New Results on One Modulo N-Difference Mean Graphs

Pon Jeyanthi ${ }^{1}$, Meganathan Selvi ${ }^{2}$, Damodaran Ramya ${ }^{3}$
${ }^{1}$ Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur, Tamilnadu, India
${ }^{3}$ Department of Mathematics, Government Arts College (Autonomous), Salem-7, Tamilnadu, India
Email: jeyajeyanthi@rediffmail.com, selvm80@yahoo.in, aymar_padma@yahoo.co.in

How to cite this paper: Jeyanthi, P., Selvi, M. and Ramya, D. (2023) New Results on One Modulo N-Difference Mean Graphs. Open Journal of Discrete Mathematics, 13, 100-112.
https://doi.org/10.4236/ojdm.2023.134010

Received: June 22, 2023
Accepted: October 21, 2023
Published: October 24, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

A graph G is said to be one modulo N-difference mean graph if there is an injective function f from the vertex set of G to the set $\{a / 0 \leq a \leq 2(q-1) N+1$ and either $a \equiv 0(\bmod N)$ or $a \equiv 1(\bmod N)\}$, where N is the natural number and q is the number of edges of G and f induces a bijection f^{*} from the edge set of G to $\{a / 1 \leq a \leq(q-1) N+1$ and $a \equiv 1(\bmod N)\}$ given by $f^{*}(u v)=\left\lceil\frac{|f(u)-f(v)|}{2}\right\rceil$ and the function f is called a one modulo N -difference mean labeling of G. In this paper, we show that the graphs such as arbitrary union of paths, $M_{2}\left(P_{n}\right)(n \geq 2)$, ladder, slanting ladder, diamond snake, quadrilateral snake, alternately quadrilateral snake, $J l_{n}\left(P_{3}\right)(n \geq 1)$, $C_{4} \odot K_{1, n}(n \geq 1), \quad D U P_{2}\left(K_{1, n}\right), \quad D U P_{2}\left(B_{n, n}\right)$, friendship graph and $n C_{4}(n \geq 1)$ admit one modulo N -difference mean labeling.

\section*{Keywords}

Skolem Difference Mean Labeling, One Modulo N-Graceful Labeling, One Modulo N-Difference Mean Labeling and One Modulo N-Difference Mean Graph

1. Introduction and Preliminaries

Here we consider only finite and simple graphs. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. For various graph theoretic notations and terminology we follow [1]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. The concept
of mean labeling was introduced in [2]. Since then, several results have been published on mean labeling and its variations [3]. In 2014, the concept of skolem difference mean labeling, one of the variations of mean labeling was due to Murugan et al. [4]. A graph $G=(V, E)$ with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from $\{1,2,3, \cdots, p+q\}$ in such a way that for each edge $e=u v$, let $f^{*}(e)=\left\lceil\frac{|f(u)-f(v)|}{2}\right\rceil$ and the resulting labels of the edges are distinct and are $1,2,3, \cdots, q$. A graph that admits a skolem difference mean labeling is called skolem difference mean graph. The concept of one modulo N-graceful labeling was introduced by Ramachandran et al. [5]. A function f is called a graceful labeling of a graph G with q edges if f is an injection from the vertices of G to the set $\{0,1,2, \cdots, q\}$ such that, when each edge $x y$ is assigned with the label $|f(x)-f(y)|$, the resulting edge labels are distinct. A graph G is said to be one modulo N graceful (where N is a positive integer) if there is a function φ from the vertex set of G to $\{0,1, N,(N+1), 2 N,(2 N+1), \cdots, N(q-1), N(q-1)+1\}$ in such a way that 1) φ is 1-1;2) φ induces a bijection φ^{*} from the edge set of G to $\{1, N+1,2 N+1, \cdots, N(q-1)+1\}$ where $\varphi^{*}(u v)=|\varphi(u)-\varphi(v)|$.

Motivated by the concepts of skolem difference mean labeling and one modulo N -graceful labeling and the results in [4] [5], we introduced a new labeling namely "one modulo N -difference mean labeling" in [6] and established that the graphs $B_{m, n}, S_{m, n}, P_{n} @ P_{m}, B(l, m, n), T(n, m)$, shrub, caterpillar and $K_{1, n}$ are one modulo N -difference mean graphs. In addition, we showed that the graph C_{3} is not a one modulo N -difference mean graph. In this paper, we further study on one modulo N -difference mean labeling and show that some more graphs admit one modulo N -difference mean labeling.

We use the following definitions in the subsequent sequel.
Definition 1.1. Let $G=(V, E)$ be a graph and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the copy of G. Then the graph $M_{2}(G)$ of G is obtained from G and G^{\prime} by joining each vertices in V to its corresponding vertices in V^{\prime} by an edge.

Definition 1.2. The slanting ladder graph $S L_{n}$ is obtained from two paths $u_{1}, u_{2}, u_{3}, \cdots, u_{n}$ and $v_{1}, v_{2}, v_{3}, \cdots, v_{n}$ by joining u_{i} with v_{i+1} for $1 \leq i \leq n-1$.

Definition 1.3. Let $G=(V, E)$ be a bipartite graph with $V=V_{1} \cup V_{2}$. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the copy of G with $V^{\prime}=V_{1}^{\prime} \cup V_{2}^{\prime}$ such that V_{1}^{\prime} and V_{2}^{\prime} be the copies of V_{1} and V_{2}. Then the graph $D U P_{2}(G)$ is obtained from G and G^{\prime} such that $V\left(D U P_{2}(G)\right)=V \cup V^{\prime}$ and
$E\left(D U P_{2}(G)\right)=E(G) \cup E\left(G^{\prime}\right) \cup\left\{v_{i}^{\prime} v_{j} / v_{i} v_{j} \in E(G)\right.$ where $\left.v_{i}^{\prime} \in V^{\prime}, v_{j} \in V\right\}$. That is, $D U P_{2}(G)$ is obtained from G and G^{\prime} by joining each $v_{i}^{\prime} \in V^{\prime}$ to $v_{j} \in V$ if v_{i} is adjacent to v_{j} in G.
Definition 1.4. A quadrilateral snake graph Q_{n} is obtained from a path $u_{1}, u_{2}, \cdots, u_{n}$ by joining u_{i} and u_{i+1} to two new vertices x_{i}, y_{i} respectively and then joining x_{i} and y_{i}.

Definition 1.5. An alternate quadrilateral snake is obtained from a path
$u_{1}, u_{2}, \cdots, u_{n}$ by joining u_{i} and u_{i+1} to new vertices x_{i} and y_{i} respectively and then joining the vertices x_{i} and y_{i} for $i \equiv 1(\bmod 2)$ and $1 \leq i \leq n-1$. That is, every alternate edge of a path is replaced by cycle C_{4}.

Definition 1.6. Let P_{3} be a path of length 2 with vertices v_{0}, v_{1}, v_{2}. The graph $J l_{n}\left(P_{3}\right)$ is obtained by taking n copies of P_{3} and then identifying the left end vertices $v_{0}^{i}(1 \leq i \leq n)$ with u and the right end vertices $v_{2}^{i}(1 \leq i \leq n)$ with v.

Definition 1.7. Two graphs G and H are isomorphic (written $G \simeq H$) if there exists a one-to-one correspondence between their vertex sets which preserves adjacency.

Definition 1.8. The union of two graphs G_{1} and G_{2} is a graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Definition 1.9. The corona $G_{1} \odot G_{2}$ of the graphs G_{1} and G_{2} is obtained by taking one copy of G_{1} (with p vertices) and p copies of G_{2} and then joining the t th vertex of G_{1} to every vertex of the t copy of G_{2}.

Definition 1.10. Let C_{n} be the cycle with vertices $v_{1}, v_{2}, \cdots, v_{n}$. The graph $C_{n}^{(t)}$ is obtained by taking t copies of C_{n} and then identifying the vertices $v_{1}^{(i)}$ for $1 \leq i \leq t$.

2. Main Results

Theorem 2.1. The disjoint union of paths $\bigcup P_{n_{i}}$ ($n_{i} \geq 2$, is an integer) is a one modulo N -difference mean graph.

Proof. Let n_{i} be the vertices of the path $P_{n_{i}}$ for $1 \leq i \leq m$ and $n=n_{1}+n_{2}+\cdots+n_{m}$.

Define $f: V\left(\bigcup P_{n_{i}}\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(n-m-1)+1\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i, j}\right)=N\left[\sum_{k=1\left(n_{k} \text { is odd }\right)}^{i-1}\left(n_{k}-1\right)+\sum_{k=1\left(n_{k} \text { is even }\right)}^{i-1}\left(n_{k}-2\right)+i+j-2\right] \text { if } j \text { is odd, } \\
& f\left(u_{i, j}\right)=\left[2(n-m-1)+i-j-1-\sum_{k=1\left(n_{k} \text { is odd }\right)}^{i-1}\left(n_{k}-1\right)-\sum_{k=1\left(n_{k} \text { is even }\right)}^{i-1} n_{k}\right] N+1
\end{aligned}
$$

if j is even.
Let $e_{i, j}=u_{i, j} u_{i, j+1}$ for $1 \leq i \leq m$ and $1 \leq j \leq n_{i}-1$.
The corresponding edge label f^{*} is
$f^{*}\left(e_{i, j}\right)=N\left(n-m-\sum_{k=1}^{i-1} n_{k}+i-j-1\right)+1$ for $1 \leq i \leq m$ and $1 \leq j \leq n_{i}-1$.
Therefore, f is a one modulo N-difference mean labeling. Hence, $\cup P_{n_{i}}$ is a one modulo N -difference mean graph.

Figure 1 shows a one modulo N -difference mean labeling of $P_{4} \cup P_{5} \cup P_{6} \cup P_{2} \cup P_{3} \cup P_{8}$.

Theorem 2.2. The graph $M_{2}\left(P_{n}\right)(n \geq 2)$ is a one modulo N -difference mean graph.

Proof. Let $\left\{v_{i}, v_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the vertices and $\left\{e_{i}, e_{i}^{\prime}, a_{i}=v_{i} v_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the edges of the graph $M_{2}\left(P_{n}\right)$. Then the graph has $2 n$ vertices and $3 n-2$ edges.

Define $f: V\left(M_{2}\left(P_{n}\right)\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(3 n-3)+1\}$ by $f\left(v_{1}\right)=0$,

Figure 1. One modulo N-difference mean labeling of $P_{4} \cup P_{5} \cup P_{6} \cup P_{2} \cup P_{3} \cup P_{8}$.

For $2 \leq i \leq n$,
$f\left(v_{i}\right)= \begin{cases}(3 i-5) N & \text { if } i \text { is odd } \\ 3 N(2 n-i)+1 & \text { if } i \text { is even }\end{cases}$
For $1 \leq i \leq n$,
$f\left(v_{i}^{\prime}\right)= \begin{cases}(6 n-3 i-2) N+1 & \text { if } i \text { is odd } \\ 3 i N & \text { if } i \text { is even }\end{cases}$
Then the induced edge labels are
$f^{*}\left(e_{1}\right)=3(n-1) N+1$,
$f^{*}\left(e_{i}\right)=[3(n-i)+1] N+1$ for $2 \leq i \leq n$,
$f^{*}\left(e_{i}^{\prime}\right)=[3(n-i)-4] N+1$ for $1 \leq i \leq n$,
$f^{*}\left(v_{1} v_{1}^{\prime}\right)=[3(n-4)] N+1$,
$f^{*}\left(a_{i}\right)=[3(n-i)] N+1$ for $2 \leq i \leq n$.
Therefore, f is a one modulo N -difference mean labeling and hence $M_{2}\left(P_{n}\right)$ is a one modulo N -difference mean graph.

Figure 2 shows a one modulo N -difference mean labeling of $M_{2}\left(P_{5}\right)$.

Figure 2. One modulo N-difference mean labeling of $M_{2}\left(P_{5}\right)$.

Corollary 2.3. The ladder graph $P_{n} \times P_{2}$ is a one modulo N-difference mean graph.

Theorem 2.4. The slanting ladder $S L_{n}(n \geq 2)$ is a one modulo N-difference mean graph.

Proof. Let $u_{1}, u_{2}, u_{3}, \cdots, u_{n}$ and $v_{1}, v_{2}, v_{3}, \cdots, v_{n}$ be the vertices of the path of length $n-1$.

Then $E\left(S L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$.
Define $f: V\left(S L_{n}\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(3 n-4)+1\}$ by
For $1 \leq i \leq n$,
$f\left(u_{i}\right)= \begin{cases}2(i-1) N & \text { if } i \text { is odd } \\ 2 N[3 n-2(i+1)]+1 & \text { if } i \text { is even }\end{cases}$
$f\left(v_{1}\right)= \begin{cases}2(3 n-4) N & \text { if } n \text { is odd } \\ 2(3 n-5) N & \text { if } n \text { is even }\end{cases}$
For $2 \leq i \leq n$,
$f\left(v_{i}\right)= \begin{cases}2(i-2) N & \text { if } i \text { is odd } \\ 2 N[3 n-2 i]+1 & \text { if } i \text { is even }\end{cases}$
Then the induced edge labels are
For $1 \leq i \leq n-1$,
$f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}3 N(n-i-1)+1 & \text { if } i \text { is odd } \\ N[3(n-i)-2]+1 & \text { if } i \text { is even }\end{cases}$
$f^{*}\left(v_{1} v_{2}\right)= \begin{cases}1 & \text { if } n \text { is odd } \\ N+1 & \text { if } n \text { is even }\end{cases}$
For $2 \leq i \leq n-1$,
$f^{*}\left(v_{i} v_{i+1}\right)= \begin{cases}3 N(n-i)+1 & \text { if } i \text { is odd } \\ N[3(n-i)+1]+1 & \text { if } i \text { is even }\end{cases}$
$f^{*}\left(u_{i} v_{i+1}\right)=N[3(n-i)-1]+1$ for $1 \leq i \leq n-1$.
Therefore, f is a one modulo N -difference mean labeling and hence $S L_{n}$ is a one modulo N -difference mean graph.

Figure 3 shows a one modulo N -difference mean labeling of $S L_{10}$.

Figure 3. One modulo N-difference mean labeling of $S L_{10}$.

Theorem 2.5. The diamond snake graph $D S(n)(n \geq 1)$ is a one modulo N-difference mean graph.

Proof. Let $\left\{v_{0}, v_{i}, a_{i}, b_{i}: 1 \leq i \leq n\right\}$ be the vertices and
$\left\{v_{0} a_{1}, v_{0} b_{1}, v_{i} a_{i+1}, a_{i} v_{i}, v_{i} b_{i+1}, b_{i} v_{i}: 1 \leq i \leq n\right\}$ be the edges of the diamond snake graph which has $4 n-4$ vertices and $4 n$ edges.

Define $f: V(D S(n)) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(4 n-1)+1\}$ by
$f\left(v_{0}\right)=0$,
$f\left(v_{i}\right)=4 i N$ for $1 \leq i \leq n$,

$$
\begin{aligned}
& f\left(a_{i}\right)=2 N(4 n-2 i+1)+1 \text { for } 1 \leq i \leq n \\
& f\left(b_{i}\right)=4 N(2 n-i)+1 \text { for } 1 \leq i \leq n
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& f^{*}\left(v_{0} a_{1}\right)=(4 n-1) N+1 \\
& f^{*}\left(v_{i} a_{i+1}\right)=(4 n-4 i-1) N+1 \text { for } 1 \leq i \leq n-1, \\
& f^{*}\left(a_{i} v_{i}\right)=(4 n-4 i+1) N+1 \text { for } 1 \leq i \leq n \\
& f^{*}\left(v_{0} b_{1}\right)=(4 n-2) N+1, \\
& f^{*}\left(v_{i} b_{i+1}\right)=(4 n-4 i-2) N+1 \text { for } 1 \leq i \leq n-1, \\
& f^{*}\left(b_{i} v_{i}\right)=(4 n-4 i) N+1 \text { for } 1 \leq i \leq n
\end{aligned}
$$

Therefore, f is a one modulo N -difference mean labeling and hence $\operatorname{DS}(n)$ is a one modulo N -difference mean graph. A one modulo N -difference mean labeling of $D S(5)$ is shown in Figure 4.

Figure 4. One modulo N-difference mean labeling of $\operatorname{DS}(5)$.

Theorem 2.6. The quadrilateral snake $Q_{n}(n>1)$ is a one modulo N-difference mean graph.

Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of the path P_{n} of length $n-1$.
Then $\left\{u_{i}, x_{j}, y_{j}: 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$ be the vertices of and $\left\{u_{i} u_{i+1}, u_{i} x_{i}, u_{i+1} y_{i}, x_{i} y_{i}: 1 \leq i \leq n-1\right\}$ be the edges of Q_{n}.

Define $f: V\left(Q_{n}\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(4 n-5)+1\}$ by
$f\left(u_{1}\right)=0$,
For $2 \leq i \leq n$,
$f\left(u_{i}\right)= \begin{cases}(3 i-1) N & \text { if } i \text { is odd } \\ (8 n-5 i-2) N+1 & \text { if } i \text { is even }\end{cases}$
$f\left(x_{1}\right)=2(4 n-5) N+1$,
For $2 \leq i \leq n-1$,
$f\left(x_{i}\right)= \begin{cases}(8 n-5 i-3) N+1 & \text { if } i \text { is odd } \\ 3 i N & \text { if } i \text { is even }\end{cases}$
For $1 \leq i \leq n-1$,
$f\left(y_{i}\right)= \begin{cases}(3 i+1) N & \text { if } i \text { is odd } \\ (8 n-5 i-6) N+1 & \text { if } i \text { is even }\end{cases}$
Then the induced edge labels are
$f^{*}\left(u_{1} u_{2}\right)=[4 n-6] N+1$
For $2 \leq i \leq n-1$,
$f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}{[4(n-i)-3] N+1} & \text { if } i \text { is odd } \\ {[4(n-i)-2] N+1} & \text { if } i \text { is even }\end{cases}$

$$
f^{*}\left(x_{1} y_{1}\right)=(4 n-7) N+1,
$$

For $2 \leq i \leq n-1$,
$f^{*}\left(x_{i} y_{i}\right)= \begin{cases}{[4(n-i)-2] N+1} & \text { if } i \text { is odd } \\ {[4(n-i)-3] N+1} & \text { if } i \text { is even }\end{cases}$
$f^{*}\left(u_{i} x_{i}\right)=[4(n-i)-1] N+1$ for $1 \leq i \leq n-1$,
$f^{*}\left(u_{i+1} y_{i}\right)=[4(n-i-1)] N+1$ for $1 \leq i \leq n-1$.
Therefore, f is a one modulo N -difference mean labeling and hence Q_{n} is a one modulo N -difference mean graph.

Figure 5 shows a one modulo N -difference mean labeling of Q_{7}.

Figure 5. One modulo N-difference mean labeling of Q_{7}.
Theorem 2.7. The alternately quadrilateral snake $A\left(Q_{n}\right)(n>1)$ is a one modulo N-difference mean graph.

Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of the path P_{n} of length $n-1$.
Let $n=2 m$.
Then $\left\{u_{i}, x_{j}, y_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ be the vertices of and $\left\{u_{i} u_{i+1}, u_{i} x_{j}, u_{i} y_{j}, x_{j} y_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ be the edges of $A\left(Q_{n}\right)$.
Define $f: V\left(A\left(Q_{n}\right)\right) \rightarrow\left\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N\left(2 n+\frac{n}{2}-2\right)+1\right\}$ by
$f\left(u_{1}\right)=0$,
For $2 \leq i \leq n$,
$f\left(u_{i}\right)= \begin{cases}2 N i & \text { if } i \text { is odd } \\ (5 n-3 i) N+1 & \text { if } i \text { is even }\end{cases}$
$f\left(x_{1}\right)=(5 n-4) N+1$,
$f\left(x_{j}\right)=(5 n-6 j+4) N+1$ for $2 \leq j \leq m$,
$f\left(y_{j}\right)=4 N j$ for $1 \leq j \leq m$.
Then the induced edge labels are
For $1 \leq i \leq n-1$,
$f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}{\left[2 n+\frac{n-5 i-3}{2}\right] N+1} & \text { if } i \text { is odd } \\ {\left[2 n+\frac{n-5 i-2}{2}\right] N+1} & \text { if } i \text { is even }\end{cases}$
$f^{*}\left(x_{j} y_{j}\right)=(2 n+m-5 j+2) N+1$ for $1 \leq j \leq m$,
$f^{*}\left(u_{i} x_{i+1}^{2}\right)=\left[2 n+\frac{n-5 i+1}{2}\right] N+1$ if i is odd and $1 \leq i \leq n-1$,
$f^{*}\left(u_{i} y_{i}\right)=\left[2 n+\frac{n-5 i}{2}\right] N+1$ if i is even and $2 \leq i \leq n-2$.

Therefore, f is a one modulo N -difference mean labeling and hence $A\left(Q_{n}\right)$ is a one modulo N -difference mean graph.

Figure 6 shows a one modulo N -difference mean labeling of $A\left(Q_{8}\right)$.

Figure 6. One modulo N -difference mean labeling of $A\left(Q_{8}\right)$.

Theorem 2.8. The graph $J l_{n}\left(P_{3}\right)(n \geq 1)$ is a one modulo N-difference mean graph.

Proof. Let $v_{0}^{i}, v_{1}^{i}, v_{2}^{i}(1 \leq i \leq n)$ be the vertices of the n copies of the path P_{3}.
Then the graph $J l_{n}\left(P_{3}\right)$ is obtained by identifying $v_{0}^{i}=u$ and $v_{2}^{i}=v$.
Define $f: V\left(J l_{n}\left(P_{3}\right)\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(2 n-1)+1\}$ as follows:

$$
\begin{aligned}
& f(u)=0, \\
& f(v)=2 N, \\
& f\left(v_{i}^{1}\right)=(4 i-2) N+1 \text { for } 1 \leq i \leq n .
\end{aligned}
$$

Then the induced edge labels are
$f^{*}\left(x_{1} u\right)=0$,
$f^{*}\left(x_{i} v\right)=2(i-1) N+1$ for $2 \leq i \leq n$,
$f^{*}\left(u x_{i}\right)=(2 i-1) N+1$ for $1 \leq i \leq n$.
Therefore, f is a one modulo N-difference mean labeling and hence $J l_{n}\left(P_{3}\right)$ is a one modulo N -difference mean graph.

Figure 7 shows a one modulo N -difference mean labeling of $J l_{n}\left(P_{3}\right)$.

Figure 7. One modulo N -difference mean labeling of $J l_{5}\left(P_{3}\right)$.

Theorem 2.9. The corona graph $C_{4} \odot K_{1, n}(n \geq 1)$ is a one modulo N-difference mean graph.

Proof. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices of cycle C_{4} and $\left\{v_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq 4\right\}$ be the vertices of the four stars $K_{1, n}$.

Define $\quad f: V\left(C_{n} \odot K_{1, n}\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(4 n+3)+1\} \quad$ as follows:

We label the vertices of C_{4} as follows:

$$
\begin{aligned}
& f\left(v_{1}\right)=0 \\
& f\left(v_{2}\right)=2(4 n+3) N+1 \\
& f\left(v_{3}\right)=4 N \\
& f\left(v_{4}\right)=4(2 n+1) N+1
\end{aligned}
$$

Now, we label the vertices of $K_{1, n}$ as follows:
$f\left(v_{i}^{1}\right)=2(i-1) N+1$ for $1 \leq i \leq n$,
$f\left(v_{i}^{2}\right)=2 N(3 n-i+4)$ for $1 \leq i \leq n$,
$f\left(v_{i}^{3}\right)=2(2 n+i+1) N+1$ for $1 \leq i \leq n$,
$f\left(v_{i}^{4}\right)=2 N(n-i+3)$ for $1 \leq i \leq n$.
Let $e_{i}=\left\{v_{i} v_{i+1}: 1 \leq i \leq 3\right\}$ and $e_{i}^{j}=\left\{v_{j} v_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq 4\right\}$.
Then the induced edge labels are
$f^{*}\left(e_{1}\right)=(4 n+3) N+1$,
$f^{*}\left(e_{2}\right)=(4 n+1) N+1$,
$f^{*}\left(e_{3}\right)=4 n N+1$,
$f^{*}\left(v_{4} v_{1}\right)=(4 n+2) N+1$,
$f^{*}\left(e_{i}^{j}\right)=[(j-1) n+i-1] N+1$ for $1 \leq i \leq n, \quad 1 \leq j \leq 4$.
Therefore, f is a one modulo N -difference mean labeling. Hence, $C_{4} \odot K_{1, n}$ is a one modulo N -difference mean graph.

Figure 8 shows a one modulo N -difference mean labeling of $C_{4} \odot K_{1,3}$.

Figure 8. One modulo N-difference mean labeling of $C_{4} \odot K_{1,3}$.

Theorem 2.10. The graph $D U P_{2}\left(K_{1, n}\right), n \geq 2$ is a one modulo N-difference mean graph.

Proof. Let $\left\{v, v_{i}(1 \leq i \leq n), u, u_{i}(1 \leq i \leq n)\right\} \quad$ be the vertices and $\left\{v v_{i}, u u_{i}, v_{i} u: 1 \leq i \leq n\right\}$ be the edges of $D U P_{2}\left(K_{1, n}\right)$.
Now, the vertex labels are defined as follows:
Define $f: V\left(D U P_{2}\left(K_{1, n}\right)\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(3 n-1)+1\}$ by
$f(v)=2 N(2 n-1)$,
$f(u)=0$,
$f\left(v_{i}\right)=2 N(2 n-i)+1$ for $1 \leq i \leq n$,
$f\left(u_{i}\right)=2 N(3 n-i)+1$ for $1 \leq i \leq n$.
Then the induced edge labels are

$$
\begin{aligned}
& f^{*}\left(v v_{i}\right)=N(i-1)+1 \text { for } 1 \leq i \leq n, \\
& f^{*}\left(u u_{i}\right)=N(3 n-i)+1 \quad \text { for } \quad 1 \leq i \leq n, \\
& f^{*}\left(v_{i} u\right)=N(2 n-i)+1 \text { for } \quad 1 \leq i \leq n .
\end{aligned}
$$

Therefore, f is a one modulo N-difference mean labeling. Hence, $D U P_{2}\left(K_{1, n}\right)$ is a one modulo N -difference mean graph. Figure 9 shows a one modulo N -difference mean labeling of $D U P_{2}\left(K_{1,7}\right)$.

Figure 9. One modulo N-difference mean labeling of $D U P_{2}\left(K_{1,7}\right)$.

Theorem 2.11. The graph $D U P_{2}\left(B_{n, n}\right), n \geq 2$ is a one modulo N-difference mean graph.

Proof. Let $\left\{v, v^{\prime}, v_{i}, v_{i}^{\prime}, u, u^{\prime}, u_{i}, u_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the vertices and
$\left\{v v_{i}, u u_{i}, v_{i} u, v^{\prime} v_{i}^{\prime}, u^{\prime} u_{i}^{\prime}, v_{i}^{\prime} u^{\prime}, v u^{\prime}, u u^{\prime}, u v^{\prime}: 1 \leq i \leq n\right\}$ be the edges of $D U P_{2}\left(B_{n, n}\right)$.
Now, the vertex labels are defined as follows:
Define $\quad f: V\left(D U P_{2}\left(B_{n, n}\right)\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(6 n+2)+1\}$ by

$$
\begin{aligned}
& f(v)=2 N, \\
& f(u)=0, \\
& f\left(v_{i}\right)=4 N(3 n-i+2)+1 \text { for } 1 \leq i \leq n, \\
& f\left(u_{i}\right)=2 N(4 n-i+3)+1 \text { for } 1 \leq i \leq n, \\
& f\left(v^{\prime}\right)=4 N+1, \\
& f\left(u^{\prime}\right)=2 N+1, \\
& f\left(v_{i}^{\prime}\right)=2 N(2 n-i+4) \text { for } 1 \leq i \leq n, \\
& f\left(u_{i}^{\prime}\right)=2 N(3 n-i+4) \text { for } 1 \leq i \leq n .
\end{aligned}
$$

Then the induced edge labels are
$f^{*}\left(v v_{i}\right)=(6 n-2 i+3) N+1$ for $1 \leq i \leq n$,
$f^{*}\left(u u_{i}\right)=(4 n-i+3) N+1$ for $1 \leq i \leq n$,
$f^{*}\left(v_{i} u\right)=(6 n-2 i+4) N+1$ for $1 \leq i \leq n$,
$f^{*}\left(v^{\prime} v_{i}^{\prime}\right)=[2(n-i)+3] N+1$ for $1 \leq i \leq n$,
$f^{*}\left(u^{\prime} u_{i}^{\prime}\right)=(3 n-i+3) N+1$ for $1 \leq i \leq n$,
$f^{*}\left(v_{i}^{\prime} u^{\prime}\right)=2(n-i+2) N+1$ for $1 \leq i \leq n$,
$f^{*}\left(u u^{\prime}\right)=N+1, f^{*}\left(v u^{\prime}\right)=1, \quad f^{*}\left(u v^{\prime}\right)=2 N+1$.
Therefore, f is a one modulo N -difference mean labeling. Hence, $D U P_{2}\left(B_{n, n}\right)$ is a one modulo N -difference mean graph. Figure 10 shows a one modulo N -difference mean labeling of $\operatorname{DUP}_{2}\left(B_{5,5}\right)$.

Figure 10. One modulo N -difference mean labeling of $\operatorname{DUP_{2}}\left(B_{5,5}\right)$.
Theorem 2.12. The friendship graph $C_{4}^{(n)}, n \geq 1$ is a one modulo N-difference mean graph.
Proof. Let $v_{1}^{j}, v_{2}^{j}, v_{3}^{j}, v_{4}^{j}(1 \leq j \leq n)$ be the vertices of the cycle C_{4}. Then the graph $C_{4}^{(n)}$ is obtained by identifying the vertices $v_{1}^{j}=v_{1}$ for $(1 \leq j \leq n)$.

Then $E\left(C_{4}^{(n)}\right)=\left\{v_{i}^{j} v_{i+1}^{j}, v_{4}^{j} v_{1}^{j}: 1 \leq i \leq 3,1 \leq j \leq n\right\}$.
We label the vertices as follows:

Define $f: V\left(C_{4}^{(n)}\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(4 n-1)+1\}$ by
$f\left(v_{1}\right)=0$,
$f\left(v_{2}^{j}\right)=2 N(4 n-2 j+1)+1$ for $1 \leq j \leq n$,
$f\left(v_{3}^{1}\right)=2 N(4 n-1)$,
$f\left(v_{3}^{j}\right)=4 N[2(n-j)+1]$ for $1 \leq j \leq n$,
$f\left(v_{4}^{j}\right)=2 N(4 n-2 j)+1$ for $1 \leq j \leq n$.
Then the induced edge labels are
$f^{*}\left(v_{1} v_{2}^{j}\right)=N(4 n-2 j+1)+1$ for $1 \leq j \leq n$,
$f^{*}\left(v_{2}^{1} v_{3}^{1}\right)=1, \quad f^{*}\left(v_{3}^{1} v_{4}^{1}\right)=N+1$,
$f^{*}\left(v_{2}^{j} v_{3}^{j}\right)=N(2 j-1)+1$ for $2 \leq j \leq n$,
$f^{*}\left(v_{3}^{j} v_{4}^{j}\right)=2 N(j-1)+1$ for $2 \leq j \leq n$,
$f^{*}\left(v_{4}^{j} v_{1}^{j}\right)=N(4 n-2 j)+1$ for $1 \leq j \leq n$.
Therefore, f is a one modulo N -difference mean labeling. Hence, the graph $C_{4}^{(n)}$ is a one modulo N-difference mean graph. Figure 11 shows a one modulo N -difference mean labeling of $C_{4}^{(5)}$.

Figure 11. One modulo N -difference mean labeling of $C_{4}^{(5)}$.
Theorem 2.13. The graph $n C_{4}, n \geq 1$ is a one modulo N-difference mean graph.

Proof. Let $v_{1}^{j}, v_{2}^{j}, v_{3}^{j}, v_{4}^{j}(1 \leq j \leq n)$ be the vertices of n copies of the cycle C_{4}.
Then $E\left(n C_{4}\right)=\left\{v_{i}^{j} v_{i+1}^{j}, v_{4}^{j} v_{1}^{j}: 1 \leq i \leq 3,1 \leq j \leq n\right\}$.
We label the vertices as follows:
Define $f: V\left(n C_{4}\right) \rightarrow\{0,1, N, N+1,2 N, 2 N+1, \cdots, 2 N(4 n-1)+1\}$ by
$f\left(v_{1}^{j}\right)=(i-1) N$ for $1 \leq j \leq n$,
$f\left(v_{2}^{j}\right)=N(8 n-3 j+1)+1$ for $1 \leq j \leq n$,
$f\left(v_{3}^{j}\right)=N(8 n-7 j+3)$ for $1 \leq j \leq n$,

$$
f\left(v_{4}^{j}\right)=N(8 n-3 j-1)+1 \text { for } 1 \leq j \leq n
$$

Then the induced edge labels are
$f^{*}\left(v_{1}^{j} v_{2}^{j}\right)=N(4 n-2 j+1)+1$ for $1 \leq j \leq n$,
$f^{*}\left(v_{2}^{j} v_{3}^{j}\right)=N(2 j-1)+1$ for $2 \leq j \leq n$,
$f^{*}\left(v_{3}^{j} v_{4}^{j}\right)=2 N(j-1)+1$ for $2 \leq j \leq n$,
$f^{*}\left(v_{4}^{j} v_{1}^{j}\right)=N(4 n-2 j)+1$ for $1 \leq j \leq n$.
Therefore, f is a one modulo N -difference mean labeling. Hence, the graph $n C_{4}$ is a one modulo N -difference mean graph. Figure 12 shows a one modulo N -difference mean labeling of $6 C_{4}$.

Figure 12. One modulo N -difference mean labeling of $6 C_{4}$.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Harary, F. (1972) Graph Theory. Addison Wesley, Massachusetts.
[2] Somasundram, S. and Ponraj, R. (2003) Mean Labeling of Graphs. National Academy Science Letter, 26, 210-213.
[3] Gallian, J.A. (2022) A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 25, 1-623. https://doi.org/10.37236/11668
[4] Murugan, K. and Subramanian, A. (2011) Skolem Difference Mean Labeling of H-Graphs. International Journal of Mathematics and Soft Computing, 1, 115-129.
[5] Ramachandran, V. and Sekar, C. (2014) One Modulo N-Gracefulness of Arbitrary Super Subdivisions of Graphs. International Journal of Mathematical Combinatorics, 2, 36-46.
[6] Jeyanthi, P., Selvi, M. and Ramya, D. (2023) One Modulo N-Difference Mean Graphs. Palestine Journal of Mathematics, 12, 161-168.

