Rupture Degree of Some Cartesian Product Graphs

Yinkui Li, Tingyi Zhu
Department of Mathematics, Qinghai Nationalities College, Xining, China
Email: lyk463@163.com

How to cite this paper: Li, Y.K. and Zhu, T.Y. (2023) Rupture Degree of Some Cartesian Product Graphs. Open Journal of Discrete Mathematics, 13, 16-26.
https://doi.org/10.4236/ojdm.2023.131002

Received: November 15, 2022
Accepted: January 9, 2023
Published: January 12, 2023
Copyright © 2023 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

The rupture degree of a noncomplete-connected graph G is defined by $r(G)=\max \{\omega(G-X)-|X|-\tau(G-X): X \subset V(G), \omega(G-X)>1\}$, where $\omega(G-X)$ is the number of components of $G-X$ and $\tau(G-X)$ is the order of the largest component of $G-X$. In this paper, we determine the rupture degree of some Cartesian product graphs.

Keywords

The Rupture Degree, Cartesian Product, The Vulnerability

1. Introduction

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. A set $X \subset V(G)$ is a cut-set of G, if $G-X$ is disconnected. For a cut-set X of G, we by $\omega(G-X)$ and $\tau(G-X)$, respectively, denote the number of components and the order of the largest component in $G-X$. The score of X is defined as $S c(X)=\omega(G-X)-|X|-\tau(G-X)$. The rupture degree of a noncomplete- connected graph G is defined by

$$
r(G)=\max \{S c(X): X \subset V(G), \omega(G-X)>1\} .
$$

We call X a r-set of G, if $\operatorname{Sc}(X)=r(G)$.
The rupture degree is well used to measure the vulnerability of graphs, for it can measure not only the amount of work done to damage the network, but also how badly the network is damaged. The references about this parameter see [1] [2] [3].

For a vertex set $S \subseteq V(G)$, we by $G[S]$ denote the subgraph of G that is induced by S. And by $N(S)$ denote neighbor set of S that contains vertex, not in S, but has neighbor in S.

Let $G_{1}, G_{2}, \cdots, G_{k}$ be connected graphs. The Cartesian product $G_{1} \times G_{2} \times \cdots \times G_{k}$ is a graph that has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right) \times \cdots \times V\left(G_{k}\right)$ with two vertices $u=\left(u_{1}, u_{2}, \cdots, u_{k}\right)$ and $v=\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ adjacent if for exactly one $i, u_{i} \neq v_{i}$ and $\left(u_{i}, v_{i}\right)$ is an edge in G_{i}. As usual, we by P_{n} and C_{n} denote the path and the cycle on n vertices, respectively. It is well known that Cartesian products are highly recommended for the design of interconnection networks [4]. In this paper, we first determine the rupture degree for some Cartesian products such as $P_{m} \times C_{n}$ and $C_{m} \times C_{n}$. Then, discuss the rupture degree of grids $P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{k}}$, and tori $C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}$.

For terminology and notations not defined here, we refer to the book [5].

2. The Rupture Degree of $P_{m} \times C_{n}$ and $C_{m} \times C_{n}$

In this section, we determine the rupture degree of Cartesian product $P_{m} \times C_{n}$ and $C_{m} \times C_{n}$. First, give some useful lemmas, which have been proved in [2].

Lemma 2.1. If H is a spanning subgraph of G, then $r(H) \geq r(G)$.
Lemma 2.2. The rupture degree of path P_{n} and cycle C_{n} are

$$
r\left(P_{n}\right)=\left\{\begin{array}{ll}
0, & \text { if } n \text { is odd; } \\
-1, & \text { if } n \text { is even. }
\end{array} \quad r\left(C_{n}\right)= \begin{cases}-2, & \text { if } n \text { is odd; } \\
-1, & \text { if } n \text { is even }\end{cases}\right.
$$

Lemma 2.3. Let X be a cut-set of $G\left(=P_{m} \times C_{n}\right)$. If n is odd, then $\omega(G-X) \leq \frac{m n-m}{2}$.
Proof. Suppose S is a cut set of C_{n}, then $\omega\left(C_{n}-S\right) \leq \frac{n-1}{2}$. Notice that $m C_{n}$ is a spanning subgraph of G, we have that $\omega(G-X) \leq m \omega\left(C_{n}-S\right) \leq \frac{m n-m}{2}$ for any cut-set X of G.

Lemma 2.4. Let X be a r-set of $G\left(=C_{m} \times C_{n}\right)$ with m, n are odd, then $\omega(G-X) \leq \frac{(m-1)(n-1)}{2}$.

Proof. Suppose that $V\left(C_{m}\right)=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ and $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, then $V(G)=\left\{w_{i j}=\left(u_{i}, v_{j}\right) \mid 1 \leq i \leq m ; 1 \leq j \leq n\right\}$. Let X be a r-set of G and $W_{i}=\left\{w_{i 1}, w_{i 2}, \cdots, w_{i n}\right\}$ for $1 \leq i \leq n$. Clearly, the induced subgraphs $G\left[W_{i}\right]$ is cycle with order n, named as C_{n}^{i}. And for any cut set S_{i} of C_{n}^{i}, we have $\omega\left(C_{n}^{i}-S\right)=\frac{n-1}{2}$. And call S_{i} the optimal cut-set if equality holds. Clearly, the optimal cut-set of C_{n}^{i} is either $\left\{w_{i 1}, w_{i 3}, \cdots, w_{i n}\right\}$ or $\left\{w_{i 2}, w_{i 4}, \cdots, w_{i(n-1)}\right\}$ for $1 \leq i \leq n$. Consider X be a r-set of G and m is odd, there exist C_{n}^{i} and C_{n}^{i+1} such that $\omega\left(G\left[V\left(C_{n}^{i} \cup C_{n}^{i+1}\right)\right]-X\right) \leq \frac{n-1}{2}$ for some i. Now, let
$G_{1}=G\left[V\left(C_{n}^{i} \cup C_{n}^{i+1}\right)\right]$ and $G_{2}=G-G_{1}=P_{m-2} \times C_{n}$. Consider $\omega(G-X) \leq \omega\left(G_{1}-X\right)+\omega\left(G_{2}-X\right)$, by Lemma 2.3, we get
$\omega(G-X) \leq \frac{n-1}{2}+\frac{(m-2)(n-1)}{2}=\frac{(m-1)(n-1)}{2}$.

Lemma 2.5. Let $m \geq 2$ and $n \geq 3$ be positive integers. Then $r\left(P_{m} \times C_{n}\right) \geq r\left(P_{m+1} \times C_{n}\right)$.

Proof. Let $G=P_{m+1} \times C_{n}, G^{\prime}=P_{m} \times C_{n}$. Then $G-G^{\prime}$ is a cycle. Support that X is a r-set of G, then $X_{1}=X \bigcap V\left(G^{\prime}\right)$ and $X_{2}=X \bigcap V\left(G-G^{\prime}\right)$ are vertex cut set of G^{\prime} and $G-G^{\prime}$, respectively. Denote $\omega_{1}=\omega\left(G^{\prime}-X_{1}\right)$, $\omega_{2}=\omega\left(G-G^{\prime}-X_{2}\right)$. Since $r\left(G^{\prime}\right) \geq \omega_{1}-\left|X_{1}\right|-\tau\left(G^{\prime}-X_{1}\right)$ and $\tau(G-X) \geq \tau\left(G^{\prime}-X_{1}\right)$, we have $r\left(G^{\prime}\right) \geq \omega_{1}-\left|X_{1}\right|-\tau(G-X)$. So $r(G)=$ $\omega(G-X)-|X|-\tau(G-X) \leq \omega_{1}+\omega_{2}-\left|X_{1}\right|-\left|X_{2}\right|-\tau(G-X) \leq r\left(G^{\prime}\right)+\omega_{2}-\left|X_{2}\right|$.

Notice that $G-G^{\prime}$ is a cycle and thus $\omega_{2} \leq\left|X_{2}\right|$. Thus $r(G) \leq r\left(G^{\prime}\right)$. This means $r\left(P_{m} \times C_{n}\right) \geq r\left(P_{m+1} \times C_{n}\right)$.

Theorem 2.6. Let $m \geq 2$ and $n \geq 3$ be positive integers. Then the rupture degree of $P_{m} \times C_{n}$ is

$$
r\left(P_{m} \times C_{n}\right)= \begin{cases}-1, & \text { if } n \text { is even; } \\ \begin{cases}-\frac{4+m}{2}, & \text { if } m \text { is even; } \\ -\frac{3+m}{2}, & \text { if } m \text { is odd. }\end{cases} & \text { if } n \text { is odd. }\end{cases}
$$

Proof. Suppose $V\left(P_{m}\right)=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ and $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, then $V\left(P_{m} \times C_{n}\right)=\left\{\left(u_{i}, v_{j}\right) \mid 1 \leq i \leq m ; 1 \leq j \leq n\right\}$. For narrative purposes, we let $P_{m} \times C_{n}=G$ and distinguish three cases to complete the proof.

Case 1. n is even.
Notice that G contains a Hamilton cycle $C_{m n}$, we by Lemmas 2.1 and 2.2 get $r(G) \leq-1$. On the other hand, let $X^{*}=\left\{\left(u_{i}, v_{j}\right) \mid i \equiv 0(\bmod 2), j=1,3, \cdots, n-1 ; i \equiv 1(\bmod 2), j=2,4, \cdots, n\right\}$ for $1 \leq i \leq m$. Clearly, $\omega\left(G-X^{*}\right)=m \frac{n}{2},\left|X^{*}\right|=m \frac{n}{2}$ and $\tau\left(G-X^{*}\right)=1$. By the definition of rupture degree, we have $r(G) \geq \omega\left(G-X^{*}\right)-\left|X^{*}\right|-\tau\left(G-X^{*}\right)=-1$. Thus $r\left(P_{m} \times C_{n}\right)=-1$ while n is even.

Case 2. n is odd, m is even.
First, let
$X^{*}=\left\{\left(u_{i}, v_{j}\right) \mid i \equiv 0(\bmod 2), j=1,3, \cdots, n ; i \equiv 1(\bmod 2), j=2,4, \cdots, n-1\right\}$ for $1 \leq i \leq m$. Since $\omega\left(G-X^{*}\right)=\frac{m n-m}{2},\left|X^{*}\right|=\frac{m n}{2}$ and $\tau\left(G-X^{*}\right)=2$. Then $\operatorname{Sc}\left(X^{*}\right)=\omega\left(G-X^{*}\right)-\left|X^{*}\right|-\tau\left(G-X^{*}\right)=-\frac{m+4}{2}$. Now, we by showing $S c(X) \leq-\frac{m+4}{2}$ for any cut-set X of G to get $r(G)=-\frac{m+4}{2}$. Now, distinguish some cases to discuss.

Subcase 2.1. $|X| \geq\left|X^{*}\right|=\frac{m n}{2}$.
If $\tau(G-X)=1$, by Lemma 2.3, then $|X|=m n-\omega(G-X) \geq \frac{m n+m}{2}$. Consider $m \geq 2$, thus

$$
\operatorname{Sc}(X)=\omega(G-X)-|X|-\tau(G-X) \leq \frac{m n-m}{2}-\frac{m n+m}{2}-1=-\frac{2 m+2}{2} \leq-\frac{m+4}{2} .
$$

If $\tau(G-X) \geq 2$, consider $|X| \geq \frac{m n}{2}$, we have
$S c(X)=\omega(G-X)-|X|-\tau(G-X) \leq \frac{m n-m}{2}-\frac{m n}{2}-2=-\frac{m+4}{2}$.
Subcase 2.2. $|X|<\left|X^{*}\right|=\frac{m n}{2}$.
Let $A_{i}=\left\{\left(u_{i}, v_{j}\right) \mid 1 \leq j \leq n\right\}, \quad X_{i}=A_{i} \cap X, \quad X_{i}^{*}=A_{i} \cap X^{*} \quad$ for $i=1,2, \cdots, m$ and $B_{j}=\left\{\left(u_{i}, v_{j}\right) \mid 1 \leq i \leq m\right\}, \quad Y_{j}=B_{j} \cap X, \quad Y_{j}^{*}=B_{j} \cap X^{*} \quad$ for $j=1,2, \cdots, n$. Clearly, $G\left[A_{i}\right]$ and $G\left[A_{i}\right]$ are cycles with order n and path with order m, respectively. We discuss by $n \geq \frac{m}{2}$ and $n \leq \frac{m}{2}-1$.

Subcase 2.2.1. $n \geq \frac{m}{2}$.
Notice that $G\left[A_{i}\right] \cup G\left[A_{i+1}\right]$ is a spanning subgraph of $G\left[A_{i} \cup A_{i+1}\right]$ with $1 \leq i \leq m-1$, we can get $\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i} \cup X_{i+1}\right) \leq\left|X_{i} \cup X_{i+1}\right|-1$. In fact, if $2 \leq\left|X_{i} \cup X_{i+1}\right|<n$, then
$\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i} \cup X_{i+1}\right) \leq \omega\left(G\left[A_{i}\right]-X_{i}\right)+\omega\left(G\left[A_{i+1}\right]-X_{i+1}\right)-1$. Thus,
$\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i} \cup X_{i+1}\right) \leq\left|X_{i}\right|+\left|X_{i+1}\right|-1=\left|X_{i} \cup X_{i+1}\right|-1$.
If $\left|X_{i} \cup X_{i+1}\right| \geq n$, then $\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i} \cup X_{i+1}\right) \leq n-1$. Therefore,
$\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i} \cup X_{i+1}\right) \leq\left|X_{i} \cup X_{i+1}\right|-1$. Combine this with the fact
$\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i}^{*} \cup X_{i+1}^{*}\right)=n-1$, it is clear that
$\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i}^{*} \cup X_{i+1}^{*}\right)-\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i} \cup X_{i+1}\right) \geq n-\left|X_{i} \cup X_{i+1}\right|$ for $\left|X_{i} \cup X_{i+1}\right| \geq 2$ with $1 \leq i \leq m-1$.

Now let $a=\sum_{\left|X_{i} \cup X_{i+1}\right| \geq 2}\left(n-\left|X_{i} \cup X_{i+1}\right|\right), \quad M=\left\{X_{i} \cup X_{i+1}:\left|X_{i} \cup X_{i+1}\right|=0\right\}$ and $N=\left\{X_{i} \cup X_{i+1}:\left|X_{i} \cup X_{i+1}\right|=1\right\}$ for $i=1,3, \cdots, m-1$. Consider X is a vertex cut set of G, then $|M|+|N| \leq \frac{m}{2}-1$. Furthermore, since
$G\left[A_{1} \cup A_{2}\right] \cup G\left[A_{3} \cup A_{4}\right] \cup \cdots \cup G\left[A_{m-1} \cup A_{m}\right]$ is a spanning subgraph of G with $\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i}^{*} \cup X_{i+1}^{*}\right)-\omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i} \cup X_{i+1}\right) \geq n-\left|X_{i} \cup X_{i+1}\right| \quad$ for $\left|X_{i} \cup X_{i+1}\right| \geq 2$, we have $\left|X^{*}\right|=\frac{m n}{2}=|X|+|M| n+|N|(n-1)+a$.

And thus

$$
\begin{aligned}
\omega\left(G-X^{*}\right) & =\frac{m(n-1)}{2} \\
& =\sum_{i} \omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i}^{*} \cup X_{i+1}^{*}\right) \\
& \geq \sum_{i} \omega\left(G\left[A_{i} \cup A_{i+1}\right]-X_{i} \cup X_{i+1}\right)+|M|(n-2)+|N|(n-2)+a \\
& \geq \omega(G-X)+(|M|+|N|)(n-2)+a
\end{aligned}
$$

Now, we estimate the value $S c(X)$ in details. If $|M| \geq 1$, then $\tau(G-X) \geq 2 n$. We have

If $|M|=0,|N| \geq 1$, then $\tau(G-X) \geq 2 n-1$. Consider $|N| \leq \frac{m}{2}-1$ and $m \geq 4$.
Thus we get

$$
\begin{aligned}
S c(X) & =\omega(G-X)-|X|-\tau(G-X) \\
& \leq \frac{m(n-1)}{2}-|N|(n-2)-a+|N|(n-1)+a-\frac{m n}{2}-2 n+1 \\
& =-\frac{m}{2}+|N|-2 n+1 \leq-2 n \leq-m \leq-\frac{m+4}{2} .
\end{aligned}
$$

If $|M|=0,|N|=0$, then $|X|=\frac{m n}{2}-a$. Combine $\tau(G-X) \geq 2$. We have $\operatorname{Sc}(X)=\omega(G-X)-|X|-\tau(G-X) \leq \frac{m(n-1)}{2}-a-\frac{m n}{2}+a-2=-\frac{m+4}{2}$.

Subcase 2.2.2. $n \leq \frac{m}{2}-1$.
Notice that $G\left[B_{j} \cup B_{j+1}\right]$ is a ladder with order $2 m$ and $G\left[B_{1} \cup B_{2}\right] \cup G\left[B_{3} \cup B_{4}\right] \cup \cdots \cup G\left[B_{n-2} \cup B_{n-1}\right] \cup G\left[B_{n}\right]$ is a spanning subgraph of G. We similarly get $\omega\left(G\left[B_{j} \cup B_{j+1}\right]-Y_{j}^{*} \cup Y_{j+1}^{*}\right)-\omega\left(G\left[B_{j} \cup B_{j+1}\right]-Y_{j} \cup Y_{j+1}\right) \geq m-\left|Y_{j} \cup Y_{j+1}\right| \quad$ while $\left|Y_{j} \cup Y_{j+1}\right| \geq 1$ for $j=1,3, \cdots, n-2$. Now, let $S=\left\{Y_{j} \cup Y_{j+1}:\left|Y_{j} \cup Y_{j+1}\right|=0\right\}$ and $b=\sum_{\left|Y_{j} \cup Y_{j+1}\right| \geq 1}\left(m-\left|Y_{j} \cup Y_{j+1}\right|\right)$ with $j=1,3, \cdots, n-2$ and discuss $\operatorname{Sc}(X)$ by $|S| \geq 1$ and $|S|=0$.
If $|S| \geq 1$, then $\tau(G-X) \geq 2 m$. Similarly, we get $\left|X^{*}\right|=\frac{m n}{2}=|X|+|S| m+b+\frac{m}{2}-\left|Y_{n}\right|$ and

$$
\omega\left(G-X^{*}\right)=\frac{m(n-1)}{2}
$$

$$
=\sum_{j} \omega\left(G\left[B_{j} \cup B_{j+1}\right]-Y_{j}^{*} \cup Y_{j+1}^{*}\right)
$$

$$
\geq \sum_{j} \omega\left(G\left[B_{j} \cup B_{j+1}\right]-Y_{j} \cup Y_{j+1}\right)+|S|(m-1)+b
$$

$$
\geq \omega(G-X)+|S|(m-1)+b
$$

Therefore, we get

$$
\begin{aligned}
\operatorname{Sc}(X) & =\omega(G-X)-|X|-\tau(G-X) \\
& \leq \frac{m(n-1)}{2}-[|S|(m-1)+b]-\left[\frac{m n}{2}-\left(|S| m+b+\frac{m}{2}-\left|Y_{n}\right|\right)\right]-2 m \\
& =|S|-\left|Y_{n}\right|-2 m \leq \frac{n-3}{2}-2 m \\
& \leq-\frac{7 m+8}{4}<-\frac{m+4}{2} .
\end{aligned}
$$

If $|S|=0$, we discuss by the value of $\left|Y_{n}\right|$. While $\left|Y_{n}\right| \geq \frac{m}{2}$, consider $|X|<\frac{m n}{2}$, then $\tau(G-X) \geq 2$. Combine $\left|X^{*}\right|=\frac{m n}{2}=|X|+\frac{m}{2}-\left|Y_{n}\right|+b$ and $\omega\left(G-X^{*}\right)=\frac{m(n-1)}{2} \geq \omega(G-X)+b$, we have

$$
\begin{aligned}
\operatorname{Sc}(X) & =\omega(G-X)-|X|-\tau(G-X) \\
& \leq \frac{m(n-1)}{2}-b-\left(\frac{m n}{2}-\frac{m}{2}+\left|Y_{n}\right|-b\right)-2 \\
& =-\left|Y_{n}\right|-2 \leq-\frac{m+4}{2} .
\end{aligned}
$$

while $\left|Y_{n}\right| \leq \frac{m}{2}-1$, we would get $\sum_{j=1,3, \cdots, n-2} \omega\left(G\left[B_{j} \cup B_{j+1}\right]-Y_{j} \cup Y_{j+1}\right) \geq \omega(G-X)-\left|Y_{n}\right|+\frac{m}{2}$. In fact, since the optimal cut set of $G\left[B_{n}\right]$ always contains $\frac{m}{2}$ vertices, each vertex of $Y_{n}^{*} \backslash Y_{n}$ would connect at least two components in $G-X$. Thus, we get $\sum_{j=1,3, \cdots, n-2} \omega\left(G\left[B_{j} \cup B_{j+1}\right]-Y_{j} \cup Y_{j+1}\right) \geq \omega(G-X)+\frac{m}{2}-\left|Y_{n}\right|$. Combine this with $\left|X^{*}\right|=\frac{m n}{2}=|X|+\frac{m}{2}-\left|Y_{n}\right|+b, \quad \tau(G-X) \geq 2$ and $\frac{m(n-1)}{2} \geq \sum_{j} \omega\left(G\left[B_{j} \cup B_{j+1}\right]-Y_{j} \cup Y_{j+1}\right)+b$, we have

$$
\operatorname{Sc}(X)=\omega(G-X)-|X|-\tau(G-X)
$$

$$
\leq \sum_{j=1,3, \cdots, n-2} \omega\left(G\left[B_{j} \cup B_{j+1}\right]-Y_{j} \cup Y_{j+1}\right)+\left|Y_{n}\right|-\frac{m}{2}+\frac{m}{2}
$$

$$
-\left|Y_{n}\right|+b-\frac{m n}{2}-2
$$

$$
\leq \frac{m(n-1)}{2}-b+b-\frac{m n}{2}-2
$$

$$
=-\frac{m+4}{2}
$$

Case 3. m, n are both odd.
By Lemma 2.5, we get $r\left(P_{m-1} \times C_{n}\right) \geq r\left(P_{m} \times C_{n}\right)$. Notice that $n-1$ is even, we get $r(G) \leq r\left(P_{m-1} \times C_{n}\right)=-\frac{3+m}{2}$.

On the other hand, let
$X^{*}=\left\{\left(u_{i}, v_{j}\right) \mid i \equiv 0(\bmod 2), j=1,3, \cdots, n ; i \equiv 1(\bmod 2), j=2,4, \cdots, n-1\right\}$ for $1 \leq i \leq m$. Clearly, X^{*} is a cut set of $P_{m} \times C_{n}$ with $\omega\left(G-X^{*}\right)=\frac{m n-m}{2}$, $\left|X^{*}\right|=\frac{m n-1}{2}$ and $\tau\left(G-X^{*}\right)=2$. This implies that $r(G) \geq \omega\left(G-X^{*}\right)-\left|X^{*}\right|-\tau\left(G-X^{*}\right)=-\frac{3+m}{2}$.
Therefore, $r\left(P_{m} \times C_{n}\right)=-\frac{3+m}{2}$ while m, n are both odd. This completes the proof.

Theorem 2.7. Let m, n be positive integers with $n \geq m \geq 3$. Then the rupture degree of $C_{m} \times C_{n}$ is

$$
r\left(C_{m} \times C_{n}\right)= \begin{cases}-1, & \text { both } n \text { and } m \text { are even; } \\ -\frac{4+k}{2}, & \text { one of } n \text { and } m \text { is even, which denote by } k ; \\ -\frac{4+m+n}{2}, & \text { both } n \text { and } m \text { are odd. }\end{cases}
$$

Proof. Suppose $V\left(C_{m}\right)=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ and $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, then $V\left(C_{m} \times C_{n}\right)=\left\{w_{i j}=\left(u_{i}, v_{j}\right) \mid 1 \leq i \leq m ; 1 \leq j \leq n\right\}$. Similarly, we let $C_{m} \times C_{n}=G$ and $W_{i}=\left\{w_{i j} \mid 1 \leq j \leq n\right\}, W_{j}=\left\{w_{i j} \mid 1 \leq i \leq m\right\}$. Clearly, both $\bigcup_{i} G\left[W_{i} \cup W_{i+1}\right]$ and $\bigcup_{j} G\left[W_{j} \cup W_{j+1}\right]$ are spanning subgraph of G. Now, we distinguish three cases to complete the proof.

Case 1. Both m and n are even.
Notice that $P_{m} \times C_{n}$ is a spanning subgraph of G, by Lemma 2.1 and Theorem 2.6, we have $r(G) \leq-1$. On the other hand, let $X^{*}=\left\{\left(u_{i}, v_{j}\right) \mid i \equiv 0(\bmod 2), j=1,3, \cdots, n-1 ; i \equiv 1(\bmod 2), j=2,4, \cdots, n\right\}$ for $1 \leq i \leq m$. Since $\omega\left(G-X^{*}\right)=m \frac{n}{2},\left|X^{*}\right|=m \frac{n}{2}$ and $\tau\left(G-X^{*}\right)=1$. Thus $r(G) \geq \omega\left(G-X^{*}\right)-\left|X^{*}\right|-\tau\left(G-X^{*}\right)=-1$. Therefore, $\quad r(G)=-1$.

Case 2. One of n and m is even.
Without loss generality, suppose m is even, then n is odd. We first let $X^{*}=\left\{\left(u_{i}, v_{j}\right) \mid i \equiv 0(\bmod 2), j=1,3, \cdots, n ; i \equiv 1(\bmod 2), j=2,4, \cdots, n-1\right\}$ for $1 \leq i \leq m$. Clearly, $\omega\left(G-X^{*}\right)=\frac{m n-m}{2},\left|X^{*}\right|=\frac{m n}{2}$ and $\tau\left(G-X^{*}\right)=2$. Thus $r(G) \geq \omega\left(G-X^{*}\right)-\left|X^{*}\right|-\tau\left(G-X^{*}\right)=-\frac{m+4}{2}$. Consider $P_{m} \times C_{n}$ is a spanning subgraph of G, by Lemmas 2.1 and 2.5 , we have $r(G) \leq-\frac{m+4}{2}$. So, we get $r(G)=-\frac{m+4}{2}$ while m is even and n is odd. Similar to the case for n is even and m is odd, here omitted.

Case 3. Both m and n are odd.
First, let
$X^{*}=\left\{\left(u_{i}, v_{j}\right) \mid i \equiv 0(\bmod 2), j=2,4, \cdots, n-1 ; i \equiv 1(\bmod 2), j=1,3, \cdots, n\right\}$ for $1 \leq i \leq m$. Clearly, $\quad X^{*}$ is a cut set of G with $\omega\left(G-X^{*}\right)=\frac{(m-1)(n-1)}{2}$, $\left|X^{*}\right|=\frac{m n+1}{2}$ and $\tau\left(G-X^{*}\right)=2$. Thus $r(G) \geq \omega\left(G-X^{*}\right)-\left|X^{*}\right|-\tau\left(G-X^{*}\right)=-\frac{4+m+n}{2}$. The following we by proving claim to show $r(G) \leq-\frac{4+m+n}{2}$.

Claim. Let m, n be two odd numbers with $3 \leq m \leq n$ and S be a r-set of $G\left(=C_{m} \times C_{n}\right)$. Then $G-S=s K_{2} \cup t K_{1}$ with $s \leq \frac{m+n-2}{2}$.
Proof. Let S be a r-set of G with $\tau(G-S)$ as small as possible. Suppose
$G_{1}, G_{2}, \cdots, G_{k}$ are components of $G-S$. We first show $\left|G_{i}\right| \leq 2$ for $1 \leq i \leq k$. If not, assume that $G_{1}, G_{2}, \cdots, G_{k_{1}}$ with $\left|G_{j}\right| \geq 3$ for $1 \leq j \leq k_{1} \leq k$, then each G_{j} has at least one cut vertex (unless $G_{j}=K_{2}$ or K_{1}). In fact, assume $G_{j}\left(\neq K_{2}, K_{1}\right)$ has no cut vertex, we exchange vertices in $N\left(G_{j}\right)$ with vertices in $V\left(G_{j}\right)$ to keep $|S|$ constant and find that either $\omega(G-S)-|S|-\tau(G-S)$ would be greater or $\tau(G-S)$ would be smaller, which contradicts to the choose of S. So, each $G_{j}\left(1 \leq j \leq k_{1}\right)$ has cut vertex and suppose $w_{1}, w_{2}, \cdots, w_{k_{1}}$ are cut vertices of $G_{1}, G_{2}, \cdots, G_{k_{1}}$, respectively. Let $S^{\prime}=S \bigcup\left\{w_{1}, w_{2}, \cdots, w_{k_{1}}\right\}$. Then $\tau\left(G-S^{\prime}\right) \leq \tau(G-S)-2$. Thus we get

$$
\begin{aligned}
& \omega\left(G-S^{\prime}\right)-\left|S^{\prime}\right|-\tau\left(G-S^{\prime}\right) \\
& \geq \omega(G-S)+k_{1}-\left(|S|+k_{1}\right)-(\tau(G-S)-2) \\
& >\omega(G-S)-|S|-\tau(G-S)
\end{aligned}
$$

This contradicts to the choice of S. So $\left|G_{i}\right| \leq 2$ for $1 \leq i \leq k$ and then denote $G-S=s K_{2} \cup t K_{1}$. Further, it finds that there are at most one component as K_{2} in $G\left[C_{i} \cup C_{i+1}\right]-S$ for $1 \leq i \leq m-1$ and $G\left[C_{j} \cup C_{j+1}\right]-S$ for $1 \leq j \leq n-1$. Otherwise, if $G\left[C_{i} \cup C_{i+1}\right]-S$ or $G\left[C_{j} \cup C_{j+1}\right]-S$ has at least two components as K_{2}, then $\tau(G-S) \geq 3$, contradiction. This implies that $s \leq \frac{m-1}{2}+\frac{n-1}{2}=\frac{m+n-2}{2}$.

By Lemma 2.4 and the above Claim, we get

$$
\begin{aligned}
|S| & \geq m n-2 \frac{m+n-2}{2}-\left(\frac{(m-1)(n-1)}{2}-\frac{(m+n-2)}{2}\right) \\
& =m n-m-n+2-\frac{(m n-2 m-2 n+3)}{2} \\
& =\frac{m n+1}{2} .
\end{aligned}
$$

Thus, we get

$$
r(G)=\omega(G-S)-|S|-\tau(G-S) \leq \frac{(m-1)(n-1)}{2}-\frac{m n+1}{2}-2=-\frac{4+m+n}{2}
$$

This completes the proof.

3. The Rupture Degree of Grids and Tori

Let $n_{1}, n_{2}, \cdots, n_{k}$ be positive integers. We discuss the rupture degree of grids $P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{k}}$ with $n_{i} \geq 2$ and tori $C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}$ with $n_{i} \geq 3$.

Lemma 3.1. [2] Let m, n be integers with $n \leq m$. Then $r\left(K_{m, n}\right)=m-n-1$.
Lemma 3.2. [1] Let m, n be integers with $1 \leq m \leq n$. Then
$r\left(K_{m} \times K_{n}\right)=m+n-m n-\left\lceil\frac{n}{m}\right\rceil$.
Theorem 3.3. For all positive integers $n_{1}, n_{2}, \cdots, n_{k}$, the rupture degree of grids is

$$
r\left(P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{k}}\right)= \begin{cases}0, & \text { if all } n_{i} \text { are odd } \\ -1, & \text { if some } n_{i} \text { is even }\end{cases}
$$

Proof. Notices that $P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{k}}$ contains a Hamilton path $P_{n_{1} n_{2} \cdots n_{k}}$. So by Lemmas 2.1 and 2.2, we have

$$
r\left(P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{k}}\right) \leq r\left(P_{n_{1} n_{2} \cdots n_{k}}\right)= \begin{cases}0, & \text { if all } n_{i} \text { are odd, } \\ -1, & \text { if some } n_{i} \text { is even. }\end{cases}
$$

On the other hand, it is well known that $P_{n_{1}} \times P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{k}}$ is a bipartite graph and thus

$$
P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{k}} \subseteq \begin{cases}K_{\frac{n_{1} n_{2} \cdots n_{k}-1}{}}^{2}, \frac{n_{1} n_{2} \cdots n_{k}+1}{2}, & \text { if all } n_{i} \text { are odd, } \\ K_{\frac{n_{1} n_{2} \cdots n_{k}}{2}, \frac{n_{1} n_{2} \cdots n_{k}}{2}}, & \text { if some } n_{i} \text { is even }\end{cases}
$$

Then by Lemmas 2.1 and 3.1, we get

$$
r\left(P_{n_{1}} \times P_{n_{2}} \times \cdots \times P_{n_{k}}\right) \geq \begin{cases}0, & \text { if all } n_{i} \text { are odd } \\ -1, & \text { if some } n_{i} \text { is even }\end{cases}
$$

This completes the proof.
Lemma 3.4. Let $N=\left\{n_{1}, n_{2}, \cdots, n_{k}\right\}$ be integer number set with $k \geq 3$ and $\left|n_{i}\right| \geq 3$. If S and T and disjoint sets of N with $S \cup T=N$, such that $x=\prod_{n_{i} \in S} n_{i} \leq y=\prod_{n_{i} \in T} n_{i}$, then $x+y-x y-\left\lceil\frac{y}{x}\right\rceil$ meets maximum while $x=\min \left\{n_{1}, n_{2}, \cdots, n_{k}\right\}$.

Proof. Without lose generality, suppose $\min \left\{n_{1}, n_{2}, \cdots, n_{k}\right\}=n_{1}$ and $n_{1} n_{2} \cdots n_{k}=x y=a$. Consider $k \geq 3$ and $y \geq x$, we have $a \geq x^{2}$ and $y \geq n_{1}^{2}$. Thus $a \geq n_{1}^{2} x$. Now, let $I=n_{1}+\frac{a}{n_{1}}-a-\left\lceil\frac{a}{n_{1}^{2}}\right\rceil$, estimate the deference of $x+y-x y-\left\lceil\frac{y}{x}\right\rceil$ and I for $x=\prod_{n_{i} \in S} n_{i}>n_{1}$.

Clearly, if $n_{1} \geq 4$, we have

$$
\begin{aligned}
I-\left(x+y-x y-\left\lceil\frac{y}{x}\right\rceil\right) & =n_{1}+\frac{a}{n_{1}}-\left[\frac{a}{n_{1}^{2}}\right\rceil-\left(x+\frac{a}{x}-\left\lceil\frac{a}{x^{2}}\right\rceil\right) \\
& =\left(n_{1}-x\right)+\left(x-n_{1}\right) \frac{a}{n_{1} x}-\left\lceil\frac{a}{n_{1}^{2}}\right\rceil+\left[\frac{a}{x^{2}}\right] \\
& \geq\left(x-n_{1}\right)\left(\frac{a}{n_{1} x}-1\right)-\frac{a}{n_{1}^{2}}-1+\frac{a}{x^{2}} \\
& =\left(x-n_{1}\right)\left(a \frac{n_{1} x-x-n_{1}}{n_{1}^{2} x^{2}}-1\right)-1 \\
& \geq\left(x-n_{1}\right)\left(a \frac{n_{1} x-2 x}{n_{1}^{2} x^{2}}-1\right)-1 \\
& \geq\left(x-n_{1}\right)\left(n_{1}-3\right)-1 \geq 0 .
\end{aligned}
$$

If $n_{1}=3$ and $x \geq 9$, we similarly have

$$
I-\left(x+y-x y-\left\lceil\frac{y}{x}\right\rceil\right)=3+\frac{a}{3}-\left\lceil\frac{a}{3^{2}}\right\rceil-\left(x+\frac{a}{x}-\left\lceil\frac{a}{x^{2}}\right\rceil\right)
$$

$$
\begin{aligned}
& =(3-x)+(x-3) \frac{a}{3 x}-\left\lceil\frac{a}{3^{2}}\right\rceil+\left[\frac{a}{x^{2}}\right\rceil \\
& \geq(x-3)\left(\frac{a}{3 x}-1\right)-\frac{a}{3^{2}}-1+\frac{a}{x^{2}} \\
& \geq(x-3)\left(\frac{a-3 x}{3 x}\right)-\frac{a}{3^{2}} \\
& =\frac{1}{3}\left[(x-3)(y-3)-\frac{a}{3}\right] \\
& \geq \frac{1}{3}\left(\frac{2}{3} a-6 y+9\right) \\
& =\frac{1}{3}\left(\frac{2 x-18}{3} y+9\right) \geq 0
\end{aligned}
$$

If $n_{1}=3$ and $4 \leq x \leq 8$, this means that $|S|=1$. Suppose $x=n_{s}$ and let $\frac{a}{3 n_{s}}=b \geq 3$. By simple checking, we find that the value $x+y-x y-\left\lceil\frac{y}{x}\right\rceil$ meet maximum while $x=n_{1}$ for $N=\{3,3,4\},\{3,4,4\}$ or $\{3,3,5\}$. Thus, we get

$$
\begin{aligned}
I-\left(x+y-x y-\left\lceil\frac{y}{x}\right\rceil\right) & =3+\frac{a}{3}-\left\lceil\frac{a}{3^{2}}\right\rceil-\left(n_{s}+\frac{a}{n_{s}}-\left\lceil\frac{a}{n_{s}^{2}}\right\rceil\right) \\
& =\left(3-n_{s}\right)+\left(n_{s}-3\right) b-\left\lceil\frac{a}{3^{2}}\right\rceil+\left\lceil\frac{a}{n_{s}^{2}}\right\rceil \\
& \geq\left(n_{s}-3\right)(b-1)-\frac{a}{3^{2}}-1+\frac{a}{n_{s}^{2}} \\
& =\left(n_{s}-3\right)(b-1)-\frac{b n_{s}}{3}+\frac{3 b}{n_{s}}-1 \\
& =\left(n_{s}-3\right)(b-1)-\left(n_{s}-3\right)\left(n_{s}+3\right) \frac{1}{3 n_{s}} b-1 \\
& =\left(n_{s}-3\right)\left[(b-1)-\frac{n_{s}+3}{3 n_{s}} b\right]-1 \\
& =\left(n_{s}-3\right)\left[b\left(1-\frac{n_{s}+3}{3 n_{s}}\right)-1\right]-1 .
\end{aligned}
$$

Clearly, If $n_{s} \geq 6$, then $\left(n_{s}-3\right)\left(b\left(1-\frac{n_{s}+3}{3 n_{3}}\right)-1\right)-1 \geq 3\left(b \times \frac{1}{2}-1\right)-1 \geq 0$. If $n_{s}=5$, consider $b \geq 4$, then we have
$\left(n_{s}-3\right)\left(b\left(1-\frac{n_{s}+3}{3 n_{3}}\right)-1\right)-1 \geq 2\left(4 \times \frac{7}{15}-1\right)-1 \geq 0$. If $n_{s}=4$, consider $b \geq 5$, then $\left(n_{s}-3\right)\left(b\left(1-\frac{n_{s}+3}{3 n_{3}}\right)-1\right)-1 \geq 5 \times \frac{5}{12}-1-1 \geq 0$.

This completes the proof.
By the above argument, we discuss the rupture degree of tori $C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}$. Notice that cycle $C_{n_{1} n_{2} \cdots n_{k}}$ is a spanning subgraph of $C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}$. Firstly, by Lemmas 2.1 and 2.2, we directly get the upper bound.

Theorem 3.5. For all integers $n_{1}, n_{2}, \cdots, n_{k} \geq 3$, the rupture degree of tori is

$$
r\left(C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}\right) \leq \begin{cases}-2, & \text { if all } n_{i} \text { are odd } \\ -1, & \text { if some } n_{i} \text { is even }\end{cases}
$$

Theorem 3.6. Let n_{1}, \cdots, n_{k} be integers with $3 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$. If some n_{i} is odd, then the rupture degree of tori is
$r\left(C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}\right) \geq n_{1}+\left(n_{2} \cdots n_{k}\right)\left(1-n_{1}\right)-\left\lceil\frac{n_{2} \cdots n_{k}}{n_{1}}\right\rceil$.
Proof. Notice that $C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}$ is spanning subgraph of $K_{x} \times K_{y}$ such that $x y=\prod_{i=1}^{k} n_{i}$ with $x=\prod_{n_{i} \in S} n_{i} \leq y=\prod_{n_{i} \in T} n_{i}$. By Lemmas 2.1, 3.2 and Theorem 2.8, we have

$$
\begin{aligned}
r\left(C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}\right) & \geq r\left(K_{n_{1}} \times K_{n_{2} \times \cdots \times n_{k}}\right) \\
& =n_{1}+\left(n_{2} \cdots n_{k}\right)\left(1-n_{1}\right)-\left\lceil\frac{n_{2} \cdots n_{k}}{n_{1}}\right\rceil
\end{aligned}
$$

In particular, if all n_{i} are even, $C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}$ is a spanning subgraph of $K_{n_{1} n_{2} \cdots n_{k}, n_{1} n_{2} \cdots n_{k}}$, so by Lemmas 2.1, 3.1 and Theorem 3.5, we get

Theorem 3.7. If all n_{i} are evens, the rupture degree of tori is $r\left(C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}\right)=-1$.

Acknowledgements

The authors would like to thank anonymous reviewers for their valuable comments and suggestions to improve the quality of the article. This work was supported by NSFC QHAFFC No. 2022-ZJ-753.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Li, F.W. and Li, X.L. (2004) Computing the Rupture Degrees of Graphs. Proceedings of 7 th International Symposium on Parallel Architectures, Algorithms and Networks, Hong Kong, 10-12 May 2004, 368-373.
[2] Li, Y.K., Zhang, S.G. and Li, X.L. (2005) Rupture Degree of Graphs. International Journal of Computer Mathematics, 82, 793-803. https://doi.org/10.1080/00207160412331336062
[3] Li, Y.K. (2006) An Algorithm for Computing the Rupture Degree of Tree. Computer Engineering and Applications, 42, 52-54.
[4] Barefoot, C.A., Entringer, R. and Swart, H.C. (1987) Vulnerability in Graphs-A Comparative Survey. Journal of Combinatorial Mathematics and Combinatorial Computing, 1, 13-22.
[5] Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan, London; Elsevier, New York.

