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Abstract 

In this paper, tiling a plane with equilateral semi-regular convex polygons is 
considered, and, that is, tiling with equilateral polygons of the same type. Til-
ing a plane with semi-regular polygons depends not only on the type of a 
semi-regular polygon, but also on its interior angles that join at a node. In re-
lation to the interior angles, semi-regular equilateral polygons with the same 
or different interior angles can be joined in the nodes. Here, we shall first 
consider tiling a plane with semi-regular equilateral polygons with 2m-sides. 
The analysis is performed by determining the set of all integer solutions of the 
corresponding Diophantine equation in the form of 2t sα β⋅ + ⋅ = π , where t, 
s are the non-negative integers which are not equal to zero at the same time, 
and α, β are the interior angles of a semi-regular equilateral polygon from the 
characteristic angle. It is shown that of all semi-regular equilateral polygons 
with 2m-sides, a plane can be tiled only with the semi-regular equilateral qu-
adrilaterals and semi-regular equilateral hexagons. Then, the problem of til-
ing a plane with semi-regular equilateral quadrilaterals is analyzed in detail, 
and then the one with semi-regular equilateral hexagons. For these semi-regular 
polygons, all possible solutions of the corresponding Diophantine equations 
were analyzed and all nodes were determined, and then the problem for dif-
ferent values of characteristic elements was observed. For some of the ob-
served cases of tiling a plane with these semi-regular polygons, some graphi-
cal presentations of tiling constructions are also given. 
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1. Introduction 

The problem of tiling a plane is an ancient one, which even the mathematicians 
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of ancient Egypt, Greece, Persia, China and other old civilizations were familiar 
with. Tiling comes down to dividing a plane into polygons that would complete-
ly cover it without having any overlaps or gaps, following certain regularity, de-
pending on the type, shape and arrangement of the polygons [1]. So, with tiling, 
the goal is to divide the plane into polygons that would only have common sides 
and vertices. Then, for the polygons that have one common side it is said that 
they are the adjacent polygons, and the point of the plane in which the vertices 
of the adjacent polygons meet is named the node of that partition of the plane. 
The node is called regular if all angles of the polygons meeting at it are equal. 
The two nodes are considered to be equal if the number of angles that meet at it 
is the same. The problem of tiling comes down to determining all possible divi-
sions of a plane with the polygons:  

1) The division of a plane with regular polygons, or when all the polygons and 
all the nodes are mutually equal. Such tiling is called a regular one.  

2) The division of a plane in a way that several types of regular polygons meet 
at a node. Such tiling a plane is called an Archimedes one, or a semi-regular one.  

3) Special cases of tiling a plane.  
The first two cases have been largely researched, and there can be found more 

about them in [1] and a catalog of tiling can be seen in [2] [3] [4].  
We are interested in special cases, and that is tiling a plane with semi-regular 

equilateral polygons, i.e. when equilateral semi-regular polygons meet at a node. 
Prior to the analysis of the problem of tiling a plane with semi-regular polygons, 
let us mention some basic points of view and theorems that are valid for tiling a 
plane with regular polygons.  

Theorem 1. The only proper tiling is possible with equilateral triangles, 
squares and regular hexagons, and in such a way that six, four and three of them 
meet at a single node. 

Proof: Since the sum of angles at each node is 2π and the value of the interior 

angles of regular polygon 
( )2n

n
− π

, if k ∈  regular polygons meet at the 

vertex, then it follows that: 
( )2

2
n

k
n
− π

⋅ = π .  

From here, after rearranging and solving the equation, we get the following 
equation ( )2 2k n n− =  from which, after solving by k, we find that 

42
2

k
n

= +
−

.  

From the condition ( )2 | 4n −  it follows that { }3,4,6n∈ . On the basis of 
this, it is found that for 3n = , the value is 6k = , and for 4n =  it is 3k = , 
while for 6n = , it is 3k =  [1]. 

2. Semi-Regular Equilateral Polygons and Formulation of a  
Problem 

1) Polygon 1 2n nA A A≡   or closed polygonal line is the union along 
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1 2 2 3 1, ,, n nA A A A A A +  and is write shortly 11

n
n j jj

A A +=
≡


 , ( )( )1 1 modn n+ ≡ . 
Points jA  are vertices, and lines 1j jA A +  are sides of polygon n . The angles 
on the inside of a polygon formed by each pair of adjacent sides are angles of the 
polygon. 

2) Given polygon n  with vertices jA  1,2, ,j n=  , ( )( )1 1 modn n+ ≡ , 
lines of which j iA A  polygonal diagonals if indices are not consecutive natural 
numbers, that is j i≠ . We can draw 3n −  diagonals from each vertex of the 
polygon with n number of vertices. 

3) Exterior angle of the polygon n  with vertex jA  is the angle ,v jA∠  with 
one side 1j jA A + , and vertex jA , and the other one is extension of the side 

1j jA A−  through vertex jA . 
4) The interior angle of the polygon n  with vertex jA  is the angle 

, , 1, 2, ,u jA j n∠ =   for which , ,v j u jA A∠ ∠+ = π . That is the angle with one 

1j jA A− , side, and the other side 1j jA A + . Sum of all interior angles of the poly-
gon is defined by equation 

( ),1 2 ; ,n
u jj A n k n k

=
∠ = − ⋅π ∈ ∈∑   . In which k is number of turning around 

the polygon in certain direction. 
5) A regular polygon is a polygon that is equiangular (all angles are equal in 

measure) and equilateral (all sides have the same length). Regular polygon with 
n sides of b length is marked as b

n . The formula for interior angles γ  of the  

regular polygon b
n  with n sides is 

( )2n
n

γ
− π

= . A non-convex regular poly-

gon is a regular star polygon. For more about polygons in [4] [5] [6]. 
6) Polygon that is either equiangular or equilateral is called semi-regular po-

lygon. Equilateral polygon with different angles within those sides are called 
equilateral semi regular polygons, whereas polygons that are equiangular and 
with sides different in length are called equiangular sem regular polygons. For 
more about polygons in [1] [2] [3]. 

7) If we construct a polygon k  with 1m k= −  sides, 3k ≥ , k ∈  with 
vertices , 1, 2, ,iB i k=   over each side of the convex polygon n , 2n ≥ , 
n∈  with vertices ( ), 1, 2, , ; 1 1 modjA j n n n= + ≡ , that is 1 1,j j kA B A B+= = , 
we get new polygon with N m n= ⋅  (Figure 1) marked as N . 

Here are the most important elements and terms related to constructed poly-
gons: 
• Polygon k  with vertices 1 2 1, , k kB B B B− , 1 1,j k jB A B A += =  constructed 

over each side 1, 1, 2, ,j jA A j n+ =   of polygon n  with which it has one 
side in common is called edge polygon for polygon N . 

• 2 2 3 1 1, , ,j k jA B B B B A− +  are the sides of polygon k . 
• 3 4 1, , ,j j j kA B A B A B −  are diagonals , 1, 2, , 1id i k= −  of the polygon a

k  
drawn from the top jA  and that implies 2 1i j jd A A b− += = . 

• Angles ,u iB∠  are interior angles of vertices iB  of the polygon N . and are 
denoted as iβ . Interior angles ,u jA∠  of the polygon of the vertices jA  are 
denoted as α . 
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Figure 1. Convex semi regular polygon N  with ( )1N k n mn= − =  

sides constructed above the regular polygon b
n . 

 
• Polygon k  of the side a constructed over the side b of the polygon n  is 

isosceles, with 1m k= −  equal sides, is denoted as a
k . 

• ( )1, , 1, 2, , 1i id d i mδ −= ∠ = −  denotes the angle between its two consecu-
tive diagonals drawn from the vertices , 1, 2, ,jA j n=   for which it is true 

0 1, md a d b−= = . 
• Regular polygon b

n  is called corresponding regular polygons of the 
semi-regular polygon ,a

N
δ . 

• If the isosceles polygon a
k  is constructed over each side of the b regular 

polygon b
n  with n sides, then the constructed polygon with N mn=  of 

equal sides is called equilateral semi-regular polygon which is denoted as 
,a

N
δ . 

• Interior angles of a semi-regular polygon at odd vertices are marked with α , 
and those at even vertices are marked with β  (Figure 1). 

• To a semi-regular equilateral polygon 1 2N NA A A≡   with 2 ,N n n= ⋅ ∈  
with equal sides, there can be “inscribed” regular n-side polygons: by joining 
odd vertices, 1

1 3 5 2 3 2 1n n nA A A A A− −≡   or even vertices  
2

2 3 4 2 2 2n n nA A A A A−≡  . [5]. 
To analyze the metric properties of regular polygons, it is sufficient for us to 

know one basic element, the length of a side, while for the semi-regular polygons 
this is not sufficient [5] Therefore, in addition to side a of a semi-regular poly-
gon, for the analysis of the metric properties we will use another element of it, 
and that is the angle between side a of the semi-regular polygon and side b of its 
“inscribed” regular polygon, which we mark with δ, i.e. ( ),a bδ = ∠  (Figure 2) 
[5] [6] [7].  

To show that a semi-regular equilateral 2n-side polygon is given by side a and 
angle δ we write: ,

2
a
n
δ . 
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Figure 2. Basic elements of equilateral semi-regular 
polygon ( ),

2 , 2a
n nδ ≥ ∈  of side α  and angle δ. 

 

If 
( )2

, 2
n

n
n

γ
− π

= ≥  is the interior angle of the “inscribed” regular polygon 

b
n , then 

( )2
2 2

n
n

α γ δ δ
− π

= + = +  gives interior angles at odd vertices, and  

2β δ= π−  gives the ones at even vertices of the semi-regular polygon 2
a
n  of a 

side a, where ( ),b aδ = ∠  marks the angle between the sides of polygons 1
n  

and 1
n  (Figure 2). Here, we consider that a regular polygon with 2n =  sides 

(segment) is “inscribed” to a semi-regular equilateral quadrilateral (rhombus) [5] 
[6] [7] [8]. 

Let us mark semi-regular polygon N  with N n m= ⋅  sides as determined 
with the characteristic elements , ,n m δ  and interior angles ,α β , with 

N

n m α

βδ
 
 
 
 .  

Here are some more results on the interior angles of semi-regular polygon 

N , with ; , 2N n m n m= ⋅ ≥ ∈  sides, which we need, and the proof of which 
can be seen in papers [5]. 

Theorem 2. A semi-regular equilateral convex polygon N , with 
; , 2N n m n m= ⋅ ≥ ∈  sides and characteristic angle ( ),a bδ = ∠  has the fo-

lowing: 
n−  interior angles along the vertices of the “inscribed” regular polygon n , 

with side b, all equal to angle α and the following applies  

( ) ( )
2

2 2 1
n

m
n

α γ δ δ
− π

= + = + −                   (1) 

( )1m n− ⋅  interior angles, along the vertices of isosceles polygons k , with m 
equal arms constructed over each side of a regular polygon n , as a common 
side. These interior angles are equal to angle β and the following applies:  

2 , , , , 1m n k m kβ δ= π− ∈ = −                    (2) 
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The dependence of convexity of a semi-regular equilateral polygon N , with 
; , 2N n m n m= ⋅ ≥ ∈  sides from the value of angle δ is expressed by the fol-

lowing theorem: 
Theorem 3. Semi-regular, equilateral polygon N  with N n m= ⋅  sides is 

convex if the following is valid for angle δ:  

0,
N n

δ π
∈

−
; 

N
δ π
≠ ,                       (3) 

Note that for 
N

δ π
= , a convex semi-regular polygon N  becomes regular,  

and since this is not the subject of our research here, these values of angle δ are 
excluded from further consideration. The proof of this theorem can be seen in [6] 
[7] [8]. 

3. Main Results 

3.1. Tiling a Plane with Semi-Regular Polygons of the Same Type 

Tiling a plane with equilateral convex semi-regular polygons differs from tiling a 
plane with regular ones, and it belongs to a special group of tiling. Based on the 
characteristics of the semi-regular equilateral polygons, the following types of 
tiling a plane with semi-regular polygons can be differentiated: 

A) Tiling a plane with semi-regular polygons when the equal number of 
semi-regular polygons of the same type meet at each node; 

B) Tiling a plane with semi-regular polygons when semi-regular equilateral 
polygons of different types and equal sides meet at one node; 

C) Tiling a plane with semi-regular polygons when semi-regular equilateral 
polygons of different types and different sides meet at one node. 

In this paper we shall consider the cases of tiling a plane as stated under sec-
tion (A).  

Let us consider tiling a plane if tiling is performed with semi-regular equila-
teral polygons.  

If it is possible to perform tiling with one type of semi-regular polygons, than 
due to the existence of the two types of the interior angles: the angles along the 
vertices of the inscribed regular polygon, equal to angle  

( ) ( )
2

2 1
n

m
n

α δ
− π

= + − , 

and angles along the vertices of the edge polygons, equal to angle 2β δ= π− , 
the following types of nodes can be differentiated [9]:  

1) Nodes at which the vertices meet, to which the interior angles equal to the 
angle α correspond;  

2) Nodes at which the vertices meet, to which the interior angles equal to an-
gle β correspond; 

3) Nodes at which the vertices meet, to which the interior angles equal to an-
gles α and β correspond.  

Let us assume that it is possible to perform tiling with semi-regular equilateral 
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convex polygons of the same type, constructed in the manner as described above, 
with the characteristic elements , ,n m δ  and interior angles ,α β .  

Then in that case there is any non-negative integers t, s which are not simul-
taneously equal to zero, such that at one node, there are t vertices meeting, to 
which the interior angles equal to angle α correspond, and/or s vertices, to which 
the interior angles equal to angle β correspond.  

Based on the value of interior angles α and β, and the fact that in that case, the 
sum of angles at each node is equal to 2π, the stated conditions may be written 
down in the form of the following equation 

( ) ( ) ( )
2

2 2 1 2 2
n

t s t m s
n

α β δ δ
− π 

⋅ + ⋅ = π ⇔ ⋅ + − + ⋅ π − = π 
 

     (4) 

In this way, the problem of tiling a plane with one type of semi-regular convex 
equilateral polygons can be described as the solution of Equations (3.1). A 

semi-regular equilateral polygon is convex for 0; ,
N n N

δ δπ π
∈ ≠

−
 when the 

polygon is regular.  
Based on this, for different values of , 2n m ≥ ∈  and δ we also have differ-

ent Diophantine equations. Here we analyze the case when characteristic angle 

( )l N n
δ π
=

⋅ −
 and l is any natural number greater than one, 1l > ∈ . (A case 

when 2ml =  was dealt with in paper [9]). For this value of angle δ, the Equa-
tion (4) has the following form: 

( ) ( )
( ) ( )

2 2 1 2 2
n m

t s
n l N n l N n

   − π − π π
⋅ + + ⋅ π − = π    ⋅ − ⋅ −    

 

 
( )

2 2 21 2
1

nt s
n l n l n m

 − ⇔ ⋅ + + ⋅ − =    ⋅ ⋅ −   
  

( ) ( )
( )

2 2 1 2
2.

1
l n l n m

t s
l n l n m

 ⋅ − + ⋅ − − 
⇔ ⋅ + ⋅ =    ⋅ ⋅ ⋅ −   

  

After rearranging and solving, the last equation can be written in the follow-
ing form: 

( )( ) ( )( ) ( )1 2 2 1 2 2 1m l n l t l n m s l n m− ⋅ − + ⋅ + ⋅ − − ⋅ = ⋅ −         (5) 

representing the Diophantine equation in which the unknown parameters are 
,t s . 

Should we denote the coefficients respectively with:  

( )( ) ( ) ( )1 2 2 , 1 2, 2 1A m l n l B l n m C l n m= − ⋅ − + = ⋅ − − = ⋅ ⋅ −       (6) 

the equation can be written in a simpler form At Bs C+ = . 
For different values of , ,n m l  Equation (5) has different forms. Let us ana-

lyze the possibilities of tiling a plane with semi-regular polygons with 
2 , 2N m m= ⋅ ≥ , i.e. with those with which the inscribed regular polygon has 

2n =  sides closed segment.  
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The Diophantine equation for tiling a plane with semi-regular equilateral po-
lygons with 2 m⋅  sides reads  

( ) ( )( ) ( )1 1 1 2 1m t l m s l m− ⋅ + ⋅ − − ⋅ = ⋅ −               (7) 

where 1, 2; ,l m m l> ≥ ∈  and unknowns ,t s  are the non-negative integers, 
i.e. 0,t s∈  The following theorem applies:  

Theorem 4. Let N  be an equilateral semi-regular polygon with 

2 , 2N m m= ≥ ∈  sides and let 
( )

, 1,
2 1

l l
l m

δ π
= > ∈

⋅ ⋅ −
  be its characteris-

tic angle. Tiling a plane with semi-regular equilateral polygon 2m  can be per-
formed only if 2m =  or 3m = , that is, the Diophantine Equation (7) has a 
non-negative integer solutions only for 2m =  or 3m = . 

Proof: To show the theorem’s claim, let us note that the problem of tiling a 
plane with a semi-regular equilateral polygon with 2m sides is equivalent to de-
termining the set of all the solutions of the corresponding Diophantine Equation 
(7). Any pair ( ),t s  of the non-negative integers that are not simultaneously 
equal to zero and that meet the given equation represent its solution. 

Let us show that the Diophantine Equation (7) has solutions only when 
2m =  or 3m = . Further, note that for a given value of angle  

( )
, 1, 2; ,

2 1
l m m l

l m
δ π
= > ≥ ∈

⋅ ⋅ −
  for the interior angles of a semi-regular  

equilateral polygon equal to angle α the following relation applies:  

( ) ( )
2 1

2 1
m

l m l
α π π
= − ⋅ =

⋅ ⋅ −
, and for angles equal to angle β the following ap-

plies: 
( )

12 1
1l m

β δ
 

= π − = −  ⋅ − 
. 

Note that the solution of Equation (7) represents a pair of non-negative integ-
ers (t, s) that depend on the value of natural number 2m ≥ ∈  and that the 
following cases can be distinguished: 

Case 1: If 0, 0t s≠ = , Equation (7) has the following form: 

( ) ( )1 2 1m t l m− ⋅ = ⋅ −                      (8) 

From here we find that one solution, for 1m ≠  of Equation (7) is a pair 
( ) ( ), 2 ,0t s l= , which does not depend on the choice of natural numbers 

2, 1m l≥ > ∈ . 
Case 2: If 0, 0t s= ≠  the Equation (7) reads: ( )( ) ( )1 1 2 1l m s l m⋅ − − ⋅ = ⋅ −  
From here we find that 

( )
( ) ( )

2 1 22 .
1 1 1 1

l m
s

l m l m
⋅ −

= = +
⋅ − − ⋅ − −

 

And from here, we find that s is a natural number, if and only if 
( )

2
1 1l m⋅ − −

 

is a natural number, or if ( )1 1 | 2l m⋅ − −   .  

If it were that: ( )1 1 | 2l m⋅ − −   , then one of these cases could arise: 
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1) ( )1 1 1l m⋅ − − = ± . 
2) ( )1 1 2l m⋅ − − =  because 0s ≠ . 
Let us consider both cases. 
1) If it were that: ( )1 1 1l m⋅ − − = − , then it would be that ( )1 0l m⋅ − = , 

which is impossible, because by assumption 2m ≥  and 1l > .  
If it where that: ( )1 1 1l m⋅ − − =  then it would be that ( )1 2l m⋅ − =  were 

from it would follow that 2
1

l
m

=
−

. Since l∈  then it means that 1 1m − =  

or 1 2m − = , whence we get that l∈  if 2m =  or 3m = . 
- If 2m = , then 2l = , and then it is that 4s = , 0t = . A pair of (0, 4) is 

another solution of Diophantine Equation (7). 
- if 3m = , then 1l = , which is contrary to the assumption that 1l > , and, in 

this case, the Equation (7) has no solution. 

2) If the case is that ( )1 1 2l m⋅ − − = , then 3
1

l
m

=
−

. Hence, it follows that l 

is a natural number greater than 1, if 1 1m − =  or 1 3m − = , that is, if 2m =  
or 4m = . 
- If it were that 2m = , then it would be that 3l = . Based on that, it would be 

that 3s = , so pair ( ) ( ), 0,3t s =  is another solution of the corresponding 
Diophantine Equation (7) 

- and the case when 4m =  is not possible, because then it would be that 
1l = , which is contrary to the assumption that 1l > . 

Case 3: Let , 0, ,t s t s≠ ∈ . Let us transform Equation (7) as follows: 
( ) ( )( ) ( )1 1 1 2 1m t l m s l m− ⋅ + ⋅ − − ⋅ = ⋅ −  

( ) ( )
( )

( )
( )

2 1 1 2 1
2

1 1 1 1
l m m t m t

s
l m l m

⋅ − − − ⋅ − − ⋅
= = +

⋅ − − ⋅ − −
              (9) 

From the last equation ( )
( )

2 1
2

1 1
m t

s
l m
− − ⋅

= +
⋅ − −

 it follows that s is a natural 

number, if one of the cases occur: 
1) ( )2 1 0m t− − ⋅ =  or 
2) ( ) ( )1 1| 2 1l m m t⋅ − − − − ⋅ . 
Let us consider each of the cases. 

1) If ( )2 1 0m t− − ⋅ = , then 2s =  and 2
1

t
m

=
−

 is a natural number only 

for 2m =  and 3m = .  
In case when 2m = , then 2t = , so the pair of ( ) ( ), 2, 2t s =  is also the solu-

tion of Equation (7). 
When 3m =  then 1t = , and 2s = , thus another pair of non-negative in-

tegers ( ) ( ), 1, 2t s =  has been determined ( ) ( ), 1, 2t s =  which is the solution of 
Equation (7).  

2) Let us also consider case 2). Suppose that 0s∈  is defined by Equation (8) 

and that ( )
( )

2 1
1 1

m t
p

l m
− − ⋅

=
⋅ − −

. Then from the assumption that 0s∈ , it follows 

that 2 0s p= + ≥  i.e. then the integer is 2p ≥ − ∈ .  
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In relation to the constraint of the value of integer p, let us observe the fol-
lowing cases: 

1) 0p = , then ( )2 1 0m t− − ⋅ = , We have already considered this case; 

2) 1p = −  then from equation ( )
( )

2 1
1

1 1
m t

l m
− − ⋅

= −
⋅ − −

 it follows that  

( ) ( )2 1 1 1m t l m− − ⋅ = − ⋅ − , and from this we get that 1
1

t l
m

= +
−

. Since from 

the assumption that l∈ , it follows that it must be that 2m = .  
For this value of number, it is 1t l= +  and 1s = . So the pair of 

( ) ( ), 1,1t s l= +  is the solution of Diophantine Equation (7) for every natural 
number 1l > .  

1) If p∈ , then from equation ( )
( )

2 1
1 1

m t
p

l m
− − ⋅

=
⋅ − −

 we get that  

( )1 12
1 1

p l m
t

m m
⋅ ⋅ − −  = −

− −
, or 2

1 1
pt p l

m m
= + − ⋅

− −
. It follows from this eq-

uation that t is a natural number, if and only if 2
1m −

 and 
1

p
m −

 are natural 

numbers, that is, if 1| 2m −  and ( )1 |m p− .  

From the requirement 1| 2m − , it follows that it must be that 2m =  or 
3m = .  

For 2m =  it applies that ( )1 |m p−  and then it is  

( )2 2 1t p p l p l= + − ⋅ = + −  and 2s p= + . Furthermore, from the require-

ment that 2 0
1
tp

l
−

= >
−

, it follows that it must be that: 2 0t− > , because 

1 0l − >  by assumption. It follows then that 1t = ∈ . Now, for 1t =  from 
2

1
tp

l
−

=
−

, it follows that p∈  if 2l =  and 1p = , then 3s = . 

Based on that, for 2m =  we have determined another solution of Diophan-
tine Equation (7), and that is ( ) ( ), 1,3t s = .  

If 3m = , then from the condition that ( )1 |m p−  and equation  

2t p p l= + − ⋅ , it follows that 2
2
pt p l= + − ⋅  is a natural number only if p is 

an even number, i.e. 2 ,p q q= ∈ . Furthermore, since t∈ , by assumption, 
it follows that 2 2 0t q q l= + − ⋅ > . From this inequation we then get that 

2
2 1

q
l

<
−

. Since q∈  is only for 1l = , which is contrary to the assumption 

that 1l > . Thus, there is no q∈  for which t∈ , and the consequence of 
this is that for 3m = , in this case, there is no solution for Diophantine Equation 
(7).  

We have, thus, shown that the Diophantine Equation (7) has a solution only if 
2m =  or 3m =  and that the set of solutions of Equation (7) is: 

( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0, | , 2 ,0 , 1,1 , 0, 4 , 0,3 , 2,2 , 1, 2 , 1,3t s t s l l= ∈ = + ,  

1l∀ > ∈ . 
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3.2. Tiling a Plane with Semi-Regular Equilateral Quadrilaterals 

If in Equation (7) we put that 2m = , we get the following equation: 

( )1 2 ; 1 0t l s l l+ − ⋅ = − >                   (10) 

Equation (10) represents the corresponding Diophantine equation for the 
problem of tiling a plane with equilateral semi-regular quadrilaterals with a cha-

racteristic angle 
2 l

δ π
=

⋅
 and interior angles which are equal to angle 

l
α π
=  

or angle 11
l

β  = − π 
 

.  

Note that for 2l =  the interior angles of the quadrilateral are equal, and they 

are 
2

α β π
= = , so it is regular, and it is not subject to our investigation here.  

Therefore, we shall further consider the case when 2,l l> ∈ , i.e. when the 
interior angles of an equilateral quadrilateral are different. The theorem on 
nodes in tiling a plane with semi-regular equilateral quadrilateral holds. 

Theorem 5. In relation to the selected value 2,l l> ∈ , when tiling a plane 
with a semi-regular equilateral quadrilateral, only the following nodes can ap-
pear: ( ) ( ) ( ) ( ){ }2 ,0 , 0,3 , 1,1 , 2,2l l= + , and in this case node (0, 3) appears 

only in the case of tiling a plane with a semi-regular quadrilateral whose charac-

teristic angle is 
6

δ π
= , and interior angles are 

3
α π
=  and 2

3
β π
= . 

Proof. The problem of determining nodes is equivalent to the problem of 
finding all non-negative solutions of the corresponding Diophantine Equation 
(10). The following cases are possible:  

1) If 0s = , then 2t l= , so, obviously, pair ( ) ( ), 2 ,0t s l=  is the one solution 
of Equation (10) for all 2,l l> ∈ . That is, when tiling a plane with a 
semi-regular equilateral quadrilateral, a node ( )2 ,0l  appears. That is, 2l vertic-
es of semi-regular quadrilaterals which have the internal angles equal to angle  

l
α π
=  are joined at one node. 

2) If 0t = , then Equation (10) has the following form ( )1 2l s l− ⋅ = . The so-

lution of equation 2
1

ls
l

=
−

 can be written in the form of 2 22
1 1

ls
l l

= = +
− −

, 

from which it follows that 0s∈  is a non-negative integer if, and only if 
1 1l − = ±  or 1 2l − = ± . If it were that 1 1l − = ± , value 2l =  (when the qua-

drilateral is regular) and value 0l =  do not meet the assumption that 
2,l l> ∈ . Only value 1 2l − =  meets the assumption, and then 3l = , and it 

follows that 3s = . It follows that node ( ) ( ), 0,3t s =  appears only when tiling a 
plane with a semi-regular equilateral quadrilateral with a characteristic angle 

6
δ π
= , and interior angles 

3
α π
=  and 2

3
β π
= . 

3) Let , 0t s ≠  still be natural numbers. If we write Equation (10) in the form 

of 2 22
1 1

l t ts
l l
− −

= = +
− −

, it follows that s is a natural number, if 2
1
t

l
−

∈
−

 . Since 
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2
1
t

l
−

∈
−

 , if: 

a) 2 0t− = , that is, if 2t = , then it still is that 2s = . Thus, pair 
( ) ( ), 2, 2t s =  is the solution of Equation (10). Hence, it follows that when tiling 
a plane with a semi-regular equilateral quadrilateral, a node (2, 2) appears at  

which two vertices join, with an interior angle equal to angle 
l

α π
=  and two 

vertices whith corresponding interior angles equal to angle β for each choice of 
natural number 2,l l> ∈ . 

b) If it were that 2 1
1
t

l
−

= − ∈
−

 , and then it would be that 2 1t l− = −  and 

then 1t l= + , and 1s = , so pair ( ) ( ), 1,1t s l= +  is another solution of Dio-
phantine Equation (10). 

Thus, when tiling a plane with semi-regular equilateral quadrilateral, there is a 
node ( )1,1l +  at which the following vertices meet: vertex 1l +  with an inte-

rior angle equal to angle 
l

α π
=  and another vertex with a corresponding inte-

rior angle which is equal to angle β .  

c) If it were that 2 1
1
t

l
−

= ∈
−

 , and then it would be that 2 1t l− = − , and 

then 3t l= − . From the requirement that 3 0t l= − > , it follows that 3l < . 
Since by assumption 2,l l> ∈ , it follows that the case is not possible. 

d) If 2
1
t p

l
−

= ∈
−

 , then it would be ( )2 1t p l= − −  and 2s p= + . Since by 

assumption , 0t s ≠  are natural numbers, the following conjunction must hold: 
2p > −  and ( )2 1 0p l− − > . Hence we find that the conjunction is valid on-

ly when 2 1p− < < , i.e. { }1,0p∈ −  if 3l = . Thus, for 1p = −  it is 4t =  and 

1s = . This pair (4, 1) is obtained from the previous pair ( ) ( ), 1,1t s l= +  if 
3l = . For 0p = , we have that 2t =  and 2s = . We got a pair, as in case a). 

We have, thus, determined the set of all solutions of Equation (10), 

( ) ( ) ( ) ( ){ }2 ,0 , 0,3 , 1,1 , 2,2l l= + , i.e. all nodes that can appear when tiling a 

plane with semi-regular equilateral quadrilaterals, with a characteristic angle 

2 l
δ π
=

⋅
 and interior angles equal to angle 

l
α π
=  and angle 11

l
β  = − π 

 
.  

A graphical presentation of the corresponding Diophantine equation with 
nodes when tiling a plane with semi-regular quadrilaterals is shown in Figure 
3. 

Table 1 also lists the basic values of semi-regular quadrilaterals with the cor-
responding Diophantine equation, as an example of tiling a plane with 
semi-regular equilateral quadrilaterals for various values 1,l l> ∈ . 

Let us now consider tiling a plane with some of the semi-regular equilateral 
quadrilaterals. 

We noted that for 2l =  the characteristic angle is 
4

δ π
= , and that then the  
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Figure 3. Position of nodes when tiling a plane with a semi-regular equilateral 
quadrilateral on the graph of the corresponding Diophantine equation. 

 
Table 1. Diophantine equations with a set of solutions for tiling a plane with semi-regular 
equilateral quadrilaterals with characteristic values of angle δ, and interior angles, for 
various values of parameter 1,l l> ∈ . 

l Diophantine equation Set of Solutions 
2l

δ π
=  

l
α π
=  

11
l

β  = − π 
 

 

1 4t s+ =  ( ) ( ) ( ) ( ) ( ){ }4,0 , 0, 4 , 1,3 , 3,1 , 2, 2 1 π/4 π/2 π/2 

2 2 6t s+ =  ( ) ( ) ( ) ( ){ }6,0 , 0,3 , 4,1 , 2,2  π/6 π/3 2π/3 

3 3 8t s+ =  ( ) ( ) ( ){ }8,0 , 5,1 , 2,2  π/8 π/4 3π/4 

4 4 10t s+ =  ( ) ( ) ( ){ }10,0 , 6,1 , 2, 2  π/10 π/5 4π/5 

5 5 12t s+ =  ( ) ( ) ( ){ }12,0 , 7,1 , 2, 2  π/12 π/6 5π/6 

… … … … … … 

k ( )1 2t k s k+ − ⋅ =  ( ) ( ) ( ){ }2 ,0 , 1,1 , 2,2k k +  π/2k π/k 
11
k

 − π 
 

 

1—quadrilateral is regular. 

 

interior angles of the quadrilateral are equal; 
2

α π
=  and 

2
β π
=  so the ob-

served quadrilateral is regular (square). Tiling a plane with these quadrilaterals 
has been previously considered [2]. 

For 3l = , the corresponding Diophantine equation is 2 6t s+ = . The set of 
solutions of this equation is: 

( ) ( ) ( ) ( ){ }6,0 , 0,3 , 4,1 , 2,2= , and characteristic angle 
6

δ π
= , while the 

values of the interior angles are 
3

α π
= , 2

3
β π
=  respectively.  

Let us consider the example of tiling a plane when the following nodes appear: 
(6, 0) and (0, 3) (Figure 4) and nodes (0, 3), (4, 1) and (2, 2) (Figure 5). 

For 4l =  when tiling a plane with a semi-regular quadrilateral with a cha-

racteristic angle 
8

δ π
=  and one node, ( ) ( ), 2, 2t s = , at which two quadrilater-
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als meet, with vertices to which two interior angles equal to angle 
4

α π
=  cor-

respond, and two quadrilaterals with vertices to which interior angles equal to 

angle 3
4

β π
=  correspond (Figure 6). 

 

 
Figure 4. A fragment of tiling a plane with a semi-regular 

quadrangle with 
6

δ π
=  and with nodes (6, 0) and (0, 3).  

 

 
Figure 5. Tiling a plane with semi-regular equilateral qua-

drilaterals with 
6

δ π
= , and nodes (0, 3) and (4, 1). 

 

 
Figure 6. A fragment of tiling a plane with a semi-regular 

quadrilateral with 
8

δ π
=  and with node (2, 2). 
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A case of tiling a plane with a semi-regular quadrilateral in which there is a 
node (8.0) and a node (2.2) is shown in Figure 7, while tiling a plane with a 
semi-regular equilateral quadrilateral with nodes (5.1) and (2.2) is shown in 
Figure 8. 

3.3. Tiling a Plane with Semi-Regular Equilateral Hexagons 

If, in Equation (7) which corresponds to the problem of tiling a plane with 
semi-regular equilateral polygons with 2m-sides, 

( ) ( )( ) ( )1 1 1 2 1m t l m s l m− ⋅ + ⋅ − − ⋅ = ⋅ −  

with 1, 2; ,l m m l> ≥ ∈  and unknowns t, s are non-negative integers, i.e. 

0,t s∈ , we insert that 3m = , we get the following equation: 

( )2 2 1 4 ; 1 0.t l s l l+ − ⋅ = − >               (11) 

Equation (11) represents Diophantine equation for the problem of tiling a 

plane with equilateral semi-regular hexagons with characteristic angle 
4 l

δ π
=

⋅
 

and interior angles that are equal to angle 2
l

α π
=  or angle 11

2l
β  = − π 

 
. 

Each pair ( ),t s  of the non-negative integers that are not simultaneously equal 
to zero and that meet Equation (11) is the solution of the equation. 

 

 
Figure 7. Tiling a plane with semi-regular quadrilaterals with 
node (8.0) and node (2.2). 

 

 
Figure 8. Tiling a plane with semi-regular quadrilateral when 

with 
8

δ π
=  and nodes (5, 1) and (2, 2). 
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The theorem holds. 
Theorem 6. In relation to the selected value 1,l l> ∈  when tiling a plane 

with a semi-regular equilateral hexagon, only nodes ( ) ( )2 ,0 , 1,2l  can appear 

for all values of the characteristic angle 
4l

δ π
=  and interior angles 2

l
α π
=  

and 11
2l

β  = − π 
 

. 

Proof: The problem of determining nodes is equivalent to the problem of 
finding all non-negative solutions of Diophantine Equation (11). In doing so, let 
us consider the following cases: 

Case 1: If 0, 0t s≠ = , the equation has the following form 2 4t l= , whence 
we find that there is a pair ( ) ( ), 2 ,0t s l= , which represents the solution of Equ-
ation (11) for all 1,l l> ∈ . 

From this, it follows that when tiling a plane with a semi-regular equilateral 
hexagon, there appears node (2l) at which two vertices meet with an interior 

angle equal to angle 2
l

α π
=  and for each choice of a natural number 

1,l l> ∈ . 
Case 2: If 0, 0t s= ≠ , then Equation (11) reads ( )2 1 4l s l− ⋅ = . Let us ex-

amine for which values of 1,l l> ∈  it is that 4
2 1

ls
l

=
−

 and it is a natural 

number. Note that 4 22
2 1 2 1

ls
l l

= = +
− −

 and that s∈  is valid only when 

2 1l −  is divided by 2. This is possible only when 2 1 1l − = ±  or 2 1 2l − = ± . If 
it were that 2 1 1l − = ±  than it would be that 0l =  or 1l =  and these values 
do not meet the requirement that 1,l l> ∈ . If it were that 2 1 2l − = ±  then it 

could be that 3
2

l =  or 1
2

l = − , and also none of these values meets the re-

quirement that 1,l l> ∈ . Thus, we conclude that there is no pair (t, s) in 
which 0, 0t s= ≠ , and which is the solution of Equation (11) and which meets 
the requirement 1,l l> ∈ , and there is no node (0, s) as well, when tiling a 
plane with semi-regular equilateral hexagon. 

Case 3: Let us assume that 0, 0t s≠ ≠ . Then from equation  

( )2 2 1 4t l s l+ − ⋅ =  we get that 2
2
st l l s= − ⋅ + . Note that t∈  only if s is an 

even number.  
Let 2 ,s p p= ∈ . Let us determine the values for natural number p.  
Since 2 2t l l p p= − ⋅ +  for 2s p=  then from the assumption that 0t ≠  

and t∈  it follows that it must be that 2 2 0t l l p p= − ⋅ + > , which is possible 
if 2 2 0l l p− ⋅ ≥ , which is equivalent to the requirement that ( )1 0l p− ≥ , or the 
requirement that 1p ≤ . Hence, from the requirement that p∈  it follows 
that 0t >  only when 1p = . For this value p∈  is 1t = , and 2s = , for all 
values of 1,l l> ∈ .  

We have, thus, determined another solution of Diophantine Equation (11). 
That is, when tiling a plane with a semi-regular equilateral hexagon, a node (1, 
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2) appears at which one vertex of a semi-regular equilateral hexagon meets, with 
a corresponding interior angle equal to angle α, and two vertices of a semi-regular 
equilateral hexagon, with a corresponding interior angle equal to angle β for 
each selection of natural number 1,l l> ∈ . 

We have, thus, shown that the set of all solutions of Diophantine Equation (11) 
is ( ) ( ){ }2 ,0 , 1,2l= , i.e. that only nodes ( ) ( )2 ,0 , 1,2l  can occur when tiling a 
plane with a semi-regular equilateral hexagon, for all values of 1,l l> ∈ . 

Examples of tiling a plane with semi-regular equilateral hexagons with cor-
responding Diophantine equations are shown in Table 2, and graphically in 
Figure 9 and Figure 10. 

 

 
Figure 9. Tiling a plane with a semi-regular equilateral 
hexagon, with nodes (4, 0) and (1, 2). 

 

 
Figure 10. A case of tiling a plane with a semi-regular 
equilateral hexagon with nodes (16, 0) and (1, 2). 

 
Table 2. Diophantine equations with a set of solutions for tiling a plane with a 
semi-regular equilateral hexagon, and with characteristic values of angle δ, and interior 
angles, for various values of parameter 1,l l> ∈ . 

l Diophantine equation Set of Solutions 
4 l

δ π
=

⋅
 

l
α π
=  11

2l
β  = − π 

 
 

1 2 3 8t s+ =  ( ) ( ){ }4,0 , 1,2 1 π/8 π/2 3π/4 

2 2 5 12t s+ =  ( ) ( ){ }6,0 , 1,2  π/6 π/3 5π/6 

3 7 16t s+ =  ( ) ( ){ }8,0 , 1,2  π/16 π/4 7π/8 

… ………….. ………… …. …. …. 

k ( )2 2 1 4t k s k+ − ⋅ =  ( ) ( ){ }2 ,0 , 1,2k  π/2k π/k 11
2k

 − π 
 
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4. Conclusions 

The paper dealt with the possibility of tiling the Euclidean plane with convex 
semi-regular equilateral polygons. The research was conducted by observing a 
set of solutions for the corresponding Diophantine equation of the following 
form: 2t sα β+ = π , where t, s are the nonnegative integers that are not simul-
taneously equal to zero, and ,α β , are the interior angles of a semi-regular 
equilateral polygon PN. 

It has been shown that each solution of this equation represents one node and 
it shows how many semi-regular equilateral polygons with the corresponding 
interior angles meet at that node. It has also been shown that of all semi-regular 
equilateral polygons with 2m-sides, a plane may be tiled only with semi-regular 
quadrilaterals and semi-regular hexagons. Graphically presented cases are just 
some of the possible ones that depend on the value of the characteristic angle. 
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