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Abstract 
A graph is said to be cordial if it has 0 - 1 labeling which satisfies particular 
conditions. In this paper, we construct the corona between paths and second 
power of fan graphs and explain the necessary and sufficient conditions for 
this construction to be cordial. 
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1. Introduction 

Labeling problem is important in graph theory. It is known that graph theory 
and its branches have become interesting topics for almost all fields of mathe-
matics and also other areas of science such as chemistry, biology, physics, com-
munication, economics, engineering, and especially computer science. A graph 
labeling is an assignment of integers to the vertices or edges or both. There are 
many contributions and different types of labeling. [1] [2] [3] [4] suppose that 

( ),G V E=  is a graph, where V is the set of its vertices and E is the set of its 
edges. Throughout, it is assumed G is connected, finite, simple and undirected. 
A binary vertex labeling of G is a mapping { }: 0,1f V →  in which ( )f u  is 
said to be the labeling of u V∈ . For an edge e uv E= ∈ , where ,u v V∈ , the 
induced edge label { }* : 0,1f E →  is defined by the formula  

( ) ( ) ( )( )( )* mod 2f vw f v f w= + . Thus, for any edge e, ( )* 0f e =  if its two 
vertices have the same label and ( )* 1f e =  if they have different labels. Let us 
denote 0v  and 1v  be the numbers of vertices labeled by 0 and 1 in V respec-
tively, and let 0e  and 1e  be the corresponding numbers of edge in E labeled 
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by 0 and 1 respectively. A binary vertex labeling f of G is said to be cordial if 

0 1 1v v− ≤  and 0 1 1e e− ≤  hold. A graph G is cordial if it has cordial labeling. 
Cordial graphs were introduced by Cahit [5] [6] as a weaker version of both 
graceful graphs and harmonious graphs [2] [3] [4]. A recommended reference 
on this subject is the survey by Gallian [1]. A path with n vertices and 1n −  
edges is denoted by nP , and second power of fan graph has 1n +  vertices and 
3 3n −  edges is denoted by 2

nF . Let G (with 1n  vertices and 1m  edges) and H 
(with 2n  vertices and 2m  edges) are two graphs. The corona between G and 
H is the graph denoted by G H�  and is obtained by taking one copy of G and 

in  copies of H, and then joining the i-th vertex of G with an edge to every ver-
tex in the i-th copy of H [9]. It follows from the definition of the corona that 
G H�  has 1 1 2n n n+ ⋅  vertices and 1 1 2 1 2m n m n n+ +⋅ ⋅  edges. It is easy to see 
that G H�  is not in general isomorphic to H G� . A second power of a fan 

2
mF  is the graph obtained from the join of the second power of a path 2

mP  and 
a null graph 1N , i.e. 2 2

1m mF P N= + . So the order of 2
mF  is 1m +  and its size is 

3 3m − , in particular 2
1 2F P≡ , 2

2 3F C≡  and 2
3 4F K≡ . In this paper we study 

the corona 2
K mP F�  and show that is cordial for all 1K ≥  and 4m ≥ . 

2. Terminology and Notation 

We introduce some notation and terminology for a graph with 4r vertices [7] [8] 
[9]. Let rM  denote the labeling 0101 01� , zero-one repeated r-times if r is 
even and 0101 010�  if r is odd; for example, 6 010101M =  and 5 01010M = . 
Welet 2rM ′  denote the labeling 1010 10� . Sometimes, we modify the labeling 

rM  or rM ′  by adding symbols at one end or the other (or both). We let 4rL  
denote the labeling 0011 0011 0011�  (repeated r-times) where 1r ≥  and, 

4rL′  denote the labeling 1100 1100 1100�  (repeated r-times) where 1r ≥  
and 4rS  denotes the labeling 1001 1001 1001�  (repeated r-times) and 4rS ′  
denotes the labeling 0110 0110 0110�  (repeated r-times). In most cases, we 
then modify this by adding symbols at one end or the other (or both), thus 

4 101rL  denotes the labeling 0011 0011 0011 101�  (repeated r-times) when 
1r ≥  and 101 when 0r = . Similarly, 41 rL′  is the labeling 1 1100 1100 1100�  

(repeated r-times) when 1r ≥  and 1 when 0r = . Similarly, 40 1rL′  is the labe-
ling 0 1100 1100 1100 1�  when 1r ≥  and 01 when 0r = . Also, we write 0r  
for the labeling 0 0�  (repeated r-times) and 1r  for the labeling 1 1�  (re-
peated r-times) [7] [8] [9] [10]. For specific labeling L and M of G H�  where 
G is path and H is a second fans, we let [ ];L M  denote the corona labeling. Ad-
ditional notation that we use is the following. For a given labeling of the corona 
G H� , we let iv  and ie  (for 0,1i = ) be the numbers of labels that are i as 
before, we let ix  and ia  be the corresponding quantities for G, and we let iy  
and ib  be those for H, which are connected to the vertices labeled 0 of G. Like-
wise, let iy′  and ib′  be those for H, which are connected to the vertices labeled 
1 of G. In case it increases by one more vertexes, so iy′′  and ib′′  will be those for 
H, which are connected to the vertex labeled 1 or 0 of G. It is easy to verify that, 
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( )0 0 0 0 0 1 01v x y x y x y′ ′′= + + − + , ( )1 1 1 0 1 1 11v x y x y x y′ ′′= + + − +  

and 

( ) ( )0 0 0 0 0 1 0 0 0 1 1 01 1e a b x b x b y x y x y′ ′′ ′ ′′= + + − + + + − + ,  

( ) ( )1 1 1 0 1 1 1 1 0 0 1 11 1e a b x b x b y x y x y′ ′′ ′ ′′= + + − + + + − + .  

Thus,  

( ) ( ) ( )( ) ( )0 1 0 1 0 0 1 1 0 1 0 1– – – 1v v x x x y y x y y y y′ ′ ′′ ′′= + + − − + −   

and  

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

0 1 0 1 0 0 1 1 0 1 0 1

0 0 1 1 0 1 1 0

– – – 1

– 1

e e a a x b b x b b b b

x y y x y y y y

′ ′ ′′ ′′= + + − − + −

′ ′ ′′ ′′+ − − − − −
 

when it comes to the proof, we only need to show that, for each specified com-
bination of labeling, 0 1 1v v− ≤  and 0 1 1e e− ≤ . 

3. The Corona between Paths and Second Fans  

In this section, we show that the corona between paths and second power of Fan 
graphs 2

K mP F�  is cordial for all 1k ≥ , and 4m ≥ . This target will be achieved 
after the following series of lemmas. 

Lemma 3.1 2
K mP F�  is cordial for all 1k ≥  and ( )0 mod 4m ≡ . 

Proof. We need to examine the following cases: 
Case (1). ( )0 mod 4k ≡ . 
Let 4k r= , 1r ≥ . Then, one can choose the labeling  

( )4 4 4 4 4: 0 ,0 ,1 ,1 -tim, esr s s s sL M M M M r′ ′  �  for 2
4 4r sP F� . Therefore,  

0 1 02 2x x ra r= = = , 1 2 1a r= − , 0 2 1y s= + , 1 2y s= , 0 6 2b s= − , 1 6 1b s= − , 

0 2y s′ = , 1 2 1y s′ = + , 0 6 2b s′ = −  and 1 6 1b s′ = − . Hence, one can easily show 
that 0 1 0v v− =  and 0 1 1e e− =  Thus 2

4 4r sP F� , 1s ≥  is cordial.  
As an example, Figure 1 illustrates 2

4 4P F� . 
 

 
Figure 1. The corona between paths and second power of Fan graphs 2

4 4P F� . 
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Case (2). ( )1 mod 4k ≡ . 
Let 4 1k r= + , 0r > . Then, one can choose the labelling  

( )4 4 4 4 4 41: 0 ,0 ,1 , ,1 -times ,0r s s s s sL M M M M r M  �  for 2
4 1 4r sP F+ � . Therefore 

0 2x r= , 1 0 2 1x a r= = + , 1 2 1a r= − , 0 2 1y s= + , 1 2y s= , 0 6 2b s= − , 

1 6 1b s= − , 0 2y s′ = , 1 2 1y s′ = + , 0 6 2b s′ = − , 1 6 1b s′ = − , 0 2 1y s′′ = + , 1 2y s′′ = , 

0 6 2b s′′ = −  and 1 6 1b s′′= − . Hence, one can easily show that 0 1 0v v− =  and 

0 1 0e e− = . Thus 2
4 1 4 , 1r sP F s+ ≥�  is cordial.  

As an example, Figure 2 illustrates 2
5 4P F� . 

 

 
Figure 2. The corona between paths and second power of Fan graphs 45

2P F� . 

 
Case (3). ( )2 mod 4k ≡ . 
Let 4 2k r= + , 0r > . Then, one can choose the labelling  

( )4 4 4 4 4 4 4,10 : 0 ,0 ,1 ,1 -times ,1 ,0r s s s s s sL M M M M r M M′ ′ ′  �  for 4 2 4r sP F+ � .  
Therefore 0 1 2 1x x r= = + , 0 2 1a r= + , 1 2a r= , 0 2 1y s= + , 1 2y s= , 

0 6 2b s= − , 1 6 1b s= − , 0 2y s′ = , 1 2 1y s′ = + , 0 6 2b s′ = −  and 1 6 1b s′ = − . 
Hence, one can easily show that 0 1 0v v− =  and 0 1 1e e− = . Thus 2

4 2 4r sP F+ � , 
1s ≥  is cordial.  

As an example, Figure 3 illustrates 2
6 4P F� . 

 

 
Figure 3. The corona between paths and second power of Fan graphs 46

2P F� . 
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Case (4). ( )3 mod 4k ≡ . 
Let 4 3k r= + , 0r > . Then, one can choose the labelling  

( )4 4 4 4 4 4 4 4,110 : 0 ,0 ,1 ,1 -times ,1 ,1 ,0r s s s s s s sL M M M M r M M M′ ′ ′ ′ ′ ′  �  for  
2

4 3 4r sP F+ � . Therefore, 0 2 1x r= + , 1 0 2 2x a r= = + , 1 2a r= , 0 2 1y s= + , 

1 2y s= , 0 6 2b s= − , 1 6 1b s= − , 0 2y s′ = , 1 2 1y s′ = + , 0 6 2b s′ = − , 1 6 1b s′ = − , 

0 2 1y s′′ = + , 1 2y s′′ = , 0 6 2b s′′ = −  and 1 6 1b s′′= − . Hence, one can easily show 
that 0 1 0v v− =  and 0 1 0e e− = . Thus 2

4 3 4 , 1r sP F s+ ≥�  is cordial.  
As example, Figure 4 illustrates 2

7 4P F� . 
 

 
Figure 4. The corona between paths and second power of Fan graphs 47

2P F� . 

 
Lemma 3.2 2

K mP F�  is cordial for all 1k ≥  and ( )1 mod 4m ≡ . 
Proof. We need to examine the following cases: 
Case (1). ( )0 mod 4k ≡ . 
Let 4k r= , 1r ≥ . Then, one can choose the labeling  

( )4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 4:11 0 ,11 0 ,00 1 ,00 1 -times,r s s s sL M M M M r− − − −′ ′  �  for  
2

4 4 1r sP F +� . Therefore 0 1 0 2x x a r= = = , 1 2 1a r= − , 0 2y s= , 1 2 2y s= + , 

0 6 1b s= + , 1 6 1b s= − , 0 2 2y s′ = + , 1 2y s′ =  and 0 6 1b s′ = + , 1 6 1b s′ = − . 
Hence, one can easily show that 0 1 0v v− =  and 0 1 1e e− = . Thus 2

4 4 1r sP F +� , 
1s ≥  is cordial.  

As an example, Figure 5 illustrates 2
4 5P F� . 

 

 
Figure 5. The corona between paths and second power of Fan graphs 54

2P F� . 
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Case (2). ( )1 mod 4k ≡ . 
Let 4 1k r= + , 0r > . Then, one can choose the labeling  

( )4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 40 :11 0 ,11 0 ,00 1 ,00 1 -times ,10 1,r s s s s sL M M M M r M− − − − −′ ′  �  
for 2

4 1 4 1r sP F+ +� . Therefore 0 2 1x r= + , 1 0 1 2x a a r= = = , 0 2 2y s= + ,  

1 2y s= , 0 6 1b s= − , 1 6 1b s= + , 0 2y s′ = , 1 2 2y s′ = + , 0 6 1b s′ = − , 1 6 1b s′ = + , 

0 1 2 1y y s′′ ′′= = + , and 0 1 6b b s′′ ′′= = . Hence, one can easily show that 0 1 1v v− =  
and 0 1 0e e− = . Thus 2

4 1 4 1r sP F+ +� , 1s ≥ , is cordial.  
As an example, Figure 6 illustrates 2

5 5P F� . 
 

 
Figure 6. The corona between paths and second power of Fan graphs 55

2P F� . 

 
Case (3). ( )2 mod 4k ≡ . 
Let 4 2k r= + , 0r ≥ . Then, one can choose the labeling [ 4 3 2 4 410 :11 0r sL M − ,

3 2 4 411 0 sM − , 3 2 4 400 1 sM −′ , 3 2 4 400 1 sM −′ , ( )-timesr� , 3 2 4 400 1 sM −′ , 3 2 4 411 0 sM − ] 
for 2

4 2 4 1r sP F+ +� . Therefore 0 1 0 2 1x x a r= = = + , 1 2a r= , 0 2 2y s= + , 

1 2y s= , 0 6 1b s= − , 1 6 1b s= + , 0 2y s′ = , 1 2 2y s′ = +  and 0 6 1b s′ = − , 

1 6 1b s′ = + . Hence one can easily show that 0 1 0v v− =  and 0 1 1e e− = . Thus 
2

4 2 4 1r sP F+ +� , 1s ≥ , is cordial.  
As an example, Figure 7 illustrates 2

6 5P F� . 
 

 
Figure 7. The corona between paths and second power of Fan graphs 56

2P F� . 
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Case (4). ( )3 mod 4k ≡ . 
Let 4 3k r= + , 0r ≥ . Then, one can choose the labeling [ 4 3 2 4 4101:11 0r sL M − , 

3 2 4 411 0 sM − , 3 2 4 400 1 sM −′ , 3 2 4 400 1 sM −′ , ( )-timesr� , 3 2 4 400 1 sM −′ , 3 2 4 411 0 sM − , 

2 3 4 400 1 sM −′ ] for 2
4 3 4 1r sP F+ +� . Therefore 0 0 1 2 1x a a r= = = + , 1 2 2x r= + , 

0 2y s= , 1 2 2y s= + , 0 6 1b s= + , 1 6 1b s= − , 0 2 2y s′ = + , 1 2y s′ = , 

0 6 1b s′ = + , 1 6 1b s′ = − , 0 1 2 1y y s′′ ′′= = + , and 0 1 6b b s′′ ′′= = . Hence, one can eas-
ily show that 0 1 1v v− = −  and 0 1 0e e− = . Thus 2

4 3 4 1r sP F+ +� , 1s ≥ , is cordial.  
As an example, Figure 8 illustrates 2

7 5P F� . 
 

 
Figure 8. The corona between paths and second power of Fan graphs 57

2P F� . 

 
Lemma 3.3 2

k mP F�  is cordial for all 1k ≥  and ( )2 mod 4m ≡ . 
Proof. We need to study the following cases: 
Case (1). ( )0 mod 4k ≡ . 
Let 4k r= , 1r ≥ . Then, one can choose the labeling  

( )4 4 2 4 2 4 2 4 2: 0 ,0 ,1 ,1 -ti e, m sr s s s sL M M M M r+ + + +′ ′  �  for 2
4 4 1r sP F +� . Therefore 

0 1 0 2x x a r= = = , 1 2 1a r= − , 0 2 2y s= + , 1 2 1y s= + , 0 6 1b s= + ,  

1 6 2b s= + , 0 2 1y s′ = + , 1 2 2y s′ = + , 0 6 1b s′ = +  and 1 6 2b s′ = + . Hence, one 
can easily show that 0 1 0v v− =  and 0 1 1e e− = . Thus 2

4 4 1, 1r sP F s+ ≥�  is cor-
dial.  

As an example, Figure 9 illustrates 2
4 6P F� . 

 

 
Figure 9. The corona between paths and second power of Fan graphs 64

2P F� . 
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Case (2). ( )1 mod 4k ≡ . 
Let 4 1k r= + , 0r ≥ . Then, one can choose the labeling  

( )4 4 2 4 2 4 2 4 2 4 21: 0 ,0 ,1 ,1 -times ,0,r s s s s sL M M M M r M+ + + + +′ ′ ′ ′  �  for 2
4 1 4 2r sP F+ +� . 

Therefore 0 2x r= , 1 0 2 1x a r= = + , 1 2 1a r= − , 0 2 2y s= + , 1 2 1y s= + , 

0 6 1b s= + , 1 6 2b s= + , 0 2 1y s′ = + , 1 2 2y s′ = + , 0 6 1b s′ = + , 1 6 2b s′ = + , 

0 2 2y s′′ = + , 1 2 1y s′′ = + , 0 6 1b s′′ = +  and 1 6 2b s′′= + . Hence, one can easily 
show that 0 1 0v v− =  and 0 1 0e e− = . Thus 2

4 1 4 2r sP F+ +� , 1s ≥  is cordial.  
As an example, Figure 10 illustrates 2

5 6P F� . 
 

 
Figure 10. The corona between paths and second power of Fan graphs 65

2P F� . 

 
Case (3). ( )2 mod 4k ≡ . 
Let 4 2k r= + , 0r ≥ . Then, one can choose the labeling  

( )4 4 2 4 2 4 2 4 2 4 2 4 2,10 : 0 ,0 ,1 ,1 -times ,1 ,0r s s s s s sL M M M M r M M+ + + + + +′ ′ ′  �  for  
2

4 2 4 2r sP F+ +� . Therefore 0 1 0 2 1x x a r= = = + , 1 2a r= , 0 2 2y s= + ,  

1 2 1y s= + , 0 6 1b s= + , 1 6 2b s= + , 0 2 1y s′ = + , 1 2 2y s′ = + , 0 6 1b s′ = +  and 

1 6 2b s′ = + . Hence, one can easily show that 0 1 0v v− =  and 0 1 1e e− = . Thus 
2

4 2 4 2r sP F+ +� , 1s ≥  is cordial.  
As an example, Figure 11 illustrates 2

6 6P F� . 
 

 
Figure 11. The corona between paths and second power of Fan graphs 66

2P F� . 
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Case (4). ( )3 mod 4k ≡ . 
Let 4 3k r= + , 0r ≥ . Then, one can choose the labeling  

( )4 4 2 4 2 4 2 4 2 4 2 2 2 4 2 4 2110 : 0 ,0 ,1 ,1 , -times ,1 ,00 1 ,0r s s s s s s sL M M M M r M M M+ + + + + − +′ ′ ′ ′  �  
for 2

4 3 4 2r sP F+ +� . Therefore 0 2 1x r= + , 1 0 2 2x a r= = + , 0 2 2y s= + , 1 2a r= , 

0 2 2y s= + , 1 2 1y s= + , 0 6 1b s= + , 1 6 2b s= + , 0 2 1y s′ = + , 1 2 2y s′ = + , 

0 6 1b s′ = + , 1 6 2b s′ = + , 0 2 2y s′′ = + , 1 2 1y s′′ = + , 0 6 1b s′′ = +  and 1 6 2b s′′= + . 
Hence, one can easily show that 0 1 0v v− =  and 0 1 0e e− = . Thus 2

4 3 4 2r sP F+ +� , 
1s ≥  is cordial.  

As an example, Figure 12 illustrates 2
7 6P F� . 

 

 
Figure 12. The corona between paths and second power of Fan graphs 67

2P F� . 

 
Lemma 3.4 2

k mP F�  is cordial for all 1k ≥  and ( )3 mod 4m ≡ . 
Proof: Will be examined following cases: 
Case (1). ( )0 mod 4k ≡ . 
Let 4k r= , 1r ≥ . Then, one can choose the labeling  

( )4 3 4 3 4 2 4 2 4:10 ,10 ,101 ,101 -times,r s s s sL M M M M r′ ′  �  for 2
4 4 3r sP F +� . There-

fore 0 1 0 2x x a r= = = , 1 2 1a r= − , 0 2 3y s= + , 1 2 1y s= + , 0 6 2b s= + , 

1 6 4b s= + , 0 2 1y s′ = + , 1 2 3y s′ = +  and 0 6 2b s′ = + , 1 6 4b s′ = + . Hence, one 
can easily show that 0 1 0v v− =  and 0 1 1e e− = . Thus 2

4 4 3r sP F +� , 1s ≥  is 
cordial.  

As an example, Figure 13 illustrates 2
4 7P F� . 

 

 
Figure 13. The corona between paths and second power of Fan graphs 74

2P F� . 
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Case (2). ( )1 mod 4k ≡ . 
Let 4 1k r= + , 0r ≥ . Then, one can choose the labeling  

( )4 3 4 3 4 2 4 2 4 2 41:10 ,10 ,101 ,101 -times ,01 0,r s s s s sL M M M M r M′ ′ ′  �  for  
2

4 1 4 3r sP F+ +� . Therefore 0 2x r= , 1 0 2 1x a r= = + , 1 2 1a r= − , 0 2 3y s= + , 

1 2 1y s= + , 0 6 2b s= + , 1 6 4b s= + , 0 2 1y s′ = + , 1 2 3y s′ = + , 0 6 2b s′ = + ,

1 6 4b s′ = + , 0 1 2 2y y s′′ ′′= = + , 0 6 2b s′′ = +  and 1 6 4b s′′= + . Hence one can easily 
show that 0 1 1v v− = −  and 0 1 0e e− = . Thus 2

4 1 4 3r sP F+ +� , 1s ≥  is cordial.  
As an example, Figure 14 illustrates 2

5 7P F� . 
 

 
Figure 14. The corona between paths and second power of Fan graphs 75

2P F� . 

 
Case (3). ( )2 mod 4k ≡ . 
Let 4 2k r= + , 0r ≥ . Then, one can choose the labeling  

( )4 3 4 3 4 2 4 2 4 2 4 3 4,10 :10 ,10 ,101 ,101 -times ,101 ,10r s s s s s sL M M M M r M M′ ′ ′  �  for 
2

4 2 4 3r sP F+ +� . Therefore 0 1 0 2 1x x a r= = = + , 1 2a r= , 0 2 3y s= + , 1 2 1y s= + , 

0 6 2b s= + , 1 6 4b s= + , 0 2 1y s′ = + , 1 2 3y s′ = + , 0 6 2b s′ = +  and 1 6 4b s′ = + . 
Hence, one can easily show that 0 1 0v v− =  and 0 1 1e e− = . Thus 2

4 2 4 3r sP F+ +� , 
1s ≥  is cordial.  

As an example, Figure 15 illustrates 2
6 7P F� . 

 

 
Figure 15. The corona between paths and second power of Fan graphs 76

2P F� . 
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Case (4). ( )3 mod 4k ≡ . 
Let 4 3k r= + , 0r ≥ . Then, one can choose the labeling [ 4 3 4100 :10r sL M ′ ,

3 410 sM ′ , 2 4101 sM , 2 4101 sM , ( )-timesr� , 2 4101 sM , 3 410 sM ′ , 2 401 0 sM ′ ] for 
2

4 3 4 3r sP F+ +� . Therefore 0 0 2 2x a r= = + , 1 2 1x r= + , 1 2a r= , 0 2 3y s= + , 

1 2 1y s= + , 0 6 2b s= + , 1 6 4b s= + , 0 2 1y s′ = + , 1 2 3y s′ = + , 0 6 2b s′ = + , 

1 6 4b s′ = + , 0 1 2 2y y s′′ ′′= = + , 0 6 2b s′′ = +  and 1 6 4b s′′= + . Hence one can easily 
show that 0 1 1v v− =  and 0 1 0e e− = . Thus 2

4 3 4 3r sP F+ +� , 1s ≥  is cordial.  
As an example, Figure 16 illustrates 2

7 7P F� . 
 

 
Figure 16. The corona between paths and second power of Fan graphs 77

2P F� . 

 
As a consequence of all previous lemmas one can establish the following theo-

rem. 
Theorem. The corona between path kP  & 2

mF  is cordial for all k and m. 
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