool  
(https://github.com/torognes/vsearch) and the sequences were cleaned as fol-
lows: sequences were removed if they presented ambiguous bases “N”, a length 
shorter than 200 bp, and had a mismatch in the forward and reverse primers. 
The putative chimaeras were detected by vsearch. The remaining rRNA 16S se-
quences were clustered into “molecular species” (OTU) at a 97% similarity thresh-
old according to Kim et al. [37] with vsearch (option cluster small sorted by 
length) and OTUs representing less than 0.005% of the total sequences were re-
moved. The representative sequence for each OTU was then inserted into phy-
logenetic trees for taxonomic annotation. The seed OTUs were affiliated by simi-
larity and phylogeny from reference sequences. These microbial references were 
extracted from the SILVA database [38] according to the following criteria: 
length > 1200 bp, quality score > 75% and a pintail value > 50. After comparing the 
OTUs with the reference sequences using a similarity approach (vsearch tool), 
trees including OTUs with their closest references were built with FastTree [39]. 
The different taxonomic affiliations obtained were checked for inconsistency. This 
process was implemented using the pipeline PANAM (Phylogenetic Analysis of 
Next-generation AMplicons https://github.com/panammeb/) [40]. Finally, 360,794 
sequences binned in 4609 OTUs were obtained for Bacteria and Archaea. Subse-
quent analyses were made with the package Phyloseq implemented under R [41]. 

3. Result 
3.1. Abiotic Variables 

The pH varied from 5.81 to 9.86 in Lake Nyos, and from 6.99 to 7.77 in Lake 
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Monoun. This high value (pH 9.86) at Nyos was observed between epilimnion 
and metalimnion. Concentrations of ammonium, nitrite, suspended solids, sa-
linity and turbidity were very low and relatively constant in both lakes. The TDS 
and EC values showed similarities, with decreased values in the epilimnion, then 
a sudden increase in metalimnion and a gradual decrease in hypolimnion. The 
maximum color values were at 67 Pt.C (Platinum-Cobalt) at 130 m depth and 
13,592 Pt.C at 122 m at Nyos and Monoun respectively. It should be noted that 
the resistivity values did not vary with depth. The values of several of these pa-
rameters were often very high in the monimolimnion (112 m) rich in sediments 
at Monoun Lake. 

For each lake, a redundancy analysis was performed between physico-chemical 
parameters and biological parameters as a function of depth. In Lake Nyos, there 
was a strong positive correlation between abiotic parameters such as suspended 
solids, 2NO− , 2

4SO − , water color, turbidity and the abundance of viruses and 
prokaryotes on the surface of epilimnion. In addition, this set of parameters was 
distinct from two other negatively correlated sets, namely (redox potential, pH 
and resistivity) and (salinity, EC, TDS and +

4NH ) (Figure 3(a)). In Monoun 
Lake monimolimnion, turbidity, suspended solids, 2NO− , 2

4SO − , and +
4NH  

were positively correlated with virus and prokaryotic abundances (Figure 3(b)). 
TDS and salinity were negatively correlated with pH, resistivity and redox po-
tential. 

3.2. Prokaryotic Community Composition 

The richness and abundance of the prokaryotic community was a bit different in 
the two lakes studied. This prokaryotic community varied according to the 
depth of the waters. Bacteria and Archaea were detected in both lakes. However, 
some groups of Bacteria and Archaea were common to both lakes. At Lake Nyos, 
26 phyla have been identified (Figure 4(a)); of which 23 for Bacteria and 3 for 
Archaea. At Monoun, a total of 36 phyla (33 for Bacteria and 3 for Archaea) 
were recorded (Figure 4(b)). 

The phylum of Proteobacteria was the most representative and relatively the 
most abundant in both lakes. Chloroflexi and Chlorobi were predominantly 
identified in the hypolimnion of both lakes. At Lake Monoun, the Firmicutes 
and Cyanobacteria were present in epilimnion and metalimnion. The Bacter-
oidetes, less abundant at Nyos, were concentrated in the hypolimnion at 
Monoun. Bacteria belonging to the class of Gammaproteobacteria, Betaproteo-
bacteria and Alphaproteobacteria were found extensively in all the depths of the 
lakes. The class of Gammaproteobacteria represented the highest proportion of 
Proteobacteria sequences. The class of Ignavibacteria, was found only at Lake 
Nyos whereas the Classes Acidobacteria, Bacilli, Clostridia, Cyanobacteria, 
Dehalococcoidia, Deinococci, Miscellaneous Crenarchaeotic Group, Plancto-
mycetacia and Sphingobacteria have not been identified in Nyos (Figure 5). 
Crenarchaea, Thaumarchaea and Euryarchaea were the three phyla of Archaea 
common to both lakes. 
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Figure 3. Redundancy analysis showing physico-chemical variables and their influence on bacterial and viral 
distribution and abundance. (a) Lake Nyos: the combination of environmental variables accounted for 78.34% 
of the total variance in bacterial abundance and viral particles; (b) Lake Monoun: the combination of envi-
ronmental variables accounted for 86.61% of the total variance in bacterial abundance and viral particles. 
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Figure 4. Richness and abundance of prokaryotes as a function of depth. (a) Lake Nyos; (b) Lake Monoun. 

3.3. Viral and Bacterial Abundance and Distribution 

In Lake Nyos, bacterial abundance was higher than viral abundance along with 
the vertical profile (Figure 6(a)). In the hypolimnion, we recorded 1.35 × 105 to 
5.20 × 105 bacterial cells per milliliter of sample and 6.60 × 104 to 3.50 × 105 viral 
particles per milliliter of sample. The mean VBR (Ratio of Viruses to Bacteria) of 
the Lake Nyos was at 0.42 (range: 0.2 to 1.2). Generally, we observed that abiotic 
parameters such as turbidity, suspended solid, color, 2NO−  and 2

4SO −  had a 
strong positive influence on bacterial and viral abundances (Figure 4(a)). 

In Monoun Lake, the dominance of viral or bacterial abundance varied with 
depth. Thus, from the surface of the lake down to 20 m, then from 40 m to 60 m, 
viruses were more abundant than total bacteria (Figure 6(b)). In the upper  
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(a) 

 

(b) 

Figure 5. Dominance of proteobacteria and variations in abundance of bacterial classes as a function of depth. (a) Lake Nyos; (b) 
Lake Monoun. 
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Figure 6. Variation of abundance of total bacteria and viruses as a function of depth. (a) Lake Nyos; (b) Lake Monoun. 

 
epilimnion, we counted more virus particles than bacterial cells, with a VBR 
ranging between 2.30 and 2.60. In the metalimnion, bacterial and viral abun-
dance were relatively high (~5.92 × 107 bacterial cells per milliliter sample and 
~3.82 × 107 virus particles per milliliter sample). In the hypolimnion, which is 
very rich in sediments, the bacterial and viral abundances were the highest 
compared to other layers of the lake. In this deep part of Monoun Lake, the VBR 
varied between 0.5 and 0.6. The redundancy analysis in these lake showed that 
the abundance of total bacteria and viruses were positively influenced by turbid-
ity, suspended solid, color, 2NO−  and 2

4SO −  (Figure 3(b)). 
By studying bacterial and viral abundance in Nyos and Monoun Lakes, we 

have observed, according to the depths, some differences. Bacterial and viral 
abundance was approximately 75-fold higher in Lake Monoun than in Lake 
Nyos. The VBR greater than 1 at Monoun Lake suggests intense phage activity 
compared to Lake Nyos. For both lakes, the correlation was very significant be-
tween viruses and total bacteria (Nyos: rho = 0.89 p-value < 2.2e−16 and 
Monoun: rho = 0.92 p-value < 1.3e−5). 

4. Discussion 
4.1. Diversity and Distribution of Prokaryote 

Our study, based on small rRNA subunit analysis, revealed the diversity and ver-
tical distribution of native prokaryotes from two tropical volcanic lakes of Cam-
eroon (Figure 4 and Figure 5). We counted 26 phyla and 36 phyla at Nyos and 
Monoun respectively. From epilimnion to hypolimnion in both lakes, the major-
ity of bacterial sequences belonged to Proteobacteria, a regularly reported ob-
servation for hypersaline and hyperalcalin lakes [42], as well as in freshwaters 
[43]. Gammaproteobacteria accounted for the largest proportion of Proteobacte-
ria sequences in Nyos and Monoun [10] [11], although they are not abundant in 
freshwater lakes [43] [44]. Alphaproteobacteria have been particularly noted in 
the epilimnion of Nyos, in the epilimnion and the metalimnion of Monoun. 
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These results are not very different from those obtained by Humbert et al. [45] 
in six tropical lakes in Burkina Faso. These authors showed a predominance of 
Cyanobacteria then Alphaproteobacteria in all the depths of the lakes studied. In 
the meantime, Deltaproteobacteria, absent from sediment-poor Lake Nyos, have 
been identified in the hypolimnion of Monoun Lake, which is very rich in sedi-
ment. This confirms the hypothesis that Deltaproteobacteria evolve mainly in 
sediment-rich benthic environments [46] [47]. Similar results were found in 
Lake Tanganyika [48] [49] and Lake Kivu [50], two meromictic lakes rich in 
sediment. In addition to the existence of the bacterial community in the two 
lakes studied, we noted the presence of a small community of Archaea. Based on 
the species richness in both lakes, a divergence between the two microbial com-
munities was revealed. Thus, according to the quantification data obtained, the 
Bacteria were numerically dominant relative to the archaea in all the samples. 
The three groups of Archaea namely Crenarchaea, Thaumarchaea and Euryar-
chaea identified are characteristic of meromictic volcanic lakes [50]. The general 
upward trend in the number of Archean genecopias with depth is consistent 
with previous results from other meromictic lakes [51]. 

4.2. Abundance and Virus-Prokaryote Potential Interactions 

In this study, an assessment of abundances of total bacteria and virus particles 
was conducted at different depths in order to understand the interactions be-
tween these two communities. From the data obtained, we can affirm the omni-
presence of total bacteria and viruses at all depths of Nyos and Monoun lakes. As 
in other aquatic ecosystems, they would be the most abundant biological entities 
in these two volcanic lakes [52] [53]. Significant correlations were revealed be-
tween viruses and total bacteria in the two lakes studied. By observing the abun-
dance variations along the two lake profiles and the VBR values, we can hy-
pothesize that most of these viruses are bacteriophages. Indeed, bacteriophages 
are responsible for much of the prokaryotic mortality [22] [52] [54]. In lakes 
Nyos and Monoun, as in other aquatic ecosystems, viruses are considered an in-
tegral part microbial communities and a significant source of bacterial mortality 
[55] [56]. According to Clokie et al. [57], viruses can mediate processes such as 
transduction, lysogenic conversion and succession of species and contribute to 
the maintenance of microbial diversity in the lakes, if this is the case for our 
studied lakes, these mechanisms would then be more accentuated in Lake 
Monoun given the richness of its species. The viral activity of Nyos and Monoun 
lakes would influence prokaryotic diversity and community dynamics by selec-
tive suppression of specific host populations [58]. Knowing that one of the main 
characteristics of the lakes we studied is their high gas content, the viruses would 
play an important role in the carbon cycle of lakes Nyos and Monoun by facili-
tating the transformation of matter and energy in microbial food webs by lysis of 
prokaryotic cells. The analysis of virus-prokaryotic interactions remains very lit-
tle studied in tropical meromictic crater lakes, especially those in Africa. 

https://doi.org/10.4236/oje.2020.109039


P.-A. Nana et al. 
 

 

DOI: 10.4236/oje.2020.109039 644 Open Journal of Ecology 
 

4.3. Relationship between Biotic and Abiotic Parameters 

Positive correlations have been observed between some abiotic parameters and 
the prokaryotic and viral communities. The vertical structuring of prokaryotes 
in Nyos and Monoun lakes is partly related to some biological interest parame-
ters such as turbidity, suspended solids, color, 2NO−  and 2

4SO − . Similar results 
have been obtained in other tropical lakes [59] [60] [50]. In general, several 
other abiotic factors that we have not been able to measure could affect the 
structure, diversity and abundance of microbial communities in Nyos and 
Monoun Lakes. This would be temperature, O2, CO2, salinity, nutrient availabil-
ity, quantity and quality of dissolved organic matter [10] [42]. In meromictic 
lakes such as the ones we studied, the pH, availability of O2 or CO2, ions and nu-
trients would significantly affect the abundance, activity and diversity of bacte-
rial and archaeal populations [61]. Our data are consistent with those of Llirós et 
al. [62] obtained on Lake Kivu, which has almost the same characteristics as 
Nyos and Monoun. Turbidity, suspended solids, and ion content ( +

4NH , 2NO−  
and 2

4SO − ) have been clearly shown to affect the stratification, size, activity, and 
diversity of bacterial populations. Thus, a change in these environmental condi-
tions changes the importance of bacterial production [61]. Such variations 
within prokaryotic communities have also been observed along salinity gradients 
[63] [64]. The limitation of bacterial growth by phosphate has been demon-
strated in different marine environments [65] [66]. The regulation of bacterial 
populations in Nyos and Monoun lakes is significantly correlated with viral 
abundance. Similar results have already been found in temperate meromictic 
lakes [23] [67]. Viral activity and bacterial regulation in Nyos and Monoun lakes 
may also vary with depth of water and sediment richness [68] [69], trophic sys-
tem [70], ion content [71], turbidity [72] and suspended particles [73]. The viral 
community present in these two lakes would have similar roles to those of other 
aquatic environments with the same characteristics. To our knowledge, the de-
tection of viral particles and the study of the virus-bacteria interaction was the 
first study of its kind on lakes Nyos and Monoun. We examined the viral and 
bacterial compartment in the different depths of the lakes in order to highlight 
differences and similarities in virus-bacterial interactions, compared to the 
widely described interactions for temperate regions. Overall, despite the gener-
ally high microbial activity observed along the Lake Nyos and Monoun profiles, 
we hypothesize that viral control of bacterial populations in these waters may 
not be as relevant as the control that has been found in lakes temperate [74]. 

5. Conclusion 

This study provided important information on the composition and structure of 
the indigenous prokaryotic community of two volcanic lakes (Nyos and 
Monoun) in Cameroon (Central Africa). We noted the predominance of Pro-
teobacteria (Bacteria) and Crenarchaea (Archaea) in both lakes. Lake Monoun 
(shallower) had higher species richness than Lake Nyos (deeper). In the lakes 
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studied, the abundance and structure of prokaryotes varied with depth and mix-
ing regimes suggesting that the predominant environmental factors in time and 
space played a crucial role in this structure. For the first time, the flow cytometry 
technique was used to quantify prokaryotes and virus particles in Nyos and 
Monoun lakes; which tells us about the virus-bacteria interactions along the pro-
file. Thus, the higher VBR in Monoun Lake would reflect intense viral activity in 
this lake relative to Nyos. For our future studies on these two historic lakes, we 
intend to focus specifically on the functional groups of the most representative 
prokaryotes and eukaryotes, on the one hand, and on the other hand on deter-
mining the identity of the viral community and its role in the microbial loop and 
gas regulation. 
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