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Abstract 
Gross primary productivity (GPP) of vegetation is a critical indicator of eco-
system growth and carbon sequestration. The  spatiotemporal variation cha-
racteristics of land vegetation GPP trends in a specific region of Asia from 
2001 to 2020 were analyzed by Sen and MK trend analysis methods in this 
study .Moreover , a GPP change attribution model was established to explore 
the driving influences of factors such as Leaf Area Index (LAI), Land Surface 
Temperature (LST), Vapor Pressure Deficit (VPD), Soil Moisture, Solar Radi-
ation and Wind Speed on GPP. The results indicate that summer GPP values 
are significantly higher than those in other months, accounting for 60.8% of 
the annual total GPP; spring and autumn contribute 18.91% and 13.04%, re-
spectively. In winter, due to vegetation being nearly dormant, the contribution 
is minimal at 7.19%. Spatially, GPP shows a decreasing trend from southeast 
to northwest. LAI primarily drives the spatial and seasonal variations of re-
gional GPP, while VPD, surface temperature, solar radiation, and soil moisture 
have varying impacts on GPP across different dimensions. Additionally, wind 
speed exhibits a minor contribution to GPP across different dimensions. 
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1. Introduction 

Terrestrial vegetation gross primary productivity (GPP) forms the foundation of 
energy flow within ecosystems. Through the process of photosynthesis, GPP 
converts solar energy into organic matter, sustaining the stability of food chains 
and food webs. It plays a crucial role in the carbon cycle and the regulation of 
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ecological processes. GPP serves as a significant indicator of carbon sequestra-
tion capability and the growth characteristics of terrestrial vegetation, providing 
a direct reflection of ecosystem health and productivity levels. 

There exists a close relationship between GPP and the spatiotemporal variations 
of vegetation phenology. This relationship is regulated by various ecological and 
climatic factors [1] [2]. Vegetation phenology, which reflects the growth and de-
velopment processes of plants, is significantly influenced by climate factors such as 
temperature, precipitation, and solar radiation. Changes in temperature and pre-
cipitation patterns induced by climate change can profoundly impact vegetation 
phenology, leading to extended or shortened growing seasons and altered growth 
stages [3]. Understanding the spatiotemporal evolution patterns of GPP is vital for 
regional sustainable development and ecological civilization construction [4]. 

Global changes, particularly marked by climate warming, have extensive and 
profound impacts on terrestrial ecosystems. The primary driver of climate 
warming is the increased emissions of greenhouse gases such as Carbon dioxide 
due to human activities [5]. The growth of terrestrial vegetation is closely linked 
to global climate changes [6]. Over the past few decades, the greening of the glob-
al surface has enhanced the carbon sink function of vegetation, slowing the rate of 
increase in global Carbon dioxide concentrations and playing a crucial role in 
climate regulation [7]. 

This study employed the Sen + MK trend analysis method to analyze the 
trends in GPP changes in a certain region of Asia from 2001 to 2020. A GPP 
change driving attribution model was established, using this model to explore 
the driving impacts of factors such as Leaf Area Index (LAI), Land Surface 
Temperature (LST), Saturation Vapor Pressure Deficit (SVPD), Soil Moisture, 
Solar Radiation and Wind Speed on GPP. The spatiotemporal variation charac-
teristics of the terrestrial ecosystem’s gross primary productivity in the study 
area were systematically analyzed, clarifying its intrinsic driving mechanisms. It 
is significant scientific implications for the formulation of ecological protection 
and restoration measures in the region. 

2. Study Region Overview, Data Sources, and Methods 
2.1. Study Region Overview 

The study region is located in a specific region of Asia, covering approximately 
395,000 square kilometers. Situated at an average elevation of over 4000 meters, 
the region is predominantly characterized by mountainous terrain. The region 
features complex topography, with widespread mountain ranges and rugged 
landscapes. Overall, the terrain gradually rises from the southeast to the north-
west, forming a pronounced uplift trend. 

2.2. Data Sources 
2.2.1. Gross Primary Productivity (GPPSIF) 
The GPP data used in this study is derived from the empirical relationship be-
tween GPP and SIF, resulting in a global GPP-SIF product at a spatial resolution 
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of 0.05˚ and a temporal resolution of 8 days for the years 2001-2020 [8]. 

2.2.2. Leaf Area Index (LAI) 
Leaf Area Index (LAI) is a critical parameter describing the extent of vegetation 
canopy coverage. It represents the ratio of total leaf surface area to the ground 
area per unit area. Data for LAI are sourced from the Moderate Resolution Im-
aging Spectroradiometer (MODIS) Vegetation Indices product MOD15A2H, 
provided by the Land Processes Distributed Active Archive Center (LP DAAC), 
which is part of NASA’s Earth Observing System (EOS). 

2.2.3. Climatic Factors 
Land Surface Temperature (LST) serves as a critical indicator of the interface 
between the Earth’s surface and the atmosphere. It directly reflects the exchange 
of energy between the land surface and the atmosphere and plays a complex role 
in the land-atmosphere interaction processes. The LST data used in this study 
are derived from the TRIMS LST (Thermal and Reanalysis Integrating Mod-
erate-resolution Spatial-seamless LST) dataset [9]. This dataset employs an en-
hanced satellite thermal infrared remote sensing-reanalysis data integration me-
thod to prepare LST data [9]. 

Wind speed is an important parameter for atmospheric motion and has sig-
nificant implications for meteorological disaster prediction, wind energy utili-
zation, ocean circulation, and other applications. It refers to the velocity of 
wind motion and is typically expressed in meters per second (m/s) or other 
appropriate units. The wind speed data used in this study are 10-meter surface 
wind speed data [10]. 

2.2.4. Solar Radiation 
Solar radiation is the energy transmitted from the Sun to the Earth’s surface, 
constituting an essential component of the Earth’s energy balance. It mainly 
consists of electromagnetic waves, including visible light, ultraviolet (UV) radia-
tion, and infrared (IR) radiation, and serves as a primary energy source for bio-
logical and atmospheric systems on Earth. The solar radiation data used in this 
study are obtained from the ERA5-LAND dataset, released by the European 
Centre for Medium-Range Weather Forecasts (ECMWF). 

2.2.5. Vapor Pressure Deficit (VPD) 
Vapor Pressure Deficit (VPD) refers to the difference in pressure between saturated 
water vapor and saturated water at a certain temperature. It is commonly used to 
describe the moisture content and saturation level of water vapor in the air. 

VPD data are obtained through simulated calculations based on relative hu-
midity, temperature, and atmospheric pressure. The calculation formula is 
shown as Equation (1). 

( )17.27 273.15
VPD 6.11 exp

273.15 237.3 0.622 0.378
T q P

T q
∗ −  ∗

= ∗ − − + + ∗ 
       (1) 

In which, T represents temperature (unit: K), q represents relative humidity (a de-
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cimal between 0 and 1), and P represents atmospheric pressure (unit: hPa). 

2.2.6. Soil moisture 
Soil moisture is a crucial parameter in land surface water and energy cycles, 
serving as one of the primary water sources for plant growth and photosynthesis. 
It plays a vital role in plant growth, soil ecosystems, hydrological cycles, and 
various other environmental processes. 

The data used in this study are sourced from the National Tibetan Plateau Data 
Center [11]. The soil moisture dataset is derived using auxiliary factors such as 
vegetation indices (NDVI, EVI), land surface temperature (LST), evapotranspira-
tion (ET), precipitation, terrain (DEM, slope, aspect, TWI), soil properties, and 
soil moisture-related indices (SWCI, SIWSI, VSDI). These factors are employed 
to downscale ESA CCI soil moisture data using five machine/deep learning me-
thods: Artificial Neural Network (ANN), Convolutional Neural Network (CNN), 
Residual Neural Network (ResNet), Long Short-Term Memory Network (LSTM), 
and XGBoost. Subsequently, the downscaled soil moisture data are fused using 
the Bayesian three-cornered hat method to obtain the final dataset. 

2.3. Statistical Analysis Methods 
2.3.1. The Theil-Sen Slope Estimation Method 
The Theil-Sen slope estimation is a non-parametric method used to estimate 
trends in time series data. It does not require assumptions about serial correla-
tion or normal distribution in the time series. Compared to other methods, 
Theil-Sen slope estimation can effectively handle small outliers and missing val-
ue noise [12]. The calculation formula is shown as Equation (2). 

Median ,j iX X
j i

j i
β

− 
= ∀ > − 

                   (2)  

In which, β represents the median slope of all data pairs. When β > 0, the data 
show an increasing trend; when β < 0, the data exhibit a decreasing trend. Xi and 
Xj are the values at time i and j in the data time series, and “Median” denotes the 
median value. 

2.3.2. The Mann-Kendall Test Analysis Method 
The Mann-Kendall (MK) test is a non-parametric trend detection method used 
for time series analysis, primarily aimed at assessing the significance of trends 
within time series data [13]. Its core purpose is to evaluate whether trends 
present in time series data are statistically significant. Unlike traditional para-
metric testing methods that rely on the assumption of normal data distribution, 
the advantage of the MK test lies in its lack of requirement for data distribution, 
while also exhibiting robustness to missing values and outliers in the data. This 
makes the MK test particularly suitable for analyzing and validating the signi-
ficance of trends in long-term time series data. The calculation formula for the 
test statistic S is shown in Equation (3). In the formula for calculating Z, when S 
is greater than 0, the numerator is S minus 1. 
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( )
1

1 1
sgn

n n

j i
i j i

S x x
−

= = +

= −∑ ∑                       (3) 

In which, sgn() represents the sign function, and its calculation formula is shown 
in Equation (4). 

( )
1, 0

sgn 0, 0
1, 0

j i

j i j i

j i

x x
x x x x

x x

+ − >
− = − =
− − <

                  (4) 

To conduct trend testing using the test statistic Z, the calculation method for 
the Z value is as shown in Equation (5). 

( )

( )

, 0
Var

0, 0
1 , 0

Var

S S
S

Z S
S S

S

 >

= =
 + <


                     (5) 

In which, the calculation formula for Var is as shown in Equation (6). 

( )
( )( ) ( )( )

1
1 2 5 1 2 5

Var
18

m

p p p
p

n n n t t t
S =

− + − − +
=

∑
           (6) 

In the equation, n represents the number of data points in the sequence; m 
represents the number of unique values (groupings), and tp represents the num-
ber of repetitions for each repeated value. 

The categories and characteristics of trends in the Mann-Kendall test are 
shown in Table 1. When the absolute value of Z exceeds 1.65, 1.96, and 2.58, it in-
dicates that the trend passes significance tests with confidence levels of 90%, 95%, 
and 99%, respectively. In this study, a significance level of 95% is adopted [14]. 
 
Table 1. Table type styles (Table caption is indispensable). 

β Z Trend Categories Trend Features 

β > 0 

2.58 < Z 4 Extremely Significant Increase 

1.96 < Z ≤ 2.58 3 Significant Increase 

1.65 < Z ≤ 1.96 2 Slightly Significant Increase 

Z ≤ 1.65 1 Not Significant Increase 

β = 0 Z 0 No Change 

β < 0 

Z ≤ 1.65 −1 Not Significant Decrease 
1.65 < Z ≤ 1.96 −2 Slightly Significant Decrease 
1.96 < Z ≤ 2.58 −3 Significant Decrease 

2.58 < Z −4 Extremely Significant Decrease 

2.3.3. Multiple Linear Regression Model 
The multiple linear regression model is a statistical model used to explore the 
relationship between multiple independent variables and one continuous de-
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pendent variable. In this model, the dependent variable (also known as the re-
sponse variable) is assumed to be a linear combination of one or more indepen-
dent variables. Each independent variable has an associated coefficient that 
represents the degree of its influence on the dependent variable. 

0 1 1 2 2 p pY X X Xβ β β β ε= + + + + +                 (7) 

In which, Y is the response variable, β0 is the intercept, β1, β2, …, βp are the coef-
ficients of the independent variables X1, X2, …, Xp; X1, X2, …, Xp are the inde-
pendent variables; ε is the error term, representing the part of the model that 
cannot be explained. 

3. Results and Analysis 
3.1. Spatiotemporal Variation Characteristics of GPP 

The distribution of daily average GPP changes for terrestrial vegetation in the 
study area from 2001 to 2020 is shown in Figure 1. 

Based on Figure 1, the GPP in the study area exhibits significant spatiotem-
poral heterogeneity. When the year is divided into four seasons—spring (March 
to May), summer (June to August), autumn (September to November), and 
winter (December to February)—the GPP values for the study area are markedly 
higher in summer, accounting for 60.8% of the annual GPP. Spring and autumn 
follow, contributing 18.91% and 13.04%, respectively. In winter, due to vegeta-
tion being nearly dormant, GPP is the lowest, accounting for only 7.19% of the 
annual total. 
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Figure 1. Distribution of daily average GPP for terrestrial vegetation in the study area from 2001 to 2020. 
 

In terms of spatial distribution, the GPP shows a decreasing trend from 
southeast to northwest. The low-value areas, where the daily average GPP is be-
low 0.5 gC·m−2·yr−1, are mainly located in the western part of the study area. This 
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region is dominated by alpine steppes, alpine desert steppes, and temperate 
desert steppes, with elevations mostly above 4000 meters. Regions with a daily 
average GPP below 0.8 gC·m−2·yr−1 account for 44.75% of the total area and are 
primarily distributed in the northern and southwestern parts of the study area. 
The main vegetation types in these regions are alpine meadows and alpine 
steppes. High-value areas, where the daily average GPP exceeds 1 gC·m−2·yr−1, 
constitute 16.67% of the total area. These regions are predominantly found in 
the eastern and southwestern parts of the study area and are mainly covered by 
alpine meadows, with some scattered shrubs and forests. 

Trend analysis was conducted for each pixel in the study area, with the results 
shown in Figure 2. During the spring season, there is a clear upward trend in 
GPP in the northeastern part of the study area. In the summer season, apart 
from the central region, both the western and northeastern parts exhibit signifi-
cant increases in GPP. Due to the high intensity of photosynthesis during sum-
mer, this period shows the most pronounced increase in GPP compared to the 
other seasons. In autumn, the trend in GPP varies significantly from summer. 
The northeastern part experiences a noticeable downward trend, while the cen-
tral region shows a certain degree of increase, and the western region still exhi-
bits some increase. In winter, influenced by phenological stages, photosynthesis 
gradually stagnates, and the GPP trend in the study area no longer shows signif-
icant spatial distribution characteristics. 
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Figure 2. The spatial distribution of total GPP trends for different seasons from 2001 to 
2020. In the figure, positive values indicate an increasing trend in GPP, while negative 
values indicate a decreasing trend in GPP.) 

3.2. Establishment of the GPP Change Attribution Model 

The land vegetation GPP is influenced by both the physiological characteristics 
of the plants themselves and external environmental factors. Among the external 
environmental factors, significant influences on GPP include temperature, pre-
cipitation, VPD (Vapor Pressure Deficit), soil moisture, solar radiation, and at-
mospheric pressure. Moisture conditions are crucial factors affecting GPP, with 
precipitation and soil moisture serving as indicators of moisture conditions. 
However, since some precipitation may be intercepted by the canopy or con-
verted into surface runoff and may not be utilized by vegetation, and its infiltra-
tion process is influenced by soil characteristics, soil moisture can more accu-
rately reflect the available water for vegetation than precipitation. Additionally, 
the VPD data used in this study are simulated based on specific humidity, air 
temperature, and atmospheric pressure, hence these data are not input as va-
riables in this study. 

The Leaf Area Index (LAI) is an important indicator for assessing vegetation 
coverage and growth status, closely related to the total primary productivity of 
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terrestrial vegetation. Solar radiation is the primary source of energy for photo-
synthesis, and its adequacy directly affects the photosynthetic rate of plants and 
the level of GPP. Moderate wind speed helps regulate leaf temperature and hu-
midity, promotes gas exchange and transpiration, thereby facilitating photosyn-
thesis. Vapor Pressure Deficit (VPD) reflects the difference in water vapor con-
tent in the atmosphere and is an important driving factor for plant transpiration. 
Surface temperature of land affects the physiological activities and metabolic 
rates of plants, while also influencing soil temperature and water evaporation 
rates, thus impacting the water and carbon cycles of vegetation ecosystems. Soil 
moisture, as one of the important water sources for plant growth, has a critical 
influence on plant growth and photosynthesis. Therefore, this study selects six 
variables: Leaf Area Index, solar radiation, wind speed, Vapor Pressure Deficit, 
land surface temperature, and soil moisture, to analyze the comprehensive ef-
fects of multi-factor spatial-temporal changes in GPP at the regional scale. Based 
on the multiple linear regression model, this paper constructs a change attribu-
tion model for regional-scale GPP, as shown in equation (8). 

( ) ( ) ( ) ( ) ( ) ( )GPP LAI Srad Wind VPD T SWa b c d e f g= + + + + + +    (8) 

In which, LAI represents Leaf Area Index, Srad denotes solar radiation, Wind 
stands for wind speed, VPD represents Vapor Pressure Deficit, T indicates land 
surface temperature, SW signifies soil moisture, and a, b, c, d, e, f are fitted em-
pirical parameters. By utilizing the established attribution model, it is possible to 
conduct a comprehensive analysis of the multi-factor impacts on regional-scale 
GPP from two dimensions: intra-annual seasonal changes and inter-annual var-
iations. Furthermore, the contributions of the six influencing factors—LAI, LST, 
SVPD, Soil Moisture, Solar Radiation and Wind Speed—can be quantified in 
different dimensions to GPP variations. 

The established GPP change attribution model was applied to simulate the in-
tra-annual seasonal variations of GPP in the regional-scale terrestrial ecosystem 
of the area. The simulated values were then compared with the computational 
values for analysis, as illustrated in Figure 3. 

According to Figure 3, the model accurately simulates the intra-annual sea-
sonal variations of GPP at the regional scale, with 68.48% of the area showing an 
R² greater than 0.7 when compared with computational GPP. Excluding regions 
in the west with extremely low vegetation cover, the proportion with an R² 
greater than 0.7 increases to 77.82%, indicating that the model’s simulated values 
are consistent with the estimated GPP. Therefore, for the overall study area, the 
GPP change attribution analysis model can effectively explain the intra-annual 
seasonal variations of regional-scale GPP. 

3.3. Analysis of Driving Factors for GPP Variations 

Quantification of the Relative Contributions of LAI, LST, SVPD, Soil Moisture, 
Solar Radiation and Wind Speed to the Seasonal Variations of Regional-Scale 
GPP Based on the GPP Variation Attribution Analysis Model. 
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3.3.1. Analysis of Driving Factors for Spring GPP Variations 
The spatial distribution of the relative contributions of different driving factors 
to the changes in GPP during spring can be seen in Figure 4. 

 

 

Figure 3. The distribution of the correlation coefficient R2 between the simulated GPP by model and 
the computational GPP (The goodness of fit for the model, R², can reach up to 0.935494). 
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Figure 4. Spatial distribution of the relative contributions of different driving factors to 
spring GPP variations. (In the figure, “High” indicates the highest contribution ratio of 
the influencing factor to GPP, while “Low” indicates the lowest contribution ratio of the 
influencing factor to GPP). 
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According to Figure 4, in the spring season (March to May), the contribution 
of LAI to GPP shows a higher degree in the eastern region compared to the 
western region. This may be attributed to the more suitable soil types and mois-
ture conditions in the eastern region, promoting rapid vegetation growth during 
spring. Consequently, the vegetation cover is denser in the east, leading to a rela-
tively higher contribution of LAI to GPP. The contributions of Solar Radiation 
and Wind Speed, on the other hand, exhibit higher values in the western region 
and lower values in the east. The western areas, being more open and less ob-
structed by mountainous terrain, receive ample sunlight during spring, while 
higher wind speeds facilitate gas exchange and transpiration in vegetation, thus 
contributing more significantly to GPP. Soil Moisture, on the other hand, shows 
higher contributions in the southern region and lower contributions in sur-
rounding areas. The southern region likely experiences higher precipitation 
during spring, resulting in relatively abundant soil moisture, which enhances 
vegetation growth and contributes more significantly to GPP. VPD and LST ex-
hibit generally lower contributions, possibly due to lower temperatures and 
higher humidity during spring, leading to reduced sensitivity of vegetation to 
these factors and thus lower contributions to GPP. 

3.3.2. Analysis of Driving Factors for Summer GPP Variations 
The spatial distribution of the relative contributions of different driving factors 
to the changes in GPP during summer can be seen in Figure 5. 
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Figure 5. Spatial distribution of the relative contributions of different driving factors to 
summer GPP variations. (In the figure, “High” indicates the highest contribution ratio of 
the influencing factor to GPP, while “Low” indicates the lowest contribution ratio of the 
influencing factor to GPP.) 
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According to Figure 5, in the summer months (June-July), the contribution of 
LAI and GPP shows a gradual increase from west to east. Compared to spring, 
there is a significant increase in contribution in the central region, which may be 
due to the presence of more precipitation resources and favorable climatic condi-
tions in the eastern region, promoting vegetation growth and coverage. In con-
trast, the western region, due to its rugged terrain and higher altitudes, experiences 
harsher climatic conditions and relatively weaker vegetation growth. This leads to 
higher contribution of LAI in the eastern region, while in the central region, the 
contribution significantly increases due to more favorable climatic conditions. 
There is no clear spatial distribution observed for LST, Wind Speed, and Soil 
Moisture in terms of their contributions to GPP. This may be because there are no 
significant temperature gradients and wind speed differences in summer, resulting 
in no apparent spatial variations in their effects on GPP. With relatively abundant 
summer precipitation, soil moisture remains relatively adequate across the region, 
showing no significant differences in its relative contribution to GPP. Solar radia-
tion exhibits a gradual decrease from south to north, possibly due to the higher la-
titude in the northern region resulting in a smaller solar zenith angle and conse-
quently lower received solar radiation. Conversely, in the southern region, where 
the solar zenith angle is larger, solar radiation is relatively higher. 

3.3.3. Analysis of Driving Factors for Autumn GPP Variations 
The spatial distribution of the relative contributions of different driving factors 
to the changes in GPP during autumn can be seen in Figure 6. 

 

https://doi.org/10.4236/oje.2024.146030


Z. S. Xia 
 

 

DOI: 10.4236/oje.2024.146030 538 Open Journal of Ecology 
 

 

Figure 6. Spatial distribution of the relative contributions of different driving factors to autumn 
GPP variations. (In the figure, “High” indicates the highest contribution ratio of the influencing 
factor to GPP, while “Low” indicates the lowest contribution ratio of the influencing factor to 
GPP.) 
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According to Figure 6, in the autumn months (August-November), LAI 
shows high relative contributions to GPP across the entire region, except for the 
western region where the correlation is relatively low. This could be attributed to 
factors such as terrain, soil type, or vegetation type in the western region, which 
may limit vegetation growth and variations in land surface temperature. The 
spatial distribution of LST in relation to its relative contribution to GPP is simi-
lar to that of LAI. However, the spatial distribution of Soil Moisture, VPD, Solar 
Radiation, and Wind Speed in relation to their relative contributions to GPP is 
opposite to that of LAI and LST. This could be because the influences of LAI and 
land surface temperature on GPP are too prominent, overshadowing the effects 
of other factors, resulting in relatively smaller contributions from these factors. 

3.3.4. Analysis of Driving Factors for Winter GPP Variations 
The spatial distribution of the relative contributions of different driving factors 
to the changes in GPP during winter can be seen in Figure 7. 
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Figure 7. Spatial distribution of the relative contributions of different driving factors to 
winter GPP variations. (In the figure, “High” indicates the highest contribution ratio of 
the influencing factor to GPP, while “Low” indicates the lowest contri-bution ratio of the 
influencing factor to GPP.) 

 

According to Figure 7, in the winter months (December-February), LAI, LST, 
and Wind Speed show no distinct spatial distribution characteristics regarding 
their relative contributions to GPP across entire study region. Three-River 
Source Region. Overall, they exhibit lower correlations with GPP, as winter is a 
season when vegetation growth activities slow down, resulting in lower vegeta-
tion coverage and hence lower contributions from LAI to GPP. The generally 
low temperatures in winter also slow down plant growth activities, leading to 
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lower overall correlations between land surface temperature and GPP. Soil 
Moisture exhibits higher relative contributions in the central part of the study 
area, while lower contributions are observed in the surrounding areas. Con-
versely, VPD shows the opposite trend, with higher relative contributions in the 
eastern and western regions and lower contributions in the central region. This 
may be related to the topographic and hydrological features of the area. The 
central region may contain lakes, rivers, and other water bodies, which could 
accumulate a significant amount of water during winter, resulting in relatively 
abundant soil moisture in the surrounding areas. The presence of these water 
bodies can provide sufficient water sources, promoting soil moisture and vegeta-
tion growth, and consequently increasing GPP. Higher soil moisture may lead to 
relatively higher humidity levels in the surrounding air, resulting in lower VPD. 
Conversely, the eastern and western regions may have relatively less soil mois-
ture, leading to higher air dryness and hence higher VPD. Despite the shorter 
duration of sunlight in winter, Solar Radiation shows a significantly increased 
contribution to GPP. This could be due to the adequacy of solar radiation in 
winter and the relatively lower photosynthetic rates of vegetation during this 
season. 

4. Conclusions 

This study systematically analyzed the spatiotemporal variation characteristics of 
land vegetation GPP and its driving factors based on Sun-Induced Chlorophyll 
Fluorescence (SIF) remote sensing data estimation. It quantified the relative 
contributions of each driving factor to GPP changes, providing a basis for a 
deeper understanding of the driving mechanisms of regional-scale GPP varia-
tions. 

1) The land vegetation GPP in the study area exhibits significant spatiotem-
poral variations. 

In spring, with the rise in temperature and increasing daylight hours, vegeta-
tion enters the growing season, leading to a rapid increase in GPP as the pheno-
logical stages of bud burst and heading occur. 

Summer marks the peak growing season for vegetation in the study area, cha-
racterized by high temperatures and humidity, facilitating lush vegetation 
growth and resulting in the highest GPP levels of the year. Vegetation phenology 
exhibits vigorous growth characteristics during this period. 

As autumn approaches, temperatures gradually decrease, and daylight hours 
shorten, leading vegetation to enter the senescence stage. GPP begins to decline 
as vegetation transitions into the withering and leaf shedding period. 

Winter represents the dormant season in the study area, marked by a sharp 
drop in temperature and vegetation entering a dormant state. GPP significantly 
decreases during this period, and vegetation phenology reflects a dormant phase. 

Apart from seasonal variations, vegetation phenology in the study area is also 
influenced by geographical location and altitude. In lower altitude areas, vegeta-

https://doi.org/10.4236/oje.2024.146030


Z. S. Xia 
 

 

DOI: 10.4236/oje.2024.146030 542 Open Journal of Ecology 
 

tion phenology occurs relatively earlier, with longer growing seasons and higher 
GPP. Conversely, in higher altitude areas, vegetation phenology occurs later, 
with shorter growing seasons and lower GPP. This spatiotemporal variation re-
flects the adaptive capacity of vegetation to climate and topography in the study 
area, as well as the vulnerability and sensitivity of high-altitude cold regions’ ve-
getation ecosystems. 

2) The regional-scale GPP attribution analysis model was constructed, with 
68.48% of the area’s simulated results showing an R-squared value greater than 
0.7 compared to the estimated GPP. Excluding regions in the west with ex-
tremely low vegetation cover, 77.82% of the area’s simulated results show an 
R-squared value greater than 0.7 compared to the computational GPP. 

3) LAI dominates both the spatial and seasonal variations of regional-scale 
GPP, with GPP increasing as LAI increases. On the other hand, variables like 
VPD , LST, Solar Radiation, and Soil Moisture have varying effects on GPP 
across different dimensions. Additionally, wind speed shows relatively smaller 
contributions to GPP across different dimensions. 
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