

# **New Results on One Modulo N-Difference Mean** Graphs

## Pon Jeyanthi<sup>1</sup>, Meganathan Selvi<sup>2</sup>, Damodaran Ramya<sup>3</sup>

<sup>1</sup>Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Tamilnadu, India <sup>2</sup>Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur, Tamilnadu, India <sup>3</sup>Department of Mathematics, Government Arts College (Autonomous), Salem-7, Tamilnadu, India Email: jeyajeyanthi@rediffmail.com, selvm80@yahoo.in, aymar\_padma@yahoo.co.in

How to cite this paper: Jeyanthi, P., Selvi, M. and Ramya, D. (2023) New Results on One Modulo N-Difference Mean Graphs. Open Journal of Discrete Mathematics, 13, 100-112

https://doi.org/10.4236/ojdm.2023.134010

Received: June 22, 2023 Accepted: October 21, 2023 Published: October 24, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/ **Open Access** 

 $(\mathbf{i})$ 

## Abstract

A graph G is said to be one modulo N-difference mean graph if there is an injective function *f* from the vertex set of *G* to the set

 $\{a \mid 0 \le a \le 2(q-1)N+1 \text{ and either } a \equiv 0 \pmod{N} \text{ or } a \equiv 1 \pmod{N} \}$ , where N is the natural number and q is the number of edges of G and f induces a bijection  $f^*$  from the edge set of G to  $\{a/1 \le a \le (q-1)N + 1 \text{ and } a \equiv 1 \pmod{N}\}$  giv-

en by  $f^*(uv) = \left[\frac{|f(u) - f(v)|}{2}\right]$  and the function *f* is called a one modulo

N-difference mean labeling of G. In this paper, we show that the graphs such as arbitrary union of paths,  $M_2(P_n)(n \ge 2)$ , ladder, slanting ladder, diamond snake, quadrilateral snake, alternately quadrilateral snake,  $Jl_n(P_3)(n \ge 1)$ ,  $C_4 \odot K_{1n}(n \ge 1)$ ,  $DUP_2(K_{1n})$ ,  $DUP_2(B_{nn})$ , friendship graph and  $nC_4$  ( $n \ge 1$ ) admit one modulo N-difference mean labeling.

## **Keywords**

Skolem Difference Mean Labeling, One Modulo N-Graceful Labeling, One Modulo N-Difference Mean Labeling and One Modulo N-Difference Mean Graph

# 1. Introduction and Preliminaries

Here we consider only finite and simple graphs. The vertex set and the edge set of a graph G are denoted by V(G) and E(G) respectively. For various graph theoretic notations and terminology we follow [1]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. The concept of mean labeling was introduced in [2]. Since then, several results have been published on mean labeling and its variations [3]. In 2014, the concept of skolem difference mean labeling, one of the variations of mean labeling was due to Murugan *et al.* [4]. A graph G = (V, E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices  $x \in V$  with distinct elements f(x) from  $\{1, 2, 3, \dots, p+q\}$  in such a way that for each edge e = uv, let  $f^*(e) = \left\lfloor \frac{|f(u) - f(v)|}{2} \right\rfloor$  and the resulting labels of the edges are distinct

and are  $1,2,3,\dots,q$ . A graph that admits a skolem difference mean labeling is called skolem difference mean graph. The concept of one modulo N-graceful labeling was introduced by Ramachandran *et al.* [5]. A function *f* is called a graceful labeling of a graph *G* with *q* edges if *f* is an injection from the vertices of *G* to the set  $\{0,1,2,\dots,q\}$  such that, when each edge *xy* is assigned with the label |f(x) - f(y)|, the resulting edge labels are distinct. A graph *G* is said to be one modulo N graceful (where *N* is a positive integer) if there is a function  $\varphi$  from the vertex set of *G* to  $\{0,1,N,(N+1),2N,(2N+1),\dots,N(q-1),N(q-1)+1\}$  in such a way that 1)  $\varphi$  is 1-1; 2)  $\varphi$  induces a bijection  $\varphi^*$  from the edge set of *G* to  $\{1,N+1,2N+1,\dots,N(q-1)+1\}$  where  $\varphi^*(uv) = |\varphi(u) - \varphi(v)|$ .

Motivated by the concepts of skolem difference mean labeling and one modulo N-graceful labeling and the results in [4] [5], we introduced a new labeling namely "one modulo N-difference mean labeling" in [6] and established that the graphs  $B_{m,n}$ ,  $S_{m,n}$ ,  $P_n @ P_m$ , B(l,m,n), T(n,m), shrub, caterpillar and  $K_{1,n}$ are one modulo N-difference mean graphs. In addition, we showed that the graph  $C_3$  is not a one modulo N-difference mean graph. In this paper, we further study on one modulo N-difference mean labeling and show that some more graphs admit one modulo N-difference mean labeling.

We use the following definitions in the subsequent sequel.

**Definition 1.1.** Let G = (V, E) be a graph and G' = (V', E') be the copy of G. Then the graph  $M_2(G)$  of G is obtained from G and G' by joining each vertices in V to its corresponding vertices in V' by an edge.

**Definition 1.2.** The slanting ladder graph  $SL_n$  is obtained from two paths  $u_1, u_2, u_3, \dots, u_n$  and  $v_1, v_2, v_3, \dots, v_n$  by joining  $u_i$  with  $v_{i+1}$  for  $1 \le i \le n-1$ .

**Definition 1.3.** Let G = (V, E) be a bipartite graph with  $V = V_1 \cup V_2$ . Let G' = (V', E') be the copy of G with  $V' = V'_1 \cup V'_2$  such that  $V'_1$  and  $V'_2$  be the copies of  $V_1$  and  $V_2$ . Then the graph  $DUP_2(G)$  is obtained from G and G' such that  $V(DUP_2(G)) = V \cup V'$  and

 $E(DUP_2(G)) = E(G) \cup E(G') \cup \{v'_i v_j \mid v_i v_j \in E(G) \text{ where } v'_i \in V', v_j \in V\}. \text{ That is,} DUP_2(G) \text{ is obtained from } G \text{ and } G' \text{ by joining each } v'_i \in V' \text{ to } v_j \in V \text{ if } v_i \text{ is adjacent to } v_j \text{ in } G.$ 

**Definition 1.4.** A quadrilateral snake graph  $Q_n$  is obtained from a path  $u_1, u_2, \dots, u_n$  by joining  $u_i$  and  $u_{i+1}$  to two new vertices  $x_i, y_i$  respectively and then joining  $x_i$  and  $y_i$ .

Definition 1.5. An alternate quadrilateral snake is obtained from a path

 $u_1, u_2, \dots, u_n$  by joining  $u_i$  and  $u_{i+1}$  to new vertices  $x_i$  and  $y_i$  respectively and then joining the vertices  $x_i$  and  $y_i$  for  $i \equiv 1 \pmod{2}$  and  $1 \le i \le n-1$ . That is, every alternate edge of a path is replaced by cycle  $C_4$ .

**Definition 1.6.** Let  $P_3$  be a path of length 2 with vertices  $v_0, v_1, v_2$ . The graph  $JI_n(P_3)$  is obtained by taking *n* copies of  $P_3$  and then identifying the left end vertices  $v_0^i (1 \le i \le n)$  with *u* and the right end vertices  $v_2^i (1 \le i \le n)$  with *v*.

**Definition 1.7.** Two graphs G and H are isomorphic (written  $G \simeq H$ ) if there exists a one-to-one correspondence between their vertex sets which preserves adjacency.

**Definition 1.8.** The union of two graphs  $G_1$  and  $G_2$  is a graph  $G_1 \cup G_2$ with  $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$  and  $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$ .

**Definition 1.9.** The corona  $G_1 \odot G_2$  of the graphs  $G_1$  and  $G_2$  is obtained by taking one copy of  $G_1$  (with *p* vertices) and *p* copies of  $G_2$  and then joining the *i*th vertex of  $G_1$  to every vertex of the *i*th copy of  $G_2$ .

**Definition 1.10.** Let  $C_n$  be the cycle with vertices  $v_1, v_2, \dots, v_n$ . The graph  $C_n^{(t)}$  is obtained by taking *t* copies of  $C_n$  and then identifying the vertices  $v_1^{(i)}$  for  $1 \le i \le t$ .

## 2. Main Results

**Theorem 2.1.** The disjoint union of paths  $\bigcup P_{n_i}$  ( $n_i \ge 2$ , is an integer) is a one modulo N-difference mean graph.

*Proof.* Let  $n_i$  be the vertices of the path  $P_{n_i}$  for  $1 \le i \le m$  and  $n = n_1 + n_2 + \dots + n_m$ .

Define  $f: V(\bigcup P_{n_i}) \rightarrow \{0, 1, N, N+1, 2N, 2N+1, \cdots, 2N(n-m-1)+1\}$  as follows:

$$f(u_{i,j}) = N\left[\sum_{k=l(n_k \text{ is odd})}^{i-1} (n_k - 1) + \sum_{k=l(n_k \text{ is even})}^{i-1} (n_k - 2) + i + j - 2\right] \text{ if } j \text{ is odd,}$$
  
$$f(u_{i,j}) = \left[2(n - m - 1) + i - j - 1 - \sum_{k=l(n_k \text{ is odd})}^{i-1} (n_k - 1) - \sum_{k=l(n_k \text{ is even})}^{i-1} n_k\right] N + 1$$

if *j* is even.

Let  $e_{i,j} = u_{i,j}u_{i,j+1}$  for  $1 \le i \le m$  and  $1 \le j \le n_i - 1$ .

The corresponding edge label  $f^*$  is

$$f^*(e_{i,j}) = N(n-m-\sum_{k=1}^{i-1}n_k+i-j-1)+1$$
 for  $1 \le i \le m$  and  $1 \le j \le n_i-1$ .

Therefore, *f* is a one modulo N-difference mean labeling. Hence,  $\bigcup P_{n_i}$  is a one modulo N-difference mean graph.

Figure 1 shows a one modulo N-difference mean labeling of

 $P_4 \cup P_5 \cup P_6 \cup P_2 \cup P_3 \cup P_8$ .

**Theorem 2.2.** The graph  $M_2(P_n)(n \ge 2)$  is a one modulo N-difference mean graph.

*Proof.* Let  $\{v_i, v'_i : 1 \le i \le n\}$  be the vertices and  $\{e_i, e'_i, a_i = v_i v'_i : 1 \le i \le n\}$  be the edges of the graph  $M_2(P_n)$ . Then the graph has 2n vertices and 3n-2 edges.

Define  $f: V(M_2(P_n)) \rightarrow \{0, 1, N, N+1, 2N, 2N+1, \dots, 2N(3n-3)+1\}$  by  $f(v_1) = 0$ ,



**Figure 1.** One modulo N-difference mean labeling of  $P_4 \cup P_5 \cup P_6 \cup P_2 \cup P_3 \cup P_8$ .

For 
$$2 \le i \le n$$
,  

$$f(v_i) = \begin{cases} (3i-5)N & \text{if } i \text{ is odd} \\ 3N(2n-i)+1 & \text{if } i \text{ is even} \end{cases}$$
For  $1 \le i \le n$ ,  

$$f(v'_i) = \begin{cases} (6n-3i-2)N+1 & \text{if } i \text{ is odd} \\ 3iN & \text{if } i \text{ is even} \end{cases}$$
Then the induced edge labels are

Then the induced edge labels are

 $f^{*}(e_{i}) = 3(n-1)N+1,$   $f^{*}(e_{i}) = \begin{bmatrix} 3(n-i)+1 \end{bmatrix}N+1 \text{ for } 2 \le i \le n,$   $f^{*}(e_{i}') = \begin{bmatrix} 3(n-i)-4 \end{bmatrix}N+1 \text{ for } 1 \le i \le n,$   $f^{*}(v_{1}v_{1}') = \begin{bmatrix} 3(n-4) \end{bmatrix}N+1,$  $f^{*}(a_{i}) = \begin{bmatrix} 3(n-i) \end{bmatrix}N+1 \text{ for } 2 \le i \le n.$ 

Therefore, f is a one modulo N-difference mean labeling and hence  $M_2(P_n)$  is a one modulo N-difference mean graph.

**Figure 2** shows a one modulo N-difference mean labeling of  $M_2(P_5)$ .



**Figure 2.** One modulo N-difference mean labeling of  $M_2(P_5)$ .

**Corollary 2.3.** The ladder graph  $P_n \times P_2$  is a one modulo N-difference mean graph.

**Theorem 2.4.** The slanting ladder  $SL_n (n \ge 2)$  is a one modulo N-difference mean graph.

*Proof.* Let  $u_1, u_2, u_3, \dots, u_n$  and  $v_1, v_2, v_3, \dots, v_n$  be the vertices of the path of length n-1. Then  $E(SL_n) = \{u_i u_{i+1}, v_i v_{i+1}, u_i v_{i+1} : 1 \le i \le n-1\}$ . Define  $f: V(SL_n) \to \{0, 1, N, N+1, 2N, 2N+1, \dots, 2N(3n-4)+1\}$  by For  $1 \le i \le n$ ,  $f(u_i) = \begin{cases} 2(i-1)N & \text{if } i \text{ is odd} \\ 2N[3n-2(i+1)]+1 & \text{if } i \text{ is even} \end{cases}$  $f(v_1) = \begin{cases} 2(3n-4)N & \text{if } n \text{ is odd} \\ 2(3n-5)N & \text{if } n \text{ is even} \end{cases}$ For  $2 \le i \le n$ ,  $f(v_i) = \begin{cases} 2(i-2)N & \text{if } i \text{ is odd} \\ 2N[3n-2i]+1 & \text{if } i \text{ is even} \end{cases}$ Then the induced edge labels are For  $1 \le i \le n-1$ ,  $f^*(u_i u_{i+1}) = \begin{cases} 3N(n-i-1)+1 & \text{if } i \text{ is odd} \\ N[3(n-i)-2]+1 & \text{if } i \text{ is even} \end{cases}$  $f^*(v_1v_2) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ N+1 & \text{if } n \text{ is even} \end{cases}$ For  $2 \le i \le n-1$ ,  $f^*(v_i v_{i+1}) = \begin{cases} 3N(n-i)+1 & \text{if } i \text{ is odd} \\ N[3(n-i)+1]+1 & \text{if } i \text{ is even} \end{cases}$  $f^*(u_i v_{i+1}) = N [3(n-i)-1] + 1$  for  $1 \le i \le n-1$ . Therefore, f is a one modulo N-difference mean labeling and hence  $SL_n$  is a one modulo N-difference mean graph. **Figure 3** shows a one modulo N-difference mean labeling of  $SL_{10}$ .



**Figure 3.** One modulo N-difference mean labeling of  $SL_{10}$ .

**Theorem 2.5.** The diamond snake graph  $DS(n)(n \ge 1)$  is a one modulo *N*-difference mean graph.

Proof. Let  $\{v_0, v_i, a_i, b_i : 1 \le i \le n\}$  be the vertices and  $\{v_0a_1, v_0b_1, v_ia_{i+1}, a_iv_i, v_ib_{i+1}, b_iv_i : 1 \le i \le n\}$  be the edges of the diamond snake graph which has 4n - 4 vertices and 4n edges. Define  $f: V(DS(n)) \rightarrow \{0, 1, N, N+1, 2N, 2N+1, \dots, 2N(4n-1)+1\}$  by  $f(v_0) = 0$ ,  $f(v_i) = 4iN$  for  $1 \le i \le n$ , 
$$\begin{split} f\left(a_{i}\right) &= 2N(4n-2i+1)+1 \text{ for } 1 \leq i \leq n, \\ f\left(b_{i}\right) &= 4N(2n-i)+1 \text{ for } 1 \leq i \leq n. \\ \end{split}$$
Then the induced edge labels are  $f^{*}\left(v_{i}a_{i+1}\right) &= (4n-1)N+1, \\ f^{*}\left(v_{i}a_{i+1}\right) &= (4n-4i-1)N+1 \text{ for } 1 \leq i \leq n-1, \\ f^{*}\left(a_{i}v_{i}\right) &= (4n-4i+1)N+1 \text{ for } 1 \leq i \leq n, \\ f^{*}\left(v_{0}b_{1}\right) &= (4n-2)N+1, \\ f^{*}\left(v_{0}b_{i+1}\right) &= (4n-4i-2)N+1 \text{ for } 1 \leq i \leq n-1, \\ f^{*}\left(b_{i}v_{i}\right) &= (4n-4i)N+1 \text{ for } 1 \leq i \leq n. \end{split}$ 





**Figure 4.** One modulo N-difference mean labeling of DS(5).

**Theorem 2.6.** The quadrilateral snake  $Q_n(n > 1)$  is a one modulo N-difference mean graph.

*Proof.* Let  $u_1, u_2, \dots, u_n$  be the vertices of the path  $P_n$  of length n-1. Then  $\{u_i, x_i, y_i: 1 \le i \le n, 1 \le j \le n-1\}$  be the vertices of and  $\{u_i u_{i+1}, u_i x_i, u_{i+1} y_i, x_i y_i : 1 \le i \le n-1\}$  be the edges of  $Q_n$ . Define  $f: V(Q_n) \to \{0, 1, N, N+1, 2N, 2N+1, \dots, 2N(4n-5)+1\}$  by  $f(u_1) = 0$ , For  $2 \le i \le n$ ,  $f(u_i) = \begin{cases} (3i-1)N & \text{if } i \text{ is odd} \\ (8n-5i-2)N+1 & \text{if } i \text{ is even} \end{cases}$  $f(x_1) = 2(4n-5)N+1$ , For  $2 \leq i \leq n-1$ ,  $f(x_i) = \begin{cases} (8n-5i-3)N+1 & \text{if } i \text{ is odd} \\ 3iN & \text{if } i \text{ is even} \end{cases}$ For  $1 \le i \le n-1$ ,  $f(y_i) = \begin{cases} (3i+1)N & \text{if } i \text{ is odd} \\ (8n-5i-6)N+1 & \text{if } i \text{ is even} \end{cases}$ Then the induced edge labels are  $f^*(u_1u_2) = [4n-6]N+1$ For  $2 \le i \le n-1$ ,  $f^*(u_i u_{i+1}) = \begin{cases} \left[4(n-i)-3\right]N+1 & \text{if } i \text{ is odd} \\ \left[4(n-i)-2\right]N+1 & \text{if } i \text{ is even} \end{cases}$ 

$$f^{*}(x_{1}y_{1}) = (4n-7)N+1,$$
  
For  $2 \le i \le n-1$ ,  
$$f^{*}(x_{i}y_{i}) = \begin{cases} [4(n-i)-2]N+1 & \text{if } i \text{ is odd} \\ [4(n-i)-3]N+1 & \text{if } i \text{ is even} \end{cases}$$
$$f^{*}(u_{i}x_{i}) = [4(n-i)-1]N+1 \text{ for } 1 \le i \le n-1,$$
$$f^{*}(u_{i+1}y_{i}) = [4(n-i-1)]N+1 \text{ for } 1 \le i \le n-1.$$

Therefore, f is a one modulo N-difference mean labeling and hence  $Q_n$  is a one modulo N-difference mean graph.

**Figure 5** shows a one modulo N-difference mean labeling of  $Q_7$ .



**Figure 5.** One modulo N-difference mean labeling of  $Q_7$ .

**Theorem 2.7.** The alternately quadrilateral snake  $A(Q_n)(n > 1)$  is a one modulo N-difference mean graph.

*Proof.* Let  $u_1, u_2, \dots, u_n$  be the vertices of the path  $P_n$  of length n-1. Let n = 2m. Then  $\{u_i, x_j, y_j : 1 \le i \le n, 1 \le j \le m\}$  be the vertices of and  $\left\{u_i u_{i+1}, u_i x_j, u_i y_j, x_j y_j : 1 \le i \le n, 1 \le j \le m\right\} \text{ be the edges of } A(Q_n).$ Define  $f: V(A(Q_n)) \rightarrow \left\{0, 1, N, N+1, 2N, 2N+1, \dots, 2N\left(2n+\frac{n}{2}-2\right)+1\right\}$  by  $f(u_1)=0,$ For  $2 \le i \le n$ ,  $f(u_i) = \begin{cases} 2Ni & \text{if } i \text{ is odd} \\ (5n-3i)N+1 & \text{if } i \text{ is even} \end{cases}$  $f(x_1) = (5n-4)N+1$ ,  $f(x_j) = (5n-6j+4)N+1$  for  $2 \le j \le m$ ,  $f(y_i) = 4Nj$  for  $1 \le j \le m$ . Then the induced edge labels are For  $1 \le i \le n-1$ ,  $f^*(u_i u_{i+1}) = \begin{cases} \left[2n + \frac{n-5i-3}{2}\right]N+1 & \text{if } i \text{ is odd} \\ \left[2n + \frac{n-5i-2}{2}\right]N+1 & \text{if } i \text{ is even} \end{cases}$  $f^*(x_j y_j) = (2n + m - 5j + 2)N + 1$  for  $1 \le j \le m$ ,  $f^*\left(u_i x_{i+1} \atop i= \left\lceil 2n + \frac{n-5i+1}{2} \right\rceil N+1 \text{ if } i \text{ is odd and } 1 \le i \le n-1,$  $f^*\left(u_i y_i\right) = \left[2n + \frac{n-5i}{2}\right]N+1$  if *i* is even and  $2 \le i \le n-2$ .

Therefore, f is a one modulo N-difference mean labeling and hence  $A(Q_n)$  is a one modulo N-difference mean graph.

**Figure 6** shows a one modulo N-difference mean labeling of  $A(Q_8)$ .



**Figure 6.** One modulo N-difference mean labeling of  $A(Q_8)$ .

**Theorem 2.8.** The graph  $Jl_n(P_3)(n \ge 1)$  is a one modulo N-difference mean graph.

*Proof.* Let  $v_0^i, v_1^i, v_2^i (1 \le i \le n)$  be the vertices of the *n* copies of the path  $P_3$ .

Then the graph 
$$Jl_n(P_3)$$
 is obtained by identifying  $v_0^i = u$  and  $v_2^i = v$ .

Define  $f: V(Jl_n(P_3)) \rightarrow \{0,1,N,N+1,2N,2N+1,\cdots,2N(2n-1)+1\}$  as follows:

f(u) = 0, f(v) = 2N,  $f(v_i^1) = (4i-2)N+1 \text{ for } 1 \le i \le n.$ Then the induced edge labels are  $f^*(x_1u) = 0,$   $f^*(x_iv) = 2(i-1)N+1 \text{ for } 2 \le i \le n,$  $f^*(ux_i) = (2i-1)N+1 \text{ for } 1 \le i \le n.$ 

Therefore, f is a one modulo N-difference mean labeling and hence  $Jl_n(P_3)$  is a one modulo N-difference mean graph.

**Figure 7** shows a one modulo N-difference mean labeling of  $Jl_n(P_3)$ .



**Figure 7.** One modulo N-difference mean labeling of  $Jl_5(P_3)$ .

**Theorem 2.9.** The corona graph  $C_4 \odot K_{1,n} (n \ge 1)$  is a one modulo *N*-difference mean graph.

*Proof.* Let  $v_1, v_2, v_3, v_4$  be the vertices of cycle  $C_4$  and  $\{v_i^j : 1 \le i \le n, 1 \le j \le 4\}$  be the vertices of the four stars  $K_{1,n}$ .

Define  $f: V(C_n \odot K_{1,n}) \to \{0, 1, N, N+1, 2N, 2N+1, \dots, 2N(4n+3)+1\}$  as follows:

We label the vertices of  $C_4$  as follows:

$$\begin{split} f(v_1) &= 0, \\ f(v_2) &= 2(4n+3)N+1, \\ f(v_3) &= 4N, \\ f(v_4) &= 4(2n+1)N+1. \\ \text{Now, we label the vertices of } K_{1,n} \text{ as follows:} \\ f(v_i^1) &= 2(i-1)N+1 \text{ for } 1 \leq i \leq n, \\ f(v_i^2) &= 2N(3n-i+4) \text{ for } 1 \leq i \leq n, \\ f(v_i^3) &= 2(2n+i+1)N+1 \text{ for } 1 \leq i \leq n, \\ f(v_i^3) &= 2(2n+i+1)N+1 \text{ for } 1 \leq i \leq n, \\ f(v_i^4) &= 2N(n-i+3) \text{ for } 1 \leq i \leq n. \\ \text{Let } e_i &= \{v_i v_{i+1} : 1 \leq i \leq 3\} \text{ and } e_i^j = \{v_j v_i^j : 1 \leq i \leq n, 1 \leq j \leq 4\}. \\ \text{Then the induced edge labels are} \\ f^*(e_1) &= (4n+3)N+1, \\ f^*(e_2) &= (4n+1)N+1, \\ f^*(e_3) &= 4nN+1, \\ f^*(v_4v_1) &= (4n+2)N+1, \\ f^*(e_i^j) &= [(j-1)n+i-1]N+1 \text{ for } 1 \leq i \leq n, 1 \leq j \leq 4. \\ \end{split}$$

Therefore, f is a one modulo N-difference mean labeling. Hence,  $C_4 \odot K_{1,n}$  is a one modulo N-difference mean graph.

**Figure 8** shows a one modulo N-difference mean labeling of  $C_4 \odot K_{1,3}$ .



**Figure 8.** One modulo N-difference mean labeling of  $C_4 \odot K_{1,3}$ .

**Theorem 2.10.** The graph  $DUP_2(K_{1,n}), n \ge 2$  is a one modulo N-difference mean graph.

 $\begin{array}{l} \textit{Proof. Let } \left\{ v, v_i \left( 1 \leq i \leq n \right), u, u_i \left( 1 \leq i \leq n \right) \right\} \text{ be the vertices and} \\ \left\{ vv_i, uu_i, v_i u: 1 \leq i \leq n \right\} \text{ be the edges of } DUP_2 \left( K_{1,n} \right). \\ \text{Now, the vertex labels are defined as follows:} \\ \text{Define } f: V \left( DUP_2 \left( K_{1,n} \right) \right) \rightarrow \left\{ 0, 1, N, N+1, 2N, 2N+1, \cdots, 2N \left( 3n-1 \right) +1 \right\} \text{ by} \\ f \left( v \right) = 2N \left( 2n-1 \right), \\ f \left( u \right) = 0, \\ f \left( v_i \right) = 2N \left( 2n-i \right) +1 \text{ for } 1 \leq i \leq n, \\ f \left( u_i \right) = 2N \left( 3n-i \right) +1 \text{ for } 1 \leq i \leq n. \\ \text{Then the induced edge labels are} \\ f^* \left( vv_i \right) = N \left( i-1 \right) +1 \text{ for } 1 \leq i \leq n, \\ f^* \left( uu_i \right) = N \left( 3n-i \right) +1 \text{ for } 1 \leq i \leq n, \\ f^* \left( vu_i \right) = N \left( 2n-i \right) +1 \text{ for } 1 \leq i \leq n. \\ \text{Therefore, } f \text{ is a one modulo N-difference mean labeling. Hence,} \end{array}$ 

Therefore, T is a one modulo N-difference mean labeling. Hence,  $DUP_2(K_{1,n})$  is a one modulo N-difference mean graph. Figure 9 shows a one modulo N-difference mean labeling of  $DUP_2(K_{1,7})$ .



**Figure 9.** One modulo N-difference mean labeling of  $DUP_2(K_{1,7})$ .

**Theorem 2.11.** The graph  $DUP_2(B_{n,n}), n \ge 2$  is a one modulo N-difference mean graph.

*Proof.* Let  $\{v, v', v_i, v'_i, u, u', u_i, u'_i : 1 \le i \le n\}$  be the vertices and  $\{vv_i, uu_i, v_iu, v'v'_i, u'u'_i, v'_iu', uu', uv' : 1 \le i \le n\}$  be the edges of  $DUP_2(B_{n,n})$ . Now, the vertex labels are defined as follows:

Define  $f: V(DUP_2(B_{n,n})) \to \{0,1,N,N+1,2N,2N+1,\dots,2N(6n+2)+1\}$ by

$$f(v) = 2N,$$
  

$$f(u) = 0,$$
  

$$f(v_i) = 4N(3n-i+2)+1 \text{ for } 1 \le i \le n,$$
  

$$f(u_i) = 2N(4n-i+3)+1 \text{ for } 1\le i \le n,$$
  

$$f(v') = 4N+1,$$
  

$$f(u') = 2N+1,$$
  

$$f(u') = 2N(2n-i+4) \text{ for } 1\le i \le n,$$
  

$$f(u'_i) = 2N(3n-i+4) \text{ for } 1\le i \le n.$$
  
Then the induced edge labels are  

$$f^*(vv_i) = (6n-2i+3)N+1 \text{ for } 1\le i \le n,$$
  

$$f^*(uu_i) = (4n-i+3)N+1 \text{ for } 1\le i \le n,$$
  

$$f^*(v_iu) = (6n-2i+4)N+1 \text{ for } 1\le i \le n,$$
  

$$f^*(v'u'_i) = [2(n-i)+3]N+1 \text{ for } 1\le i \le n,$$
  

$$f^*(v'u'_i) = (3n-i+3)N+1 \text{ for } 1\le i \le n,$$
  

$$f^*(v'u'_i) = 2(n-i+2)N+1 \text{ for } 1\le i \le n,$$
  

$$f^*(uu'_i) = N+1, f^*(vu') = 1, f^*(uv') = 2N+1.$$

Therefore, f is a one modulo N-difference mean labeling. Hence,  $DUP_2(B_{n,n})$  is a one modulo N-difference mean graph. Figure 10 shows a one modulo N-difference mean labeling of  $DUP_2(B_{5,5})$ .



**Figure 10.** One modulo N-difference mean labeling of  $DUP_2(B_{5,5})$ .

**Theorem 2.12.** The friendship graph  $C_4^{(n)}, n \ge 1$  is a one modulo N-difference mean graph.

*Proof.* Let  $v_1^j, v_2^j, v_3^j, v_4^j (1 \le j \le n)$  be the vertices of the cycle  $C_4$ . Then the graph  $C_4^{(n)}$  is obtained by identifying the vertices  $v_1^j = v_1$  for  $(1 \le j \le n)$ . Then  $E(C_4^{(n)}) = \{v_i^j v_{i+1}^j, v_4^j v_1^j : 1 \le i \le 3, 1 \le j \le n\}$ .

We label the vertices as follows:

Define 
$$f: V(C_4^{(n)}) \rightarrow \{0, 1, N, N+1, 2N, 2N+1, \dots, 2N(4n-1)+1\}$$
 by  
 $f(v_1) = 0$ ,  
 $f(v_2^j) = 2N(4n-2j+1)+1$  for  $1 \le j \le n$ ,  
 $f(v_3^j) = 2N(4n-1)$ ,  
 $f(v_3^j) = 4N[2(n-j)+1]$  for  $1 \le j \le n$ ,  
 $f(v_4^j) = 2N(4n-2j)+1$  for  $1 \le j \le n$ .  
Then the induced edge labels are  
 $f^*(v_1v_2^j) = N(4n-2j+1)+1$  for  $1 \le j \le n$ ,  
 $f^*(v_2^jv_3^j) = 1$ ,  $f^*(v_3^jv_4^1) = N+1$ ,  
 $f^*(v_2^jv_3^j) = N(2j-1)+1$  for  $2 \le j \le n$ ,  
 $f^*(v_3^jv_4^j) = 2N(j-1)+1$  for  $2 \le j \le n$ ,  
 $f^*(v_4^jv_1^j) = N(4n-2j)+1$  for  $1 \le j \le n$ .

Therefore, f is a one modulo N-difference mean labeling. Hence, the graph  $C_4^{(n)}$  is a one modulo N-difference mean graph. Figure 11 shows a one modulo N-difference mean labeling of  $C_4^{(5)}$ .



**Figure 11.** One modulo N-difference mean labeling of  $C_4^{(5)}$ .

**Theorem 2.13.** The graph  $nC_4, n \ge 1$  is a one modulo N-difference mean graph.

Proof. Let  $v_1^j, v_2^j, v_3^j, v_4^j (1 \le j \le n)$  be the vertices of *n* copies of the cycle  $C_4$ . Then  $E(nC_4) = \{v_i^j v_{i+1}^j, v_4^j v_1^j : 1 \le i \le 3, 1 \le j \le n\}$ . We label the vertices as follows: Define  $f: V(nC_4) \rightarrow \{0, 1, N, N+1, 2N, 2N+1, \dots, 2N(4n-1)+1\}$  by  $f(v_1^j) = (i-1)N$  for  $1 \le j \le n$ ,  $f(v_2^j) = N(8n-3j+1)+1$  for  $1 \le j \le n$ ,  $f(v_3^j) = N(8n-7j+3)$  for  $1 \le j \le n$ ,



Therefore, f is a one modulo N-difference mean labeling. Hence, the graph  $nC_4$  is a one modulo N-difference mean graph. Figure 12 shows a one modulo N-difference mean labeling of  $6C_4$ .



**Figure 12.** One modulo N-difference mean labeling of  $6C_4$ .

## **Conflicts of Interest**

The authors declare no conflicts of interest regarding the publication of this paper.

#### References

- [1] Harary, F. (1972) Graph Theory. Addison Wesley, Massachusetts.
- [2] Somasundram, S. and Ponraj, R. (2003) Mean Labeling of Graphs. National Academy Science Letter, 26, 210-213.
- Gallian, J.A. (2022) A Dynamic Survey of Graph Labeling. *The Electronic Journal of Combinatorics*, 25, 1-623. <u>https://doi.org/10.37236/11668</u>
- [4] Murugan, K. and Subramanian, A. (2011) Skolem Difference Mean Labeling of H-Graphs. *International Journal of Mathematics and Soft Computing*, 1, 115-129.
- [5] Ramachandran, V. and Sekar, C. (2014) One Modulo N-Gracefulness of Arbitrary Super Subdivisions of Graphs. *International Journal of Mathematical Combinatorics*, 2, 36-46.
- [6] Jeyanthi, P., Selvi, M. and Ramya, D. (2023) One Modulo N-Difference Mean Graphs. *Palestine Journal of Mathematics*, 12, 161-168.