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Abstract 
Proteins perform a variety of functions in living organisms and their func-
tions are largely determined by their shape. In this paper, we propose a novel 
mathematical method for designing protein-like molecules of a given shape. 
In the mathematical model, molecules are represented as loops of n-simplices 
(2-simplices are triangles and 3-simplices are tetrahedra). We design a new 
molecule of a given shape by patching together a set of smaller molecules that 
cover the shape. The covering set of small molecules is defined using a binary 
relation between sets of molecules. A new molecule is then obtained as a sum 
of the smaller molecules, where addition of molecules is defined using trans-
formations acting on a set of (n + 1)-dimensional cones. Due to page limita-
tions, only the two-dimensional case (i.e., loops of triangles) is considered. 
No prior knowledge of Sheaf Theory, Category Theory, or Protein Science is 
required. The author hopes that this paper will encourage further collabora-
tion between Mathematics and Protein Science. 
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1. Introduction 

Proteins are folded sequences of amino acids, which perform variety of functions 
in cells. They perform their functions by interacting with other proteins as well 
as small molecule ligands (in enzyme-substrate interactions). 

In protein-protein interactions, proteins interact each other by forming tem-
porary complexes of proteins called “reaction intermediates”. Stability of reac-
tion intermediates then depends on shape complementarity at the protein- 
protein interfaces (i.e., contact area on surface). 
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In protein-ligand interactions, proteins bind to one or more small molecule 
ligands at pockets (or grooves) on their surfaces. Specificity and affinity of the 
interactions then depend on shape complementarity at the ligand-binding pock-
ets. 

In both cases, the functions of proteins are largely determined by their shape. 
Since structural data for thousands of protein-protein interfaces and ligand- 
binding pockets are available in the PDB database [1], it is conceivable that ar-
tificial proteins could be created by combining these known structures. On the 
other hand, Mathematics has Sheaf Theory as a framework for patching local 
data together to obtain global data. 

In this paper, we propose a novel design method for artificial protein-like 
molecules (i.e., folded sequences of basic units) with a given shape. In the me-
thod, a new molecule is obtained from a given set of known molecules using the 
framework of Sheaf Theory. The design of protein-like molecules is carried out 
in two steps: 

1) Specify the shape of a new molecule. 
2) Find a folded sequence of basic units that forms the specified shape. 
Note that it is not trivial to combine proteins with known structures to form a 

new protein (i.e., a folded sequence of amino acids). For example, since a local 
surface structure is often formed by multiple amino acid fragments which are 
distant in the amino acid sequence, the local surface structure may be unfolded 
in the new molecule if the corresponding fragments are not arranged adequately 
in the new amino acid sequence (in other words, proteins are neither “rigid” like 
holomorphic functions nor “flexible” like continuous functions). 

In this paper, protein-like molecules are represented as a closed trajectory in a 
flow of n-simplices. Due to page limitations, only the two-dimensional case (i.e., 
flows of 2-simplices) is considered. We then propose a novel design method, 
called the “incremental design method”, which uses the framework of Sheaf 
Theory to compute a closed trajectory (i.e., a new molecule) from a given set of 
shorter closed trajectories (i.e., smaller known molecules). We believe this me-
thod is essential, especially when designing hybrids of known proteins. 

In the past, mathematical studies of protein structure have been concerned 
mostly with the classification and characterization of their structure [2]-[7]. The 
author is unaware of any other mathematical studies on the design of pro-
tein-like molecules by other researchers. For an overview of protein-like mole-
cules, see [8]. No prior knowledge of Protein Science, Sheaf Theory [9], nor 
Category Theory [10] is required. 

A quick review of Sheaf Theory is given: Let U be a subset of a 2D Euclidean 
space R2. Let { }1, , nA V V=   be a covering of U, i.e., a set of subsets in R2 such 
that 

1

n
ii

U V
=

=


. Suppose that each subset V of R2 is associated with a set F(V) 
of mathematical data. Let σ be a function ( ) ( )i iV F Vσ ∈  defined “consistently” 
on A. In Sheaf Theory, we can compute a value of F(U) by patching together the 
values ( ) ( ){ }1 , , nV Vσ σ  on A. For example, in the case of the sheaf of conti-
nuous functions on R2, F(V) is the set of continuous functions defined on an 
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open set V in R2. We then obtain a “global” continuous function on an open set 
U by patching together “local” continuous functions ( )iVσ  on iV . 

Figure 1 illustrates the design method proposed in this paper. In our case, 
F(V) is a set of closed trajectories on V. Figure 1(a) is an example of our design 
method. Given a subset U of R2 (left end) and a covering { }1 2,V V  of U (second 
from left). Suppose that closed trajectories ( )1 1F Vψ ∈  and ( )2 2F Vψ ∈  are 
given (third from left). We then obtain a closed trajectory ( )F Uφ ∈  (right end) 
by patching together the two closed trajectories ( )1 1F Vψ ∈  and ( )2 2F Vψ ∈  
(enclosed closed trajectories are considered part of the enclosing closed trajecto-
ry). 

Here’s where the problem comes up. In the case of sheaves, we can compute 
the global data on U by patching together the local data on “any” covering of U 
(if they are “consistent”). On the other hand, computation fails for some cover-
ing A in our case. (Note that ( )iVσ  can be the empty set because the restriction 
of an element of F(U) on iV  may not be contained in ( )iF V .) Figure 1(b) is 
an example of unsuccessful computation. Given a subset U of R2 (left end) and a 
covering { }1 2,V V′ ′  of U (second from left). Suppose that ( )1 1F Vψ ′∈  and 

( )2 2F Vψ ′ ∈  are given (third from left), Then, patching together ( )1 1F Vψ ′∈  
and ( )2 2F Vψ ′ ∈ , we obtain two closed trajectories. In Section 5, we consider 
sufficient conditions for “local” flows on a covering to produce a single closed 
trajectory. 

This paper is organized as follows. Section 2 explains the loop model of pro-
tein-like molecules. Section 3 defines a differential geometric structure on a tri-
angular mesh B. Section 4 formulates the protein design problem from the pers-
pective of Sheaf Theory, where the design problem is rephrased into the “incre-
mental design problem”. Section 5 studies the incremental design problem. Due 
to page limitations, we only consider the case where a covering consists of two 
smaller molecules. Finally, Section 6 presents discussion and future directions. 

2. The Loop Model of Protein-Like Molecules 

Shapes of molecules are given as a region on a hexagonal mesh H. Molecules 
then correspond to a closed trajectory on a triangular mesh B, which is a subdi-
vision of H. New molecules are designed using a differential structure defined on 
B. 

2.1. Regions on a Hexagonal Mesh H 

Figure 2 is explained in this subsection. Shown in Figure 2(a) is the honeycomb 
mesh obtained by dividing a 2D Euclidean plane R2 into a set of regular hex-
agons. H denotes the set of all hexagons of the mesh. A subset S of H is called 
connected if each ah S∈  shares a side with another bh S∈  (i.e., for each 

ah S∈ , there exists another bh S∈  such that ah  and bh  share a side). 
Shown in Figure 2(b) is a connected subset { }1 2 7, , ,S h h h=   of H. Since 

hexagons of H do not overlap each other, we write 
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Figure 1. The design method for protein-like molecules proposed in this paper. 

 

 
Figure 2. The mathematical model of the shape of protein-like molecules. 

 

1 2 7S h h h= ⊕ ⊕ ⊕ .                         (1) 

If S consists of only one hexagon 1h , we write either 1S h=  or { }1S h= . 
Shown in Figure 2(c) is an integral region on H, defined as follows. (Addition 

“+” of hexagons will be defined later in this subsection.) 
Definition 2.1. (Integral Region) An integral region 0m  on H is a hole-free 

subset of R2 covered by a connected finite subset { }1 2, , , nS h h h=   of H. The 
hexagonal base of 0m  is then defined by 

( )0 1 2: nH
m h h h⊕= ⊕ ⊕ .                       (2) 

For example, the hexagonal base of 0m  of Figure 2(c) is shown in Figure 
2(b). HI  denotes the set of all integral regions on H. Note that HH I⊂ , i.e., 
hexagons of H are integral regions. 

The set difference between two integral regions 1 2, Hm m I∈  is defined by 

{ }1 2 1 2|:\ andm m h H h m h m∈ ⊂ ⊄=


,                (3) 

where { }1 2 1 2, , , :n nh h h h h h=  



. The hexagonal base ( )1 2\
H

m m  of 
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1 2\m m  is defined in the same way as for integral regions (it may have holes). 
Lemma 2.2. Let 1 2, Hm m I∈ . Then, 1 2\ Hm m I∈  if 2 1m m⊄ . 
Shown in Figure 2(d) are region-intermediates on H, defined as follows. Let 

{ }0 1 2, , HM m m I= ⊂ . 0M  is called connected if each 0im M∈  shares a side 
with another 0jm M∈ . 0M  is called disjoint if im ’s do not overlap each other. 
If 0M  is disjoint, we write 

0 1 2M m m= ⊕ ⊕ .                       (4) 

If 0M  consists of only one integral region 1m , we write either 0 1M m=  or 
{ }0 1M m= . 

Definition 2.3. (Region-Intermediate) A region-intermediate 0M  on H is a 
connected finite disjoint subset { }1 2, , , nS m m m=   of HI . Since S is disjoint, 
we write 

0 1 2 nM m m m= ⊕ ⊕ ⊕ .                    (5) 

The hexagonal base of 0M  is then defined by 

( ) ( ) ( ) ( )0 1 2: nH HH H
M m m m⊕= ⊕ ⊕ .               (6) 

RI denotes the set of all region-intermediate on H. 
Finally, addition of integral regions is defined using addition of directed po-

lygonal chains as shown below. 
Definition 2.4. (Directed Polygonal Chain) Let 1 2 1, , , ,n nP P P P +  be points 

in R2. A directed polygonal chain 1 2 1nPP P +  in R2 is a set of directed line seg-
ments defined by 

{ }1 2 1 1 2 2 3 1, , ,:n n nPP P PP P P P P+ +=  ,               (7) 

where i jPP  denotes the directed line segment from iP  to jP . If 1 1nP P+ = , we 
obtain a closed directed polygonal chain in R2. 1 2 1nPP P P  denotes the area of 
R2 bounded by 1 2 1nPP P P  in R2. 

Let { }0 1 2, ,C c c=   be a set of closed directed polygonal chains in R2. 0C  is 
called disjoint if ic ’s do not overlap each other. If 0C  is disjoint, we write 

0 1 2C c c= ⊕ ⊕ .                        (8) 

If 0C  is disjoint, the area 0C  of R2 bounded by 0C  is defined by 

0 1 2:C c c= ⊕ ⊕ .                       (9) 

Let 0 Hm I∈ . Since 0m  has no hole, we have 

0 1 2 1nm PP P P=                          (10) 

for some 2
1 2, , , nP P P R∈ , where the vertices are labeled counter-clockwise. 

In the case of Figure 2(c), 

0 1 2 20 1m PP P P=  .                       (11) 

Definition 2.5. (The Boundary Operator ∂ on RI) Let  

0 1 2 1n Hm PP P P I= ∈ , where the vertices are labeled counter-clockwise. The 
boundary 0m∂  of 0m  is defined by 

0 1 2 1: nm PP P P∂ =  .                      (12) 
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In this paper, the boundary of an integral region is always given the counter- 
clockwise orientation. Let 0 1 2 nM m m m RI= ⊕ ⊕ ⊕ ∈ . Since  
{ }1 2, , , nm m m∂ ∂ ∂  is disjoint, the boundary 0M∂  of 0M  is defined by 

0 1 2: nM m m m∂ = ∂ ⊕ ∂ ⊕ ⊕∂                    (13) 

(See Equation (8)) Note that 0 0M M∂ = . 
Addition of integral regions is defined as follows. 
Definition 2.6. ( m m1 2+ ) Let 1 1 2 1 2 1 2 1,n n Hm PP P P m Q Q Q Q I= = ∈   

such that they do not overlap. Addition of 1m∂  and 2m∂  is defined by 

{ } { }1 2 1 2 2 1: | |i j j i i j j im m PP m P P m Q Q m Q Q m∂ + ∂ = ∈∂ ∉∂ ∈∂ ∉∂ .   (14) 

In other words, the same line segments in opposite directions (i.e., i jPP  and 

j iP P ) are cancelled when added. Addition of 1m  and 2m  is then defined by 

1 2 1 2:m m m m+ = ∂ + ∂ .                      (15) 

In the case of Figure 2(c), we have 

0 1 2 7m h h h= + + + .                       (16) 

Let’s denote the set of all natural numbers { }1,2,3,  by N . 
Lemma 2.7. 
The set of all integral regions on H is given by 

{ }{ }1 s connected and hole-free| , iH n iI h h n h H= + + ∈ ⊂N .     (17) 

The set of all region-intermediate on H is given by 

{ }{ }1 is connected and disjo t| , inn i HRI m m n m I= ⊕ ⊕ ∈ ⊂N .   (18) 

Proof. They follow immediately from the definitions.∎ 
Remark 2.8. Integral domains play the role that “integers” do for rational 

numbers. That is, “rational” regions are obtained by dividing integral regions 
into loops of triangles [11]. 

2.2. Loops on a Triangular Mesh B 

Figure 3 is explained in this subsection. Shown in Figure 3(a) is the triangular 
mesh obtained by dividing every hexagon of H into 6 equilateral triangles. B de-
notes the set of all triangles of the mesh. 

Definition 2.9. (Trajectories of Triangles) A trajectory of triangles on B is a 
sequence of triangles of B connected by a common edge. (No direction is assigned 
to a trajectory.) The edges not used to connect adjacent triangles are called the 
normal edges (of the trajectory) at the triangle (i.e., the “normal vector” of the 
trajectory). In figures, normal edges are indicated by thick line segments. 

Definition 2.10. (Loops of Triangles) A loop on B is a closed trajectory of 
triangles on B. In this paper, protein-like molecules are represented as a loop of 
triangles of B. lp  denotes the area in R2 swept by a loop lp , where the area en-
closed by lp  is also included in lp  (for example, φ  of Figure 1(a)). 

A loop 0lp  of length 6 is called a hexagonal loop. A hexagonal loop 0lp  is 
denoted by 0h  if 0 0lp h H= ∈ . In other words, 0h H∈  denotes both a loop of 
length 6 and a hexagon of H, i.e., 0 0h h= . 
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Figure 3. The mathematical model of protein-like molecules. 

 
Remark 2.11. The hexagonal base ( )0 H

M  of 0M RI∈  defined above is a 
region-intermediate consisting of hexagons as well as a loop-intermediate con-
sisting of loops of length 6. 

Shown in Figure 3(b) is a set { }1 2 7, , ,L h h h=   of seven hexagonal loops on 
H. Since ih ’s do not overlap each other, we write 

1 2 7L h h h= ⊕ ⊕ ⊕ .                      (19) 

If L consists of only one hexagon 1h , we write either 1L h=  or { }1L h= . 
Shown in Figure 3(c) is an integral loop on B, defined as follows.  
Definition 2.12. (Integral Loop) A loop 0lp  on B is called integral if 0lp  is 

an integral region on H. BI  denotes the set of all integral loops, i.e., 

{ }0 0 0is a loop on such tha| tB HBI lp lp lp I= ∈ .            (20) 

0 Blp I∈  is called an implementation of 0 Hm I∈  if 0 0lp m= . For example, 0lp  
of Figure 3(c) is an implementation of 0m  of Figure 2(c). 

Let { }1 2, , BL lp lp I= ⊂ . The set L  of integral regions associated with L is 
defined by 

{ }1 2: , , HL lp lp I= ⊂ .                     (21) 

If L  is disjoint, we write 

1 2L lp lp= ⊕ ⊕ .                       (22) 

If L consists of only one integral loop 1lp , we write either 1L lp=  or 
{ }1L lp= . 

Shown in Figure 3(d) top is a loop-intermediate on B, defined as follows. 
Definition 2.13. (Loop-Intermediate) A loop-intermediate on B is a finite 

subset { }0 1 2, , , nL lp lp lp=   of BI  such that 0L  is a region-intermediate on 
H. Since 0L  is disjoint, we write 

0 1 2 nL lp lp lp= ⊕ ⊕ ⊕ .                    (23) 

LI denotes the set of all loop-intermediate on B, i.e., 

( ){ }1 1: | , 1,2, , ,n i B nLI lp lp n lp I i n lp lp IH= ⊕ ⊕ ∈ ∈ = ⊕ ⊕ ∈N   .  (24) 

Let 0M RI∈ . 0L LI∈  is called an implementation of 0M  if 0 0L M= . 
Note that some region-intermediates have no implementation. For example, 3m  
of Figure 2(d) has no implementation (Figure 3(d) bottom). 
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Now, fusion and fission of integral loops are defined using addition of the cor-
responding integral regions (Addition of integral loops is considered in Section 4 
below). 

Definition 2.14. (Fusion and Fission of Integral Loops) Let 0 Blp I∈ . Let 

0 1 2 nL lp lp lp LI= ⊕ ⊕ ⊕ ∈ . 0lp  is called the fusion of 0L  if 

0 1 2 nlp lp lp lp= + + + .                     (25) 

0L  is then called a fission of 0lp . In Figure 3, both 1 2 7h h h⊕ ⊕ ⊕  and 

1 4 2lp h p⊕ ⊕  are fissions of 0lp . 
Finally, let’s define flows of triangles on B. 
Definition 2.15. (Flows of Triangles on B) A flow ψ of triangles on B is an 

assignment of normal edges to triangles of B, i.e., 

( ) ( ): the set of normal edges of .t t t Bψ = ∈               (26) 

ψ is called regular at t if ( )tψ  consists of one edge (i.e., t is connected to ex-
actly two adjacent triangles). ψ is called regular if ψ is regular at all triangles of B. 

RFLW  denotes the set of all regular flows on B. 
A triangle t of B is called singular if it is not regular. Singular triangles are 

called branch, terminal, or isolated triangles when they have no normal edges (i.e., 
connected to all the adjacent triangles), two normal edges (i.e., connected to only 
one adjacent triangle), or three normal edges (i.e., connected to no adjacent tri-
angles), respectively. 

Remark 2.16. We often consider trajectories of triangles without explicit ref-
erence to the corresponding flow ψ. A triangle t is then called regular if ψ is regu-
lar at t. 

Definition 2.17. (Disjoint Unions ( )L ψ  and ( )M ψ ) Let RFLWψ ∈ . 
( )L ψ  denotes the set of all the loops of ψ. Since trajectories of ψ do not overlap, 

we have 

( ) 1 2:L lp lpψ = ⊕ ⊕ ,                      (27) 

where ilp ’s are the loops of ψ. ( )L ψ  is called the loops associated with ψ. 
( )M ψ  denotes the associated regions, i.e., 

( ) 1 2:M lp lpψ = ⊕ ⊕ ,                    (28) 

( )M ψ  is called the regions associated with ψ.  
Lemma 2.18. Let RFLWψ ∈ . 
1) ( )L LIψ ∈  if ( )L ψ  is finite, connected, and hole-free. 
2) ( )M RIψ ∈  if ( )M ψ  is finite and connected. 

2.3. Design Problem for Protein-Like Molecules 

In the loop model of protein-like molecules, the shape of a new molecule is an 
integral region 0m . A new molecule of the shape 0m  then is an implementa-
tion 0lp  of 0m . The problem we consider in this paper is now defined as fol-
lows. 

Problem 2.19. (Design of Protein-like Molecules) Given { }0 0M m RI= ∈ , 
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find { }0 0L lp LI= ∈  such that 0 0lp m= . 
In the next section, the problem is rephrased using a differential geometric 

structure on B. 

3. Differential Geometric Structure on B 

A differential geometric structure on B is naturally obtained by embedding the 
honeycomb mesh H in a 3D Euclidean space R as shown in this section. We de-
note the set of all real numbers by R. 

3.1. Embedding of H in R3 

Shown in Figure 4(a) is a unit cube in R3 and its orthogonal projection on the 
plane H0 in R3 defined by 

( ){ }3
0 , , 0: |H x y z R x y z∈ + + == .               (29) 

H is embedded in H0 using unit cubes in R3, as explained below. 
Definition 3.1. (Unit Cubes in R3) Let ( ) 3, ,a b c R∈ . [ ], ,a b c  denotes the 

unit cube at ( ), ,a b c , i.e., 

[ ] [ ] [ ] [ ] 3, , : , 1 , 1 , 1a b c a a b b c c R= + × + × + ⊂ ,            (30) 

where [ ],x y  is the closed interval in R between x and y. If ( ) 3, ,P a b c R= ∈ , 
then [ ], ,a b c  is also written as [ ]P . UC denotes the set of all unit cubes at 
the integer lattice 3Z , i.e., 

[ ] ( ){ }3: , , | , , .UC a b c a b c Z= ∈                 (31) 

The height [ ]( ), ,UCht a b c  of [ ], ,a b c UC∈  is defined by 

[ ]( ), , :UCht a b c a b c= + + .                  (32) 

Remark 3.2. [ ], ,a b c  is given by 

[ ] ( ){ ( ) ( ) ( ) ( )
}

3 3, , , , ,0,0 0, ,0 0,0, | ,

such tha

,

1and .t , , 0

a b c a b c u v w R u v w R

u v w u v w

= + + + ∈ ∈

+ + = ≥
   (33) 

Shown in Figure 4(a) top is a unit cube [ ], ,a b c UC∈  with vertices 
( ), ,O a b c= , ( )1, ,P a b c= + , ( ), 1,Q a b c= + , ( ), , 1R a b c= + ,  
( )1, 1,U a b c= + + , ( ), 1, 1V a b c= + + , ( )1, , 1W a b c= + + , and  
( )1, 1, 1X a b c= + + + . The vertical diagonals OU, OV, and OW are drawn as 

thick line segments. 
Definition 3.3. (Projection π of R3 onto H0) π is the orthogonal projec-

tion of R3 onto 0H  defined by 

( ) ( ) ( ) ( )( ), , : 2 3, 2 3, 2 3x y z x y z x y z x y zπ = − − − + − − − + .     (34) 

Shown in Figure 4(a) bottom is the orthogonal projection of OU, OV, and 
OW onto 0H , forming part of a hexagonal mesh on 0H . 

Definition 3.4. (“Bumpy” Mesh bumpH ) bumpH  is the “bumpy” honey-
comb mesh defined on the top surfaces of 
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Figure 4. Differential geometric structure on the trianglular mesh B. 

 

[ ] [ ]( ){ }0 : , , | , , 0 .UCUC x y x UC ht x y z= ∈ =            (35) 

The edges of the mesh are the vertical diagonals. bumpH  denotes the set of 
“bumpy” hexagons drawn on 0UC  (Figure 4(b) top). 

Shown in Figure 4(b) bottom is the projection of bumpH  onto 0H  by π. 
In the following, we identify H with ( ) 0bumpH Hπ ⊂ . An embedding of B in 

0H  is then obtained by dividing every hexagon of ( )bumpHπ  into 6 equila-
teral triangles. 

3.2. Tangent Cones 

Shown in Figure 4(c) top-left is a tangent cone 0C  to a region-intermediate 

0M , defined as follows. Roughly speaking, a 3D cone with multiple tops is ob-
tained by stacking unit cubes diagonally (from ( ), ,∞ ∞ ∞  to ( ), ,−∞ −∞ −∞ ). 

Definition 3.5. (Tangent Cone Cone A) Let 3A Z⊂ . The tangent cone 
 Cone A generated by A is defined by 

( )
( )

{ }{ }{ }3

, ,
 : , , | max min , , 0 .

a b c A
Cone A x y z R x a y b z c

∈
= ∈ − − − ≥      (36) 

TCONE denotes the set of all tangent cones, i.e., 

{ }3:  | .TCONE Cone A A Z= ⊂                    (37) 

P (TCONE) denotes the set of all subsets of TCONE, i.e., the power set of 
TCONE. 

Definition 3.6. (Tops and Bottoms of Cone A) Let 0C TCONE∈ . The top 
vertices of 0C  are the peaks of the cone. ( )0top C  denotes the set of all top 
vertices of 0C . Note that ( )0 0 C Cone top C= . The bottom vertices of 0C  are 
the dents of the cone which are peaks if we look up the cone from ( ), ,∞ ∞ ∞ . 

( )0bottom C  denotes the set of all bottom vertices of 0C . 
We define flows of triangles on B using tangent cones in R3. 
Definition 3.7. (The Flow 

0Cψ  on B) Let 0C TCONE∈ . Note that the sur-
faces of 0C  consist of the top faces of unit cubes of UC. Taking their vertical 
diagonals as normal edge, we obtain a regular flow of triangles on the surface of 

0C  (Figure 4(c) top-right). Projecting the regular flow onto 0H  by π, we ob-
tain a regular flow on B. The regular flow is called the flow on B induced by 0C  
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and denoted by 
0Cψ . 

Definition 3.8. TCONEFLW  denotes the set of all regular flows on B induced 
by tangent cones, i.e., 

{ }: |TCONE C RFLW C TCONE FLWψ= ∈ ⊂ .              (38) 

TCONERI  and TCONELI  denote the corresponding set of region-intermediates 
and loop-intermediates, respectively, i.e., 

( ){ }|  such that:  TCONE CRI M RI C TCONE M M ψ= ∈ ∃ ∈ = .       (39) 

( ){ }: |  such that TCONE CLI L LI C TCONE L L ψ= ∈ ∃ ∈ = .        (40) 

The author has no proof of the following claim. 
Claim 3.9. TCONE RFLW FLW= . 
In this paper, only flows of FLWTCONE are considered. 
Remark 3.10. TCONERI RI≠ . For example, 3m  of Figure 2(d) is not con-

tained in TCONERI . 

3.3. Tangent Cones to M0 

Here we define a tangent “space” to 0M RI∈ . 
Definition 3.11. (The Boundary Cone ( )0BC M∂ ) Let 

0 1 2 n TCONEM m m m RI= ⊕ ⊕ ⊕ ∈ ,                  (41) 

where 

( )1 2 1 1,2, ,
ii i i ik im P P P P i n= =  .                   (42) 

The boundary cone ( )0BC M∂  to 0M∂  is defined by 

( ) { }0 1 2: , , , | 1,2, ,
ii i ikBC M Cone Q Q Q i n∂ = =  ,           (43) 

where ijQ ’s are points on the top surfaces of 0UC  such that 

( )ij ijQ Pπ = .                           (44) 

Remark 3.12. Since π is a one-to-one mapping between the top surfaces of 

0UC  and 0H , the boundary cone ( )0BC M∂  exists for all 0 TCONEM RI∈ . 
Definition 3.13. (The Set TM0 of Tangent Cones) Let 0 TCONEM RI∈ . The 

set 0TM  of tangent cones to 0M  is defined by 

( )( ) ( )( ) ( ){ }0 0 0|:TM C TCONE top BC M bottom BC M sur C= ∈ ∂ ∂ ⊂ ,  (45) 

where ( )sur C  is the surfaces of C, i.e., 

( ) ( ) ( ) ( ) { }{ }{ }3
, ,: , , | max min , , 0a b c top Csur C x y z R x a y b z c∈= ∈ − − − = .  (46) 

Note that ( )0 0BC M TM∂ ∈ . 
Remark 3.14. 0C TM∈  dose not imply ( )( ) ( )0top BC M top C∂ ⊂ . 
Lemma 3.15. (The Base Tangent Cone ( )baseC M0 ) Let 0 TCONEM RI∈ . 

There exists ( )0 0baseC M TM∈  such that 

( )( ) ( )
0 0baseC M H

L Mψ = ,                      (47) 
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[ ]( ), , 0UCht a b c =  for ( ) ( )( )0, , basea b c top C M∈ .          (48) 

( )0baseC M  is called the base tangent cone associated with 0M . 
Proof. Since π gives a one-to-one mapping between the top surfaces of 0UC  

and 0H , the result follows immediately.∎ 
Definition 3.16. (Mapping T) Assigning 0TM  to each 0 TCONEM RI∈ , we 

obtain a mapping T from TCONERI  to P (TCONE). Let TCONES RI⊂ . A section 
σ of T on S is a mapping from S to P (TCONE) such that ( )( )i iMM Mσψ =  for 
all iM S∈ . ( )T SΓ  denotes the set of all sections of T on S. 

The design problem is now rephrased as follows. 
Problem 3.17. (Design of Protein-like Molecules) Given  

{ }0 0 TCONEM m RI= ∈ , find 0 0C TM∈  such that ( )0 0CM Mψ = . 

4. Loop Design Problem from the Perspective of Sheaf 
Theory 

To mimic Sheaf Theory, “subsets” of a region-intermediate 0M  are defined 
using a binary relation over TCONERI . A “covering” { }1 2, , , nS M M M=   of 

0M  is then defined as a set of region-intermediates such that 0M  is the least 
upper bound of S with respect to the binary relation. An implementation of 0M  
is obtained as the sum of implementations of ( )1,2, ,iM i n=  , where addition 
is defined using transformations on 0TM  as shown below. 

4.1. Binary Relation over RITCONE and LITCONE 

Shown in Figure 5(a) is a binary relation over TCONERI , defined as follows.  
Definition 4.1. (Binary Relation ≤ over TCONERI ) Let ,a b TCONEM M RI∈ . 

Then, a bM M≤  if and only if, for any b bm M∈ , 
there exist 1, , n am m M∈  such that 1b nm m m= + + .         (49) 

In figures, we often use the arrow a bM M→  to indicate a bM M≤ . 
Shown in Figure 5(b) is the binary relation over TCONELI  induced by the bi-

nary relation ≤ over TCONERI . That is, 
Definition 4.2. (Binary Relation ≤ over TCONELI ) Let ,a b TCONEL L LI∈ . 

Then, a bL L≤  if and only if, for any b blp L∈ , 

there exists 1, , n alp lp L∈  such that 1b nlp lp lp= + + .       (50) 

In figures, we often use the arrow a bL L→  to indicate a bL L≤ . 
Remark 4.3. Notations such as ( ),TCONERI ≤  and ( ),TCONELI ≤  are used to 

explicitly indicate the binary relation equipped with a set. 
Lemma 4.4. Let 1 2, TCONEM M RI∈ . Then, 

( ) ( )1 2T M T M⊂  if 1 2M M≤ .                    (51) 

That is, T is a “covariant” mapping from ( ),TCONERI ≤  to ( )( ),P TCONE ⊂ . 
Shown in Figure 5(c) is examples of the greatest lower bound of loop-inter- 

mediates, defined as follows. 
Definition 4.5. (⋀S and ⋁S) Let TCONES RI⊂ . The greatest lower bound ⋀S 

of S is the greatest element of TCONERI  that is less than or equal to each element  
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Figure 5. Binary relation ≤ over TCONERI  and TCONELI . 

 
of S. The least upper bound ⋁S of S is the least element of RI that is greater than 
or equal to each element of S. ⋀S and ⋁S for TCONES LI⊂  are also defined simi-
larly. 

Remark 4.6. In general, there are multiple candidates for ⋀S and ⋁S. In such 
cases, select one of them arbitrarily. Because of this uncertainty, “ 0 iM M≤  for 
all iM S∈ ” does not imply M0 ≤ ⋀S. 

Remark 4.7. 0H M≤ ≤∅  for any 0 TCONEM RI∈ , where ∅  denotes the 
empty set. 

We use the following lemma to find “subsets” of a region-intermediate. 
Lemma 4.8. Let 0 TCONEM RI∈  and C TCONE∈ . Then, 

( ) 0CM Mψ ≤  If and only if 0C TM∈ .               (52) 

Proof. ( ) 0CM Mψ ≤  if and only if ( )0 CM M ψ∂ ⊂ ∂ . ( )0 CM M ψ∂ ⊂ ∂  if 
and only if ( )( ) ( )( ) ( )0 0top BC M bottom BC M sur C∂ ∂ ⊂ . The result follows 
immediately. ∎ 

4.2. Coverings of a Region-Intermediate 

Two types of coverings are defined as follows. 
Definition 4.9. (Coverings of a Region-Intermediate) Let 0 TCONEM RI∈ . 

Let TCONES RI⊂ . S is called a covering of M0 if ⋁S = M0. 
Definition 4.10. (Topological Coverings of an Integral Region) Let 

0 Hm I∈ . Let { }1 2, , , n HV c c c I= ⊂ . V is called a topological covering of 0m  if 
1) 0 1

n
ii

m c
=

=


, and 2) for each ic V∈ , there exists another jc V∈  such that 

i jc c ≠ ∅ . 
Remark 4.11. Since some integral regions have no implementation (i.e., there 

exists i Hc I∈  such that ic lp≠  for any Blp I∈ ), topological coverings may 
have no sections on them. 

Lemma 4.12. Let 0 Hm I∈ . Let { }1 2, , , n Hc c c I⊂  be a topological covering 
of 𝑚𝑚0. A covering of 0m  is then obtained by 

{ }0 1 0 2 0, , , nm c m c m c∧ ∧ ∧ .                  (53) 

Example 4.13. In Figure 5(c), { }1 1,A B  is a topological covering of X. 
{ }1 1,A X B X∧ ∧  is a covering of X. 
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The proposed design method uses a specific type of covering (in Problem 
4.38). 

Definition 4.14. (Hexagonal Covering SV of an Integral Region) Let 
{ }1 2, , , n HV c c c I= ⊂  be a topological covering of 0 Hm I∈ . The hexagonal 

covering VS  of 0m  associated with V is defined by 

( ) ( ) ( ){ }1 0 1 2 0 2 0\ \ , , \,V n nH H H
S c m c c m c c m c= ⊕ ⊕ ⊕ .      (54) 

Lemma 4.15. VS  is a covering of 0m . 
The design problem is now rephrased as follows. 
Problem4.16. (Incremental Design of Protein-like Molecules) Given 1) a 

target shape 0m : { }0 0 TCONEM m RI= ∈ , 2) a topological covering V of 0m : 
{ }1 2, , , nV c c c=  , 3) a section σ of T on V: ( )T Vσ ∈Γ . Then, compute 

0 0C TM∈  such that ( )0 0CM Mψ =  by patching “local” loop-intermediates 

( )( )1c
L σψ , ( )( )2cL σψ ,  , and ( )( )ncL σψ  together. 

4.3. Transformations on LITCONE Induced by UC 

To patch loop-intermediates together, we define addition of loop-intermediates 
using transformations on TCONE, defined as follows. 

Definition 4.17. (TRANS (TCONE)) A transformation on TCONE is a map-
ping from TCONE to TCONE. TRANS (TCONE) denotes the set of all trans-
formations on 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. 

Let ( )A TRANS TCONE∈  and C TCONE∈ . We use the symbol “ ⋅ ” to de-
note the transformation of C by A, i.e., A C⋅ . A C⋅  is also called the action of 
A on C. Let ( )1 2, , , nA A A TRANS TCONE∈ . We use the symbol “  ” to denote 
the composition of transformations, i.e., 

( )( )( )1 2 1 2:n nA A A C A A A C⋅ = ⋅ ⋅ ⋅ ⋅    .            (55) 

Example 4.18. Unit cubes induce transformations on TCONE as follows. Let 
C TCONE∈ , where ( ) { }1 2, , , ntop C P P P=  , i.e., 

{ }1 2, , , nC Cone P P P=  .                    (56) 

Taking the unit cube [ ], ,a b c  at ( )1 , ,P a b c=  from C, we obtain another 
tangent cone 

{ }1 2 3 2, , , , , nC Cone P P P P P′ ′ ′ ′=  ,                 (57) 

where ( )1 1, ,P a b c′= + , ( )2 , 1,P a b c′ = + , and ( )3 , , 1P a b c′ = + .Conversely, 
putting the unit cube [ ], ,a b c  on C′ , we obtain the original cone C. 

Definition 4.19. (The minimal L-cone CL) Let TCONEL LI∈  and C T L∈ . 
C is called a L-cone if ( )CL Lψ = . The tangent cone LC  is the minimal L-cone 
with respect to set inclusion, i.e., LC C⊂  for any L-cone C. Since TCONEL LI∈ , 

LC T L∈  always exists and uniquely determined by L. 
Transformations on TCONE induce transformations on TCONELI  as follows. 
Definition 4.20. (Transformations on TCONELI ) Let ( )A TRANS TCONE∈  

and TCONEL LI∈ . The transformation of L by A is defined by 
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( ):
LA CA L L ψ ⋅⋅ = .                         (58) 

A L⋅  is called the action of A on L. 
Definition 4.21. (Transformations [ ]P a b c, , , [ ]T a b c, , , and [ ]PT a b c, , ) 

Let [ ], ,a b c UC∈ . Two transformations [ ], ,P a b c  and [ ], ,T a b c  on TCONE 
induced by [ ], ,a b c  is defined by 

[ ] ( ){ }, , : , ,P a b c C C Cone a b c⋅ =  ,                (59) 

[ ] [ ] [ ] ( ){ }{ }, , : , , | , , , ,T a b c C x y z C a b c Cone x y z⋅ = ∈ ∉ ,       (60) 

where C TCONE∈ . [ ], ,P a b c C⋅  is called the put & fill-action by [ ], ,a b c  on 
C. [ ], ,T a b c C⋅  is called the take & clear-action by [ ], ,a b c  on C. We denote 
the composition of P after T by PT, i.e., 

[ ] [ ] [ ] [ ]( ), , : , , , , , ,PT a b c P a b c T a b c a b c UC= ∈ .          (61) 

[ ], ,PT a b c C⋅  is called the take & put-action by [ ], ,a b c  on C. 
Remark 4.22. After the action of [ ], ,PT a b c  on C TCONE∈ , the cube 

[ ], ,a b c  is always visible from ( ), ,−∞ −∞ −∞ . On the other hand, after the ac-
tion of [ ], ,P a b c  on C, [ ], ,a b c  may not be visible from ( ), ,−∞ −∞ −∞ . 

Lemma 4.23. Let [ ], ,a b c UC∈  and C TCONE∈ . Then, 

[ ], ,P a b c C C⋅ =  if [ ], ,a b c C∈ ,               (62) 

[ ], ,T a b c C C⋅ =  if [ ], ,a b c C∉ .               (63) 

Definition 4.24. ( ( )T PTTRANS TCONE, ) ( ),T PTTRANS TCONE  denotes 
the set of all the transformations on TCONE generated by finite compositions of 
[ ], ,T a b c  and [ ], ,PT a b c  ( [ ], ,a b c UC∈ ), i.e., 

( ) { }1, : | , or for some .n iT PTTRANS TCONE A A n A Pu PTu u UC= ∈ = ∈Z

(64) 

In general, 1 2 2 1G G C G G C≠⋅ ⋅   for 1 2 ,, ( )T PTG G TRANS TCONE∈  and 
C TCONE∈  

Example 4.25. Let [ ]1 , ,u a b c= , [ ]2 , ,u a b c UC′ ′ ′= ∈  such that  
( ) { }, , , ,a b c Cone a b c′ ′ ′∈ . Then, 

( ){ } ( ){ }1 2 2 1, , , ,PTu PTu Cone a b c PTu PTu Cone a b c′ ′ ′ ′ ′ ′≠⋅ ⋅  ,    (65) 

( ){ } ( ){ }1 2 2 1, , , ,Tu PTu Cone a b c PTu Tu Cone a b c′ ′ ′ ′ ′ ′≠⋅ ⋅  .      (66) 

Definition 4.26 (Well-defined Transformations) Let  
( )1 2 ,n T PTG A A A TRANS TCONE= ∈  . G is called well-defined if the action 

of G on TCONE does not depend on the order of iA ’s, i.e., 

( ) ( ) ( )1 2 nG C A A A Cρ ρ ρ= ⋅⋅    for all C TCONE∈ .          (67) 

for any permutation ρ of { }1,2, ,n . 
Remark 4.27. If G is well-defined, removed unit cubes are removed forever 

and placed unit cubes are placed forever. 
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4.4. Addition on LITCONE 

Addition of loop-intermediates is now defined using transformations on 
TCONE. 

Definition 4.28. {Transformations on TM0} Let 0M RI∈ . The set 
( )0TRANS TM  of transformations on 0TM  is defined by 

( ) ( ){ }0 0 0, for a: | llT PTTRANS TM G TRANS TCONE G C TM C TM= ∈ ⋅ ∈ ∈ . (68) 

Lemma 4.29. Let 0 TCONEM RI∈  and ( )1 2 0,G G TRANS TM∈ . Then, 

( )1 2 0G G TRANS TM∈ .                     (69) 

Lemma 4.30. Let 0 , TCONEL L LI∈  and ( )0G TRANS T L∈ . Then, 

If 0L L≤ , then 0G L L⋅ ≤ .                    (70) 

Definition 4.31. (The Relative Transformation ( )HG L ) Let TCONEL LI∈ . 
The relative transformation ( )HG L  of L with respect to H is defined by 

( ) [ ] [ ] ( ) ( )1 1: 1,1,1 1,1,1H n kG L PT P PT P T Q T Q   = − −      ,   (71) 

where 

{ } ( ) [ ]( ){ }1, , | 0n L UCP P P top C ht P= ∈ ≠ ,            (72) 

{ } ( ) [ ]( ){ }1, , | 2k L UCQ Q Q bottom C ht Q= ∈ ≠ .           (73) 

( )1,1,1Q −   is defined by ( ) ( )1,1,1 : 1, 1, 1Q a b c − = − − −   for ( ), ,Q a b c= . 
Lemma 4.32. Let TCONEL LI∈  and TCONEM RI∈  such that L M≤ . Then, 
( )HG L  is well-defined and 

( ) ( )H H H HL G L L G L M= ⋅ ≤ ⋅ .                 (74) 

Remark 4.33. The hexagonal base HM  is a loop-intermediate consisting of 
loops of length 6 as well as a region-intermediate consisting of hexagons. 

Lemma 4.34. Let TCONEL LI∈  and TCONEM RI∈  such that L M≤ . Then, 

( ) ( )HG L TRANS TM∈ .                 (75) 

Addition of loop-intermediates is now defined as follows.  
Definition 4.35. (Addition of Loop-Intermediates) Let  

1 2, , , n TCONEL L L LI∈  and TCONEM RI∈  such that 1 2, , , nL L L M≤ . Then, 

( ) ( ) ( )1 2 1 2:n H H H n HL L L G L G L G L M+ + + ⋅=   .        (76) 

Remark 4.36. Addition 1 2 nL L L+ + +  is defined with respect to HM , 
which is not explicitly indicated in the formula. 

Definition 4.37. (Section 
VSσ  on VS ) Let { }1 2, , , n HV c c c I= ⊂  be a 

topological covering of 0 Hm I∈ . Let ( )T Vσ ∈Γ . The section 
VSσ  of T on the 

hexagonal covering VS  is defined by 

( )( ) ( ) ( )( )0 0:\ \
VS i i i base iH H

c m c c C m cσ σ⊕ =  .            (77) 

Note that 

( )( )( ) ( )( ) ( ) ( )
0 0\

,\ 1 ,
iS i i HV

ic Hc m c
L L m c i nσσ
ψ ψ

⊕
= ⊕ =  .         (78) 
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Since ( ) ( )0 0 1, ,\i i H
c m c m i n⊕ ≤ =  , we can define addition 

( )( )( )01 \S i i HV
i c m

n

c
L

σ
ψ

= ⊕∑                       (79) 

by Definition 4.35. 
Using addition of loop-intermediates, the design problem is now rephrased as 

follows. 
Problem 4.38. (Incremental Design of Protein-like Molecules) Given 1) a 

target shape 0m : { }0 0 TCONEM m RI= ∈ ; 2) a topological covering V of 0m : 
{ }1 2, , , nV c c c=  ; 3) a section σ of T on V: ( )T Vσ ∈Γ . Then, we obtain 

0 TCONEL LI∈  such that 0 0L M≤  by 

( )( )( )
( ) ( ) ( ) ( )

00 1

1 2 0

\

,

:
S i i HV

i c m c

H H H n H

nL L

G L G L G L M

σ
ψ

= ⊕
=

= ⋅

∑
 

            (80) 

where ( )( )( )0 \
:

S i i HV
i c m c

L L
σ

ψ
⊕

= . The question here is “when dose L0 consist of a 

single loop?” 

5. Incremental Design of Protein-Like Molecules (N = 2) 

In general, the sum of loops is not a loop. In this section, we consider sufficient 
conditions for the L0 of Problem 4.38 to be a loop. Due to page limitations, we 
only consider a topological covering consisting of two integral regions. The in-
cremental design problem is then given as follows 

Problem 5.1. (Incremental Design of Protein-like Molecules (n = 2)) 
Given 1) a target shape 0m : { }0 0 TCONEM m RI= ∈ ; 2) a topological covering V 
of 0m : { }1 2,V c c= ; 3) a section σ of T on V: ( )T Vσ ∈Γ . Then, we obtain 

0 TCONEL LI∈  such that 0 0L M≤  by 

( )( )( ) ( )( )( )
( ) ( ) ( )

1 0 1 2 0 2

1

\

2 0

\0

,

:
S SH HV Vc m c c m c

H H H

L L L

G L G L M

σ σ
ψ ψ

⊕ ⊕
= +

= ⋅

             (81) 

where ( )( )( )0 \
:

S i i HV
i c m c

L L
σ

ψ
⊕

= . Find sufficient conditions for 0L  to be a loop. 

5.1. Closer Look at the Action of ( )T PTTRANS TCONE,  

Figure 6 shows the effect of the action of ( )0TRANS TM  on ( )( )0baseC ML ψ  us-
ing the height of normal edges, defined as follows. 

Definition 5.2. (Height of Normal Edges) Let 1 2PP  be a vertical diagonal of 
a top face of [ ], ,a b c UC∈ . The height ( )1 2Eht PP  of 1 2PP  is defined by 

( ) [ ]( )1 2 : , ,E UCht PP ht a b c= .                    (82) 

Let C TCONE∈ . Let 1 2Q Q  be a normal edge of the induced flow Cψ  such 
that ( )1 2 1 2PP Q Qπ = , where 1 2PP  is the corresponding vertical diagonal on the 
surfaces of C. The height ( )1 2Eht Q Q  of 1 2Q Q  (with respect to C) is defined by 
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Figure 6. The action of ( )0TRANS TM  on ( )( )0baseC ML ψ . 

 

( ) ( )1 2 1 2:E Eht Q Q ht PP= .                     (83) 

Shown in Figure 6(a) top is the top view of the base tangent cone 

( )0 0baseC M TM∈                        (84) 

of some 0M RI∈ . Shown in Figure 6(a) bottom is the loop-intermediate 

( )( )0baseC ML ψ                         (85) 

on B. By definition, the heights of all normal edges of ( )0baseC Mψ  are 0. 
Shown in Figure 6(b) top is the tangent cone 

[ ] [ ] [ ] ( )1 2 3 0basePT P PT P T P C M⋅  .               (86) 

In the upper part, two Y-shaped sets of normal edges are replaced by two in-
verted Y-shaped sets of normal edges (thick line segments) by putting the two 
unit cubes [ ]1P  and [ ]2P . In the lower part, a Y-shaped set of normal edges is 
replaced byan inverted Y-shaped set of normal edges (thick line segments) by 
taking the unit cube [ ]3P . 

Shown in Figure 6(b) bottom is the loop-intermediate 

[ ] [ ] [ ] ( )( )1 2 3 0baseCPT P PT P T P L Mψ⋅  .             (87) 

The light grey area indicates the projection image of [ ]1P  and [ ]2P  by π. 
The dark grey area indicates the projection image of the removed [ ]3P  by π. 
Note that normal edges of different heights are not directly connected. 

Lemma 5.3. If two normal edges 1n  and 2n  of a flow of triangles are con-
nected, the difference of their heights is even, i.e., 

( ) ( )1 2 mod 2E Eht n ht n≡ .                   (88) 

In Figure 6(c) top, the normal edges of height −1 are connected to the normal 
edges of height 1 by putting the unit cube [ ]4P  of height −1 on the tangent cone 
of Figure 6(b). In Figure 6(c) bottom, the light grey area (height −1) and the 
dark grey area (height 1) are now in contact. 

In Figure 6(d) top, the normal edges of height −2 are connected to the nor-
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mal edges of height 0 by putting the unit cube [ ]5P  of height −2 on the tangent 
cone of Figure 6(c). In Figure 6(d) bottom, the white area indicates the projec-
tion image of [ ]5P . Note that the grey area (height 0) and the white area (height 
−2) are in contact. 

5.2. Computation of Loops from the Hexagonal Base 

In the loop model, it is easier to design an integral loop from scratch than to de-
sign a “hybrid” of known integral loops, since the area enclosed by a loop lp  is 
included in lp . (In protein science, it is a formidable task to design a novel ar-
tificial protein from scratch.) 

Let { }0 0 TCONEM m RI= ∈ . Disconnecting normal edges of ( )( )0baseC ML ψ  
along the boundary, we obtain Blp I∈  such that 0 0lp m=  as explained below. 

Shown in Figure 7(a) top is the top view of the base tangent cone 

( )0 0baseC M TM∈                          (89) 

of some 0 TCONEM RI∈ . Shown in Figure 7(a) bottom is the loop-intermediate 

( )( )0baseC ML ψ                            (90) 

on B. By definition, the heights of all normal edges of ( )0baseC Mψ  are 0. 
In Figure 7(b), normal edges of height 0 is disconnected by putting unit cubes 

of height −1 along the boundary on ( )0baseC M . The light grey area in Figure 
7(b) bottom indicates the projection image of the added unit cubes. 

In Figure 7(c), normal edges of height 0 is disconnected by taking unit cubes 
of height 0 along the boundary from ( )0baseC M . The dark grey area in Figure 
7(c) bottom indicates the projection image of the removed unit cubes. 

In Figure 7(d) left, a loop-intermediate consisting of three integral loops is 
obtained by putting 8 unit cubes of height −1 and taking a unit cube of height 0 
along the boundary. Then, taking another unit cube of height 0 at the meeting 
point of the boundaries of the three loops, we obtain the integral loop shown in 
Figure 7(d) right. 

5.3. Sufficient Conditions for L0 to be a Loop 

Sufficient conditions for L0 of Problem 5.1 to be a loop are given using the two 
concepts defined below. 

Definition 5.4. (The set ( )htN L0=  of normal edges) Let TCONEL LI∈ . 
( )0htN L=  denotes the set of all the normal edges of height 0 contained in L. 

Definition 5.5. (Rifts of a Loop-Intermediate) A crack of TCONEL LI∈  is a 
polygonal chain of normal edges of L connected to the boundary of L. A crack is 
called a rift if it consists of more than one normal edge. 

Lemma 5.6. Let 0M RI∈ . Let 1 2, TCONEL L LI∈  such that 1 2 0,L L M≤ . Let 

{ }( )1 2,T L Lσ ∈Γ . If ( ) ( )1 2H HG L G L  is well-defined, then 

( )( ) ( )( )( ) ( )( )( ) ( )( )( )1 2 1 20 0 0ht ht htL L L LN L L N L N Lσ σ σ σψ ψ ψ ψ= = =+ =  .   (91) 
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Figure 7. Computation of loops from the hexagonal base. 

 

In general, the set ( )( )( )0 | |iht LiN L σψ= ∑  shrinks monotonically as more loop- 

intermediates are added. 
Proof. Because of Remark 4.27, removed normal edges of height 0 are re-

moved forever. ∎ 
Proposition 5.7. (Sufficient Conditions to be a Loop) Settings are the same 

as for Problem 5.1. Let ( )( ) ( )1,2
ii Bclp L I iσψ= ∈ = , i.e., 

( )( )( ) ( ) ( )
0 \ 0 1,2\

S i i HV
i i Hc m c

L lp m c i
σ

ψ
⊕

= ⊕ = .            (92) 

Then, 0L  consists of a single loop if ( ) ( )1 2H HG L G L  is well-defined and 
one of the following three conditions are satisfied: 

1) No cracks of 1lp  and 2lp  connect to ( )0 1 2M c c∂ ∂  . There is at most 
only one rift of 1lp  that penetrates into 1 2c c  through 1 2\c c . No rift of 2lp  
penetrates into 1 2c c  through 2 1\c c  (Figure 8(a) and Figure 8(b)). 

2) No cracks of 1lp  and 2lp  connect to ( )0 1 2M c c∂ ∂  . There is at most 
only one rift of 2lp  that penetrates into 1 2c c  through 2 1\c c . No rift of 1lp  
penetrates into 1 2c c  through 1 2\c c . 

3) Both 1lp  and 2lp  have a crack connected to ( )0 1 2M c c∂ ∂  . No rift of 

1lp  penetrates into 1 2c c  through 1 2\c c . No rift of 2lp  penetrates into 

1 2c c  through 2 1\c c  (Figure 8(c)). 
Proof. Since ( ) ( )1 2H HG L G L  is well-defined, normal edges of height 0 are 

not added as a result of addition by Lemma 5.6. That is, cracks are extended 
only by normal edges of height n, where n∈N  such that 0n ≠  and n is even. 
“No cracks of 1lp  and 2lp  connect to ( )0 1 2M c c∂ ∂  ” implies 0M  is not 
separated by a polygonal chain contained in 1 2c c . 

Since 1lp  and 2lp  bring no normal edges of height n ( 0n ≠ ) into 2 1\c c  
and 1 2\c c , respectively, the result follows. ∎ 

Shown in Figure 9 are examples where the sufficient conditions are not satis-
fied. 

In Figure 9(a), both 1lp  and 2lp  have a rift that penetrates into 1 2c c  
through 1 2\c c  and 2 1\c c , respectively. In Figure 9(b), 1lp  has two rifts that 
penetrate into 1 2c c  through 1 2\c c . In Figure 9(c), both 1lp  and 2lp  have 
a crack connected to ( )0 1 2M c c∂ ∂  , and 1lp  has a rift that penetrates into 

1 2c c  through 1 2\c c . 
Figure 10(a) is the case given in Figure 1(a). Shown in Figure 10(a) bottom 

are all normal edges of height 0, where both 1lp  and 2lp  have a rift consisting  
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Figure 8. Sufficient conditions for L0 of Problem 5.1 to be a loop. 

 

 
Figure 9. Examples where the sufficient conditions are not satisfied. 

 

 
Figure 10. Incremental design of protein-like molecules (Examples given in 
Figure 1). 
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normal edges of height 0. All other normal edges are height 1. As a result of ad-
dition, some of the normal edges of height 0 are removed and we obtain the loop 

0lp . 
Figure 10(b) is the case given in Figure 1(b). Shown in Figure 10(b) bottom 

are all normal edges of height 0 and height −1 (thick line segments). All other 
normal edges are height 1. In this case, ( ) ( )1 0 2 0, ,G L M G L M  is not well- 
defined and we cannot use Lemma 5.6. As a result of addition, the rift of 2lp′  is 
extended by normal edges of height 0 and we obtain two loops 3lp′  and 4lp′ . 

6. Discussion 

A novel design method for protein-like molecules is proposed from the perspec-
tive of Sheaf Theory. In this method, a new molecule of a given shape is obtained 
as the sum of smaller molecules. Since the sum of loops is not a loop in general, 
sufficient conditions for a sum to be a loop are also considered. We believe this 
method is essential, especially when designing hybrids of known proteins. 

Previous mathematical studies of protein structure have focused primarily on 
characterization and classification of structures, and the author is aware of no 
other mathematical research on protein design. As such, there is much room for 
improvement in this study, which is still in its infancy. The author hopes that 
this paper will inspire more mathematicians to become interested in the mathe-
matical research on protein design. 

As directions for future research, there are two directions. One is the study of 
three-dimensional case, in which protein-like molecules are represented as a 
loop of tetrahedra [12]. The other is the study of loops on various hexagonal 
meshes other than the “flat” mesh H considered in this paper [13]. Examples in-
clude hexagonal meshes on the surface of 3D molecules (i.e., loops of tetrahedra). 
Note that a 2D triangular flow is induced on the surface of a complex of loops of 
tetrahedra. 

In the three-dimensional case, two difficulties arise. First, the shape of a mo-
lecule is given on a mesh of dodecahedron, where a dodecahedron can be di-
vided into four loops of tetrahedra (A hexagon cannot be divided into more than 
one loop of triangles). Second, the height of normal edges of tetrahedra is classi-
fied into three congruence classes of modulo 3, not two congruence classes of 
modulo 2. 
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