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Abstract 
Rational approximation theory occupies a significant place in signal processing 
and systems theory. This research paper proposes an optimal design of BIBO 
stable multidimensional Infinite Impulse Response filters with a realizable 
(rational) transfer function [ ]1, , nH z z∈   thanks to the Adamjan, Arov 

and Krein (AAK) theorem. It is well known that the one dimensional AAK 
results give the best approximation of a polynomial as a rational function in 
the Hankel semi norm. We suppose that the Hankel matrix associated to the 
transfer function has a finite rank.  
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1. Introduction 

Multidimensional filters are central elements in digital signal processing and 
control systems.  

Consider a n dimensional (nD) filter S with an analytic transfer function  

 ( )1, , .
n

nH z z h zαα
α∈

= ∑



 (1) 

The sequence { } nhα α∈
 is the so called impulse response of the filter. 

To avoid burst in a filter, stability is a necessary condition. For instance, the 
filter S is BIBO stable if for any bounded input signal x, the output y is bounded. 
A fundamental theorem states that S is BIBO stable if and only if  

 .
n
hα

α∈

< ∞∑


 (2) 

However, only a rational filter (filter having a rational transfer function) is 
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physically realizable. Under some assumptions, the filter S is rational and BIBO 
stable if and only if all poles of H lie in the unit polydik  

{ }, 1, 1,2, ,n n
iz z i n= ∈ < =    (see [1] [2] for example). 

Note that BIBO stability has also been studied in the consensus coordination 
of control systems [3] [4]. 

Given the significance of rational approximation theory in signal processing 
and systems theory, during the last years several mathematicians have been re-
searching the problem of approximating multivariate functions (see for example 
[5] [6] [7]). One can also cite the works of Avilov and all [8] through the method 
of Padé-type extended to several variables and recently Austin and all [9] by dis-
crete least-squares methods. 

We propose in this paper to introduce a possibility to design multidimension-
al BIBO stable Infinite Impulse Response (IIR) filters as realizable filters thanks 
to the one dimensional AAK (Adamyan, Arov and Kreĭn) theorem [2]. To our 
knowledge such approach does not exist in the literature. We are concerned with 
filters S such that the multidimensional transfer function [ ]1, , nH z z∈   may 
be written as a combination (sum or product) of separable polynomials. We as-
sume that the Hankel operator associated to H has a finite rank. 

It is known that the AAK theorem gives the best approximation of a univa-
riate polynomial as a rational function in the Hankel semi-norm. A remarkable 
contribution of AAK’s result is its significance to engineering. One of its impor-
tant applications is the problem of system reduction which consists of finding a 
lower-dimensional linear system to approximate a given high-dimensional linear 
system in a certain optimal sense. The AAK result provides a wonderful charac-
terization of this problem in sense that the Hankel norm of the error between 
the given high-order transfer function and the approximant is minimized over 
all transfer functions of the same (lower) order (see [2] for an overview on the 
topic). The origins of the AAK method can be founded in the papers by Ada-
myan-Arov-Kreĭn [10] [11]. One can cite also the following paper [12]. 

Outline 

This paper is organized as follows. Section 2 provides some explanations on the 
system reduction problem and preliminaries on AAK theorem for one dimen-
sional (1D) filters. In Section 3, we propose rational optimal approximations of 
the transfer functions of a multidimensional (nD) filter by our approach based 
on AAK results. 

2. Preliminaries on AAK Theorem on 1D Filters 

Consider ( )
0

n
n

n
H z h z

∞
−

=

= ∑ , the transfer function of an 1D filter. The Hankel 

matrix corresponding to ( )H z  is the infinite matrix [ ]1 , 1,2,H m m
h + − =

Γ =


 

, 

namely  
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1 2 3

2 3

3

.H

h h h
h h
h

 
 
 Γ =
 
 
 



 

  

   

 (3) 

The matrix HΓ  can be viewed as an operator on the space of square summa-
ble sequences 2

 . The operator norm of HΓ  is given by  

 
2 1

: supH Hs
x

x
=

Γ = Γ


 (4) 

and one defines the Hankel semi-norm of ( )H z  by  

 ( ) .H sH z
Γ
= Γ  (5) 

If 0 0h = , then H sΓ  is the spectral norm of the operator HΓ .  
Note that the terms  

( ) 0
1

and n
a s n

n
H z h H h z

∞
−

=

= =∑  

are called the analytic and the singular part of ( )
0

n
n

n
H z h z

∞
−

=

= ∑ . 

For a positive integer m, let  

 { }Hankel matrix ; , rank .m m= Γ Γ < ∞ Γ ≤  (6) 

The problem stated as follows:  

 ˆ inf
m m

H m H m ss Γ ∈
Γ − Γ = Γ − Γ


 (7) 

is called system reduction for the filter [2] and is equivalent to the extremal 
problem  

 ˆ inf
s

m m
m m

r
H r H r

Γ ∈
− = −


 (8) 

with  

 ( ) ( )
1

1
1

1

: ; all poles of lie in 1, .
d

s d
m d dd d

d

p z pr z r z z d m
z q z q

−

−

 + +
= = < ≤ 

+ + + 





  (9) 

The following theorem makes a connection between the system reduction 
problem and the approximation of a polynomial as a rational function.  

Theorem 1 ([2], Kronecker’s theorem). The infinite Hankel matrix HΓ  has 
finite rank m if and only if the singular part sH  is a strictly proper rational 
function in z i.e. 

 ( )
1

1
0 1

0 1

.
m

n m
n m m

n m

p z pH z h z h
z c z c

−∞
−

−
=

+ +
= = +

− − −∑ 



 (10) 

Moreover,  
Corollary 1 (Kronecker Nehari result, [2]). The function  

( )
1

n
n

n
H z h z

∞
−

=

= ∑  

is in s
m  if and only if its corresponding Hankel matrix HΓ  is in m .  
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Definition 1. Let Γ  be a Hankel matrix and *Γ  its adjoint.  
The s-numbers (or singular values) of Γ  are the eigenvalues of *Γ = Γ Γ .  
Any pair ( ),m mξ η  of elements in 2

  that satisfies  

andm m m m m ms sξ η η ξΓ = Γ =  

is called a Schmidt pair of Γ . 
One denotes by ( )1L z∞ =  the espace of essentially bounded functions on 

the unit circle 1z = . Then  
Theorem 2 ([2], Adamjan, Arov, and Krein theorem). Let ( )f z  be a given 

function in ( )1L z∞ =  such that the Hankel matrix fΓ  associated to f is a 
compact operator with s-numbers 1 2 0s s s∞≥ ≥ ≥ =  and let  

( ){ } ( ){ }( )1,2, 1,2,
,m m

m i m ii i
u vξ η

= =
= =

 

, the Schmidt pair corresponding to ms . Then 

a solution to the extremal problem  

ˆ inf
s
m

m
r

f r f r
Γ ∈

− = −


 

is given by the singular part ( )ˆ
s

h z 
   of  

 ( ) ( )
( )

( )

1

1
1

1 1

1

ˆ
m i

i
i

m
m i

i
i

v z
h z f z s

u z

∞
+

=
+ ∞

+ −

=

= −
∑

∑
 (11) 

A detailed proof of this theorem has been made in [2].  

3. Approximation of the Transfer Function of an (nD) BIBO  
Stable Filter 

Definition 2: We say that a polynomial [ ]1, , nr z z∈   is stable if  

( )1 1, , 0 only for 1, , 1.n nr z z z z= < <   

Let n
m  be the set of rational polynomials in [ ]1, , nz z  with stable de-

nominator and such that the degrees of the numerator and denominator do not 
exceed m. 

One has the following result.  
Proposition 1: Suppose that  

 ( )
{ }0, ,0n

H z h zαα
α∈ −

= ∑


 (12) 

is the transfer function of a multidimensional (nD) BIBO stable filter such that  
1) ( ) ( ) ( )1 1 1, , n n nH z z H z H z= × ×  ,  
2) For each 1,2, ,i n=  , iH  is a polynomial in ( )1L z∞ = ,  
3) The operators 

iHΓ  are compact operators with finite ranks iR m≤ .  
Then an optimal approximation of H as a rational function in n

m  is given by  

 ( ) ( ) ( )1 1 1
ˆ ˆ ˆ, , ,n n ns s s
h z z h z h z     = × ×        (13) 

the elements ( )î i s
h z 
   being the singular parts of a certain polynomial function 

îh .  
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Remark 1: If the hypothesis one in the proposition 1 is replaced by  

( ) ( ) ( )1 1 1, , ,n n nH z z H z H z= + +   

then  

( ) ( ) ( )1 1 1
ˆ ˆ ˆ, , .n n ns s s
h z z h z h z     = + +        

Proof. The existence of such approximation of the (nD) transfer function H 
(in n

m ) given in Equation (12) is certified by the Kronecker-Nehari result ap-
plied to each iH . The Formula (13) is given by the application of the AAK 
theorem to each polynomial iH  and for each 1,2, ,i n=    

 ( ) ( )
( )

( )

1

1
1

1 1

1

ˆ
m j

j i
ji

i i i i m
m j

j i
j

v z
h z H z s

u z

∞
+

=
+ ∞

+ −

=

= −
∑

∑
 (14) 

with 1
i
ms +  the ( )th1m +  s-number of 

iHΓ .  
Moreover one has.  
Corollary 2 (Lemma 2.1, [2]). If for each 1, ,i n=    

 ( )
1

1
1

1

ˆ
m
i m

i i m ms
i m i

p z ph z
z c z c

−

−

+ +  =  − − −




 (15) 

and  

1

2 1

.
i

i i
m

m
H

i i
m m

h h

h h −

 
 

Γ =  
 
 



 



 

the principal minor of order m in 
iHΓ , then 

 ( )
1 1

2

i

i
m

m

H
i

m m

c h

c h

+
−

  
   = Γ ⋅  

      

   (16) 

and  

 1 1 2 2 1 1 1 1 1 1, , , .i i i i i i
m m m mp h p h c h p h h c h c− −= = − = − − −   (17) 

Proposition 2: Suppose that  

( )
( )

( )
1

1

1

, ,

n

i i
i

n n

i i
i

P z
H z z

Q z

=

=

=
∑

∑
  

belongs to n
m . Then for each 1,2, ,i n=   the coefficients of iP  and iQ  can 

be computed thanks to corollary 2. More precisely if  

( ) ( )1 1
1 1,m m m

i i i m i i i m iP z p z p Q z z c z c− −= + + = − − −   

and ( ) ( ): 1, ,1, ,1, ,1i i iH z H z=    then  
1) The coefficients of iP  and iQ  except mp  and 1c  are computed by us-

ing (16) and (17);  
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2) The rank of 
iHΓ , iR m≤ . 

Proof. The item 1 is a consequence of the corollary 2.  
The contraposition of the theorem of DeCarlo et al [13] allows to say that iH  

belongs to s
m . The item 2 is then a consequence of Corollary 1.  

4. Conclusion 

This paper has proposed an optimal design of a multidimensional BIBO stable 
filter with a rational transfer function [ ]1, , nH z z∈  . The approach is based 
on the one dimensional AAK theorem. Two propositions have been developed 
and require that the Hankel operators 

iHΓ  associated with the polynomial 
function H are compact with finite ranks. We hope that in further works, com-
parisons (based on numerical tests) with other methods that exist in the litera-
ture on the approximation of multivariate functions will be made.  
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