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Abstract 
A graph G is said to be one modulo N-difference mean graph if there is an 
injective function f from the vertex set of G to the set  

( ) ( ) ( ){ }/ 0 2 1 1and either 0 mod or 1 moda a q N a N a N≤ ≤ − + ≡ ≡ , where N is 

the natural number and q is the number of edges of G and f induces a bijection 
*f  from the edge set of G to ( ) ( ){ }/ 1 1 1and 1 moda a q N a N≤ ≤ − + ≡  giv-

en by ( )
( ) ( )*

2
f u f v

f uv
 −

=  
  

 and the function f is called a one modulo 

N-difference mean labeling of G. In this paper, we show that the graphs such 
as arbitrary union of paths, ( )( )2 2nM P n ≥ , ladder, slanting ladder, diamond 

snake, quadrilateral snake, alternately quadrilateral snake, ( )( )3 1nJl P n ≥ , 

( )4 1, 1nC K n ≥ , ( )2 1,nDUP K , ( )2 ,n nDUP B , friendship graph and  

( )4 1nC n ≥  admit one modulo N-difference mean labeling. 
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1. Introduction and Preliminaries 

Here we consider only finite and simple graphs. The vertex set and the edge set of a 
graph G are denoted by ( )V G  and ( )E G  respectively. For various graph theo-
retic notations and terminology we follow [1]. A graph labeling is an assignment of 
integers to the vertices or edges or both, subject to certain conditions. The concept 
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of mean labeling was introduced in [2]. Since then, several results have been pub-
lished on mean labeling and its variations [3]. In 2014, the concept of skolem dif-
ference mean labeling, one of the variations of mean labeling was due to Murugan 
et al. [4]. A graph ( ),G V E=  with p vertices and q edges is said to have skolem 
difference mean labeling if it is possible to label the vertices x V∈  with distinct 
elements ( )f x  from { }1,2,3, , p q+  in such a way that for each edge e uv= ,  

let ( )
( ) ( )*

2
f u f v

f e
 −

=  
  

 and the resulting labels of the edges are distinct  

and are 1,2,3, ,q
. A graph that admits a skolem difference mean labeling is 

called skolem difference mean graph. The concept of one modulo N-graceful 
labeling was introduced by Ramachandran et al. [5]. A function f is called a 
graceful labeling of a graph G with q edges if f is an injection from the vertices of 
G to the set { }0,1,2, ,q  such that, when each edge xy is assigned with the label 

( ) ( )f x f y− , the resulting edge labels are distinct. A graph G is said to be one 
modulo N graceful (where N is a positive integer) if there is a function ϕ  from 
the vertex set of G to ( ) ( ) ( ) ( ){ }0,1, , 1 ,2 , 2 1 , , 1 , 1 1N N N N N q N q+ + − − +  in 
such a way that 1) ϕ  is 1-1; 2) ϕ  induces a bijection *ϕ  from the edge set of 
G to ( ){ }1, 1,2 1, , 1 1N N N q+ + − +  where ( ) ( ) ( )* uv u vϕ ϕ ϕ= − . 

Motivated by the concepts of skolem difference mean labeling and one mod-
ulo N-graceful labeling and the results in [4] [5], we introduced a new labeling 
namely “one modulo N-difference mean labeling” in [6] and established that the 
graphs ,m nB , ,m nS , @n mP P , ( ), ,B l m n , ( ),T n m , shrub, caterpillar and 1,nK  
are one modulo N-difference mean graphs. In addition, we showed that the 
graph 3C  is not a one modulo N-difference mean graph. In this paper, we fur-
ther study on one modulo N-difference mean labeling and show that some more 
graphs admit one modulo N-difference mean labeling. 

We use the following definitions in the subsequent sequel.  
Definition 1.1. Let ( ),G V E=  be a graph and ( ),G V E′ ′ ′=  be the copy of 

G. Then the graph ( )2M G  of G is obtained from G and G′  by joining each 
vertices in V to its corresponding vertices in V ′  by an edge.  

Definition 1.2. The slanting ladder graph nSL  is obtained from two paths 

1 2 3, , , , nu u u u  and 1 2 3, , , , nv v v v  by joining iu  with 1iv +  for 1 1i n≤ ≤ − .  
Definition 1.3. Let ( ),G V E=  be a bipartite graph with 1 2V V V= ∪ . Let 
( ),G V E′ ′ ′=  be the copy of G with 1 2V V V′ ′ ′= ∪  such that 1V ′  and 2V ′  be the 

copies of 1V  and 2V . Then the graph ( )2DUP G  is obtained from G and G′  
such that ( )( )2V DUP G V V ′= ∪  and  

( )( ) ( ) ( ) ( ){ }2  / where ,i j i j i jE DUP G E G E G v v v v E G v V v V′ ′ ′ ′= ∪ ∪ ∈ ∈ ∈ . That is, 
( )2DUP G  is obtained from G and G′  by joining each iv V′ ′∈  to jv V∈  if 

iv  is adjacent to jv  in G.  
Definition 1.4. A quadrilateral snake graph nQ  is obtained from a path 

1 2, , , nu u u  by joining iu  and 1iu +  to two new vertices ,i ix y  respectively and 
then joining ix  and iy .  

Definition 1.5. An alternate quadrilateral snake is obtained from a path 
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1 2, , , nu u u  by joining iu  and 1iu +  to new vertices ix  and iy  respectively 
and then joining the vertices ix  and iy  for ( )1 mod 2i ≡  and 1 1i n≤ ≤ − . 
That is, every alternate edge of a path is replaced by cycle 4C .  

Definition 1.6. Let 3P  be a path of length 2 with vertices 0 1 2, ,v v v . The graph 
( )3nJl P  is obtained by taking n copies of 3P  and then identifying the left end 

vertices ( )0 1iv i n≤ ≤  with u and the right end vertices ( )2 1iv i n≤ ≤  with v.  
Definition 1.7. Two graphs G and H are isomorphic (written G H ) if 

there exists a one-to-one correspondence between their vertex sets which pre-
serves adjacency.  

Definition 1.8. The union of two graphs 1G  and 2G  is a graph 1 2G G∪  
with ( ) ( ) ( )1 2 1 2V G G V G V G∪ = ∪  and ( ) ( ) ( )1 2 1 2E G G E G E G∪ = ∪ .  

Definition 1.9. The corona 1 2G G  of the graphs 1G  and 2G  is obtained 
by taking one copy of 1G  (with p vertices) and p copies of 2G  and then join-
ing the ith vertex of 1G  to every vertex of the ith copy of 2G .  

Definition 1.10. Let nC  be the cycle with vertices 1 2, , , nv v v . The graph 
( )t
nC  is obtained by taking t copies of nC  and then identifying the vertices ( )

1
iv  

for 1 i t≤ ≤ .  

2. Main Results 

Theorem 2.1. The disjoint union of paths 
inP  ( 2in ≥ , is an integer) is a 

one modulo N-difference mean graph.  
Proof. Let in  be the vertices of the path 

inP  for 1 i m≤ ≤  and  

1 2 mn n n n= + + + .  
Define ( ) ( ){ }: 0,1, , 1,2 ,2 1, ,2 1 1

inf V P N N N N N n m→ + + − − +   as fol-
lows: 

( ) ( ) ( ) ( ) ( )1 1
, 1 is odd 1 is even1 2 2

k k

i i
i j k kk n k nf u N n n i j− −

= =
 = − + − + + − ∑ ∑  if j is odd, 

( ) ( ) ( ) ( ) ( )
1 1

, 1 is odd 1 is even2 1 1 1 1
k k

i i
i j k kk n k nf u n m i j n n N− −

= =
 = − − + − − − − − + ∑ ∑  

if j is even. 
Let , , , 1i j i j i je u u +=  for 1 i m≤ ≤  and 1 1ij n≤ ≤ − . 
The corresponding edge label *f  is  

( ) ( )1*
, 1 1 1i

i j kkf e N n m n i j−

=
= − − + − − +∑  for 1 i m≤ ≤  and 1 1ij n≤ ≤ − . 

Therefore, f is a one modulo N-difference mean labeling. Hence, 
inP  is a one 

modulo N-difference mean graph.  
Figure 1 shows a one modulo N-difference mean labeling of  

4 5 6 2 3 8P P P P P P∪ ∪ ∪ ∪ ∪ .  
Theorem 2.2. The graph ( )( )2 2nM P n ≥  is a one modulo N-difference mean 

graph.  
Proof. Let { }, : 1i iv v i n′ ≤ ≤  be the vertices and { }, , : 1i i i i ie e a v v i n′ ′= ≤ ≤  be 

the edges of the graph ( )2 nM P . Then the graph has 2n vertices and 3 2n −  
edges. 

Define ( )( ) ( ){ }2: 0,1, , 1,2 ,2 1, ,2 3 3 1nf V M P N N N N N n→ + + − +  by 
( )1 0f v = , 
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Figure 1. One modulo N-difference mean labeling of 4 5 6 2 3 8P P P P P P∪ ∪ ∪ ∪ ∪ .  

 
For 2 i n≤ ≤ , 

( ) ( )
( )

3 5 if is odd
3 2 1 if is eveni

i N i
f v

N n i i
 −=  − +

 

For 1 i n≤ ≤ , 

( ) ( )6 3 2 1 if is odd
3 if is eveni

n i N i
f v

iN i
 − − +

′ = 


 

Then the induced edge labels are 
( ) ( )*

1 3 1 1f e n N= − + , 
( ) ( )* 3 1 1if e n i N = − + +   for 2 i n≤ ≤ , 
( ) ( )* 3 4 1if e n i N′  = − − +   for 1 i n≤ ≤ , 
( ) ( )*

1 1 3 4 1f v v n N′  = − +  , 
( ) ( )* 3 1if a n i N = − +   for 2 i n≤ ≤ . 

Therefore, f is a one modulo N-difference mean labeling and hence ( )2 nM P  
is a one modulo N-difference mean graph. 

Figure 2 shows a one modulo N-difference mean labeling of ( )2 5M P . 
 

 

Figure 2. One modulo N-difference mean labeling of ( )2 5M P .  

 
Corollary 2.3. The ladder graph 2nP P×  is a one modulo N-difference mean 

graph.  
Theorem 2.4. The slanting ladder ( )2nSL n ≥  is a one modulo N-difference 

mean graph.  
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Proof. Let 1 2 3, , , , nu u u u  and 1 2 3, , , , nv v v v  be the vertices of the path of 
length 1n − . 

Then ( ) { }1 1 1, , : 1 1n i i i i i iE SL u u v v u v i n+ + += ≤ ≤ − . 
Define ( ) ( ){ }: 0,1, , 1,2 ,2 1, ,2 3 4 1nf V SL N N N N N n→ + + − +  by 
For 1 i n≤ ≤ , 

( ) ( )
( )

2 1 if is odd
2 3 2 1 1 if is eveni

i N i
f u

N n i i
 −=   − + +  

 

( ) ( )
( )1

2 3 4 if is odd
2 3 5 if is even

n N n
f v

n N n
 −=  −  

For 2 i n≤ ≤ , 

( ) ( )
[ ]

2 2 if is odd
2 3 2 1 if is eveni

i N i
f v

N n i i
 −=  − +

 

Then the induced edge labels are 
For 1 1i n≤ ≤ − , 

( ) ( )
( )

*
1

3 1 1 if is odd
3 2 1 if is eveni i

N n i i
f u u

N n i i+

 − − +=   − − +  
 

( )*
1 2

1 if is odd
1 if is even

n
f v v

N n


=  +
 

For 2 1i n≤ ≤ − , 

( ) ( )
( )

*
1

3 1 if is odd
3 1 1 if is eveni i

N n i i
f v v

N n i i+

 − +=   − + +  
 

( ) ( )*
1 3 1 1i if u v N n i+  = − − +   for 1 1i n≤ ≤ − . 

Therefore, f is a one modulo N-difference mean labeling and hence nSL  is a 
one modulo N-difference mean graph. 

Figure 3 shows a one modulo N-difference mean labeling of 10SL .  
 

 

Figure 3. One modulo N-difference mean labeling of 10SL .  

 
Theorem 2.5. The diamond snake graph ( )( )1DS n n ≥  is a one modulo 

N-difference mean graph.  
Proof. Let { }0 , , , : 1i i iv v a b i n≤ ≤  be the vertices and  

{ }0 1 0 1 1 1, , , , , : 1i i i i i i i iv a v b v a a v v b b v i n+ + ≤ ≤  be the edges of the diamond snake 
graph which has 4 4n −  vertices and 4n edges. 

Define ( )( ) ( ){ }: 0,1, , 1,2 ,2 1, ,2 4 1 1f V DS n N N N N N n→ + + − +  by 
( )0 0f v = , 
( ) 4if v iN=  for 1 i n≤ ≤ , 
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( ) ( )2 4 2 1 1if a N n i= − + +  for 1 i n≤ ≤ , 
( ) ( )4 2 1if b N n i= − +  for 1 i n≤ ≤ . 

Then the induced edge labels are 
( ) ( )*

0 1 4 1 1f v a n N= − + , 
( ) ( )*

1 4 4 1 1i if v a n i N+ = − − +  for 1 1i n≤ ≤ − , 
( ) ( )* 4 4 1 1i if a v n i N= − + +  for 1 i n≤ ≤ , 
( ) ( )*

0 1 4 2 1f v b n N= − + , 
( ) ( )*

1 4 4 2 1i if v b n i N+ = − − +  for 1 1i n≤ ≤ − , 
( ) ( )* 4 4 1i if b v n i N= − +  for 1 i n≤ ≤ . 

Therefore, f is a one modulo N-difference mean labeling and hence ( )DS n  is 
a one modulo N-difference mean graph. A one modulo N-difference mean labe-
ling of ( )5DS  is shown in Figure 4. 

 

 

Figure 4. One modulo N-difference mean labeling of ( )5DS .  

 
Theorem 2.6. The quadrilateral snake ( )1nQ n >  is a one modulo N-difference 

mean graph.  
Proof. Let 1 2, , , nu u u  be the vertices of the path nP  of length 1n − . 
Then { }, , : 1 , 1 1i j ju x y i n j n≤ ≤ ≤ ≤ −  be the vertices of and  

{ }1 1, , , : 1 1i i i i i i i iu u u x u y x y i n+ + ≤ ≤ −  be the edges of nQ . 
Define ( ) ( ){ }: 0,1, , 1,2 ,2 1, ,2 4 5 1nf V Q N N N N N n→ + + − +  by  
( )1 0f u = , 

For 2 i n≤ ≤ , 

( ) ( )
( )
3 1 if is odd
8 5 2 1 if is eveni

i N i
f u

n i N i
 −=  − − +

 

( ) ( )1 2 4 5 1f x n N= − + , 
For 2 1i n≤ ≤ − , 

( ) ( )8 5 3 1 if is odd
3 if is eveni

n i N i
f x

iN i
 − − +

= 


 

For 1 1i n≤ ≤ − , 

( ) ( )
( )
3 1 if is odd
8 5 6 1 if is eveni

i N i
f y

n i N i
 +=  − − +

 

Then the induced edge labels are 
( ) [ ]*

1 2 4 6 1f u u n N= − +  
For 2 1i n≤ ≤ − , 

( )
( )
( )

*
1

4 3 1 if is odd

4 2 1 if is eveni i

n i N i
f u u

n i N i+

 − − + = 
 − − + 
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( ) ( )*
1 1 4 7 1f x y n N= − + , 

For 2 1i n≤ ≤ − , 

( )
( )
( )

*
4 2 1 if is odd

4 3 1 if is eveni i

n i N i
f x y

n i N i

 − − + = 
 − − + 

 

( ) ( )* 4 1 1i if u x n i N = − − +   for 1 1i n≤ ≤ − , 
( ) ( )*

1 4 1 1i if u y n i N+  = − − +   for 1 1i n≤ ≤ − . 
Therefore, f is a one modulo N-difference mean labeling and hence nQ  is a 

one modulo N-difference mean graph. 
Figure 5 shows a one modulo N-difference mean labeling of 7Q .  

 

 

Figure 5. One modulo N-difference mean labeling of 7Q .  
 

Theorem 2.7. The alternately quadrilateral snake ( )( )1nA Q n >  is a one 
modulo N-difference mean graph.  

Proof. Let 1 2, , , nu u u  be the vertices of the path nP  of length 1n − . 
Let 2n m= . 
Then { }, , : 1 ,1i j ju x y i n j m≤ ≤ ≤ ≤  be the vertices of and  

{ }1, , , : 1 ,1i i i j i j j ju u u x u y x y i n j m+ ≤ ≤ ≤ ≤  be the edges of ( )nA Q . 

Define ( )( ): 0,1, , 1,2 ,2 1, ,2 2 2 1
2n
nf V A Q N N N N N n  → + + + − +  

  
  by  

( )1 0f u = , 

For 2 i n≤ ≤ , 

( ) ( )
2 if is odd
5 3 1 if is eveni

Ni i
f u

n i N i


=  − +
 

( ) ( )1 5 4 1f x n N= − + , 

( ) ( )5 6 4 1jf x n j N= − + +  for 2 j m≤ ≤ , 

( ) 4jf y Nj=  for 1 j m≤ ≤ . 
Then the induced edge labels are 
For 1 1i n≤ ≤ − , 

( )*
1

5 32 1 if is odd
2
5 22 1 if is even
2

i i

n in N i
f u u

n in N i
+

 − − + +  = 
− −  + +  

 

( ) ( )* 2 5 2 1j jf x y n m j N= + − + +  for 1 j m≤ ≤ , 

*
1

2

5 12 1
2i i

n if u x n N+

  − + = + +       
 if i is odd and 1 1i n≤ ≤ − , 

*

2

52 1
2i i

n if u y n N
  − = + +       

 if i is even and 2 2i n≤ ≤ − . 
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Therefore, f is a one modulo N-difference mean labeling and hence ( )nA Q  
is a one modulo N-difference mean graph. 

Figure 6 shows a one modulo N-difference mean labeling of ( )8A Q .  
 

 

Figure 6. One modulo N-difference mean labeling of ( )8A Q .  

 
Theorem 2.8. The graph ( )( )3 1nJl P n ≥  is a one modulo N-difference mean 

graph.  
Proof. Let ( )0 1 2, , 1i i iv v v i n≤ ≤  be the vertices of the n copies of the path 3P . 
Then the graph ( )3nJl P  is obtained by identifying 0

iv u=  and 2
iv v= . 

Define ( )( ) ( ){ }3: 0,1, , 1,2 ,2 1, ,2 2 1 1nf V Jl P N N N N N n→ + + − +  as fol-
lows: 

( ) 0f u = , 
( ) 2f v N= , 

( ) ( )1 4 2 1if v i N= − +  for 1 i n≤ ≤ . 
Then the induced edge labels are 

( )*
1 0f x u = , 

( ) ( )* 2 1 1if x v i N= − +  for 2 i n≤ ≤ , 
( ) ( )* 2 1 1if ux i N= − +  for 1 i n≤ ≤ . 

Therefore, f is a one modulo N-difference mean labeling and hence ( )3nJl P  
is a one modulo N-difference mean graph. 

Figure 7 shows a one modulo N-difference mean labeling of ( )3nJl P .  
 

 

Figure 7. One modulo N-difference 
mean labeling of ( )5 3Jl P .  

 
Theorem 2.9. The corona graph ( )4 1, 1nC K n ≥  is a one modulo 

N-difference mean graph.  
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Proof. Let 1 2 3 4, , ,v v v v  be the vertices of cycle 4C  and { }: 1 ,1 4j
iv i n j≤ ≤ ≤ ≤  

be the vertices of the four stars 1,nK . 
Define ( ) ( ){ }1,: 0,1, , 1,2 ,2 1, ,2 4 3 1n nf V C K N N N N N n→ + + + +  as 

follows: 
We label the vertices of 4C  as follows: 
( )1 0f v = , 
( ) ( )2 2 4 3 1f v n N= + + , 
( )3 4f v N= , 
( ) ( )4 4 2 1 1f v n N= + + . 

Now, we label the vertices of 1,nK  as follows: 

( ) ( )1 2 1 1if v i N= − +  for 1 i n≤ ≤ , 

( ) ( )2 2 3 4if v N n i= − +  for 1 i n≤ ≤ , 

( ) ( )3 2 2 1 1if v n i N= + + +  for 1 i n≤ ≤ , 

( ) ( )4 2 3if v N n i= − +  for 1 i n≤ ≤ . 
Let { }1 : 1 3i i ie v v i+= ≤ ≤  and { }: 1 ,1 4j j

i j ie v v i n j= ≤ ≤ ≤ ≤ . 
Then the induced edge labels are 

( ) ( )*
1 4 3 1f e n N= + + , 

( ) ( )*
2 4 1 1f e n N= + + , 

( )*
3 4 1f e nN= + , 

( ) ( )*
4 1 4 2 1f v v n N= + + ,  

( ) ( )* 1 1 1j
if e j n i N = − + − +   for 1 i n≤ ≤ , 1 4j≤ ≤ . 

Therefore, f is a one modulo N-difference mean labeling. Hence, 4 1,nC K  
is a one modulo N-difference mean graph. 

Figure 8 shows a one modulo N-difference mean labeling of 4 1,3C K . 
 

 

Figure 8. One modulo N-difference mean labeling of 4 1,3C K . 

 
Theorem 2.10. The graph ( )2 1, , 2nDUP K n ≥  is a one modulo N-difference 

mean graph.  
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Proof. Let ( ) ( ){ }, 1 , , 1i iv v i n u u i n≤ ≤ ≤ ≤  be the vertices and  
{ }, , : 1i i ivv uu v u i n≤ ≤  be the edges of ( )2 1,nDUP K . 

Now, the vertex labels are defined as follows: 
Define ( )( ) ( ){ }2 1,: 0,1, , 1,2 ,2 1, ,2 3 1 1nf V DUP K N N N N N n→ + + − +  by  
( ) ( )2 2 1f v N n= − , 
( ) 0f u = , 
( ) ( )2 2 1if v N n i= − +  for 1 i n≤ ≤ , 
( ) ( )2 3 1if u N n i= − +  for 1 i n≤ ≤ . 

Then the induced edge labels are  
( ) ( )* 1 1if vv N i= − +  for 1 i n≤ ≤ , 
( ) ( )* 3 1if uu N n i= − +  for 1 i n≤ ≤ , 
( ) ( )* 2 1if v u N n i= − +  for 1 i n≤ ≤ . 

Therefore, f is a one modulo N-difference mean labeling. Hence, 
( )2 1,nDUP K  is a one modulo N-difference mean graph. Figure 9 shows a one 

modulo N-difference mean labeling of ( )2 1,7DUP K . 
 

 

Figure 9. One modulo N-difference mean labeling of ( )2 1,7DUP K . 

 
Theorem 2.11. The graph ( )2 , , 2n nDUP B n ≥  is a one modulo N-difference 

mean graph.  
Proof. Let { }, , , , , , , : 1i i i iv v v v u u u u i n′ ′ ′ ′ ≤ ≤  be the vertices and 
{ }, , , , , , , , : 1i i i i i ivv uu v u v v u u v u vu uu uv i n′ ′ ′ ′ ′ ′ ′ ′ ′ ≤ ≤  be the edges of ( )2 ,n nDUP B . 
Now, the vertex labels are defined as follows: 
Define ( )( ) ( ){ }2 ,: 0,1, , 1,2 ,2 1, ,2 6 2 1n nf V DUP B N N N N N n→ + + + +  

by 
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( ) 2f v N= , 
( ) 0f u = , 
( ) ( )4 3 2 1if v N n i= − + +  for 1 i n≤ ≤ , 
( ) ( )2 4 3 1if u N n i= − + +  for 1 i n≤ ≤ , 
( ) 4 1f v N′ = + , 
( ) 2 1f u N′ = + , 
( ) ( )2 2 4if v N n i′ = − +  for 1 i n≤ ≤ , 
( ) ( )2 3 4if u N n i′ = − +  for 1 i n≤ ≤ . 

Then the induced edge labels are  
( ) ( )* 6 2 3 1if vv n i N= − + +  for 1 i n≤ ≤ , 
( ) ( )* 4 3 1if uu n i N= − + +  for 1 i n≤ ≤ , 
( ) ( )* 6 2 4 1if v u n i N= − + +  for 1 i n≤ ≤ , 
( ) ( )* 2 3 1if v v n i N′ ′  = − + +   for 1 i n≤ ≤ , 
( ) ( )* 3 3 1if u u n i N′ ′ = − + +  for 1 i n≤ ≤ , 
( ) ( )* 2 2 1if v u n i N′ ′ = − + +  for 1 i n≤ ≤ , 
( )* 1f uu N′ = + , ( )* 1f vu′ = , ( )* 2 1f uv N′ = + . 

Therefore, f is a one modulo N-difference mean labeling. Hence, ( )2 ,n nDUP B  
is a one modulo N-difference mean graph. Figure 10 shows a one modulo 
N-difference mean labeling of ( )2 5,5DUP B . 

 

 

Figure 10. One modulo N-difference mean labeling of ( )2 5,5DUP B .  

 
Theorem 2.12. The friendship graph ( )

4 , 1nC n ≥  is a one modulo N-difference 
mean graph.  

Proof. Let ( )1 2 3 4, , , 1j j j jv v v v j n≤ ≤  be the vertices of the cycle 4C . Then the 
graph ( )

4
nC  is obtained by identifying the vertices 1 1

jv v=  for ( )1 j n≤ ≤ . 
Then ( )( ) { }4 1 4 1, : 1 3,1n j j j j

i iE C v v v v i j n+= ≤ ≤ ≤ ≤ . 
We label the vertices as follows: 
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Define ( )( ) ( ){ }4: 0,1, , 1,2 ,2 1, ,2 4 1 1nf V C N N N N N n→ + + − +  by 
( )1 0f v = , 

( ) ( )2 2 4 2 1 1jf v N n j= − + +  for 1 j n≤ ≤ , 

( ) ( )1
3 2 4 1f v N n= − , 

( ) ( )3 4 2 1jf v N n j = − +   for 1 j n≤ ≤ , 

( ) ( )4 2 4 2 1jf v N n j= − +  for 1 j n≤ ≤ . 
Then the induced edge labels are 

( ) ( )*
1 2 4 2 1 1jf v v N n j= − + +  for 1 j n≤ ≤ , 

( )* 1 1
2 3 1f v v = , ( )* 1 1

3 4 1f v v N= + , 

( ) ( )*
2 3 2 1 1j jf v v N j= − +  for 2 j n≤ ≤ , 

( ) ( )*
3 4 2 1 1j jf v v N j= − +  for 2 j n≤ ≤ , 

( ) ( )*
4 1 4 2 1j jf v v N n j= − +  for 1 j n≤ ≤ . 

Therefore, f is a one modulo N-difference mean labeling. Hence, the graph 
( )
4

nC  is a one modulo N-difference mean graph. Figure 11 shows a one modulo 
N-difference mean labeling of ( )5

4C .  
 

 

Figure 11. One modulo N-difference mean labeling of ( )5
4C .  

 
Theorem 2.13. The graph 4 , 1nC n ≥  is a one modulo N-difference mean 

graph.  
Proof. Let ( )1 2 3 4, , , 1j j j jv v v v j n≤ ≤  be the vertices of n copies of the cycle 4C .  
Then ( ) { }4 1 4 1, : 1 3,1j j j j

i iE nC v v v v i j n+= ≤ ≤ ≤ ≤ . 
We label the vertices as follows: 
Define ( ) ( ){ }4: 0,1, , 1,2 ,2 1, ,2 4 1 1f V nC N N N N N n→ + + − +  by 

( ) ( )1 1jf v i N= −  for 1 j n≤ ≤ , 

( ) ( )2 8 3 1 1jf v N n j= − + +  for 1 j n≤ ≤ , 

( ) ( )3 8 7 3jf v N n j= − +  for 1 j n≤ ≤ , 
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( ) ( )4 8 3 1 1jf v N n j= − − +  for 1 j n≤ ≤ . 
Then the induced edge labels are  

( ) ( )*
1 2 4 2 1 1j jf v v N n j= − + +  for 1 j n≤ ≤ , 

( ) ( )*
2 3 2 1 1j jf v v N j= − +  for 2 j n≤ ≤ , 

( ) ( )*
3 4 2 1 1j jf v v N j= − +  for 2 j n≤ ≤ , 

( ) ( )*
4 1 4 2 1j jf v v N n j= − +  for 1 j n≤ ≤ . 

Therefore, f is a one modulo N-difference mean labeling. Hence, the graph 

4nC  is a one modulo N-difference mean graph. Figure 12 shows a one modulo 
N-difference mean labeling of 46C .  

 

 

Figure 12. One modulo N-difference mean labeling of 46C .  
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