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Abstract 
This project evaluates Brownian Motion’s effectiveness compared to histori-
cal stock market data. This paper analyzes the application and limitations of 
this stochastic model, focusing on the Dow Jones Industrial Average (DJIA) 
to evaluate its accuracy in predicting stock market trends. The paper begins 
by tracing the historical context of stochastic calculus, highlighting the con-
tributions of Louis Bachelier and Albert Einstein in laying the foundation for 
modern financial modeling. Geometric Brownian Motion (GBM) is then in-
troduced with options pricing and then examined through the lens of the 
Markov property, emphasizing its “memoryless” nature. To test this, simula-
tions were coded using Python simulations of the DJIA Index, based on 
Brownian Motion across the periods 1900-2000 and 2000-2015. These models 
were then compared to the actual historical data of the DJIA to evaluate pre-
dictive validity. Stochastic elements reflect factors that influence the value of a 
derivative, like time, volatility of the underlying asset, interest rates, and other 
market conditions. The research also critically examines the model’s inherent 
limitations, aiming to provide insights into the extent to which GBM can be a 
reliable tool for financial forecasting. This comparison will enable a nuanced 
understanding of the utility and shortcomings of this model for economic 
predictions and stock market analysis. 
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1. Introduction 

Stochastic calculus allows the modeling of random systems such as financial 
markets. “Stochastic components” in such models are randomly determined, 
with a random probability distribution that may be statistically analyzed but is 
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impossible to predict precisely. The basis of this area of mathematics lies in con-
tinuous but not differentiable functions, requiring a theory of integration where 
integral equations do not need defined derivative terms (Frontiers, 2022). Brow-
nian Motion is often a component in the stochastic differential equations of sto-
chastic calculus, representing the unpredictable aspect. Named for Robert Brown, 
the botanist who observed the motion of pollen particles in water in 1827, the 
Brownian motion model imitates prices in a continuous-time setting and is in-
dependent of past movements. It can be considered a limit of a symmetric ran-
dom walk (a sequence of vertices and edges of a graph) with small steps in short 
time intervals (Siegrist, 2021). In each time unit Δt, a step of size Δx is taken to 
the left or right with equal probability. Each step is an independent event with a 
value of either 1 or −1. The step size Δx is related to the time interval Δt by 

x t∆ = σ ∆  where σ represents the standard deviation and the position at time t, 
denoted by X(t), is the sum of all steps taken up to time t (University of Minne-
sota, 2023). 

2. Historical Context  

The history of stochastic calculus begins with Brownian motion, and its origin 
can be traced back to two men who developed their models independently: L. 
Bachelier, who created a model while deriving the dynamics of the Paris stock 
market, and A. Einstein, who created a model of small particles suspended in a 
liquid. In an attempt to model the Paris Bourse market, Bachelier used the Cen-
tral Limit Theorem, which states that the sampling distribution of a variable ap-
proximates a normal distribution as long as it is large enough (Ganti, 2021). He 
concluded that increments in stock prices should be independent (future move-
ments are independent of past movements), stationary (statistical properties are 
constant over time), and normally distributed (as Δt approaches 0, X(t) becomes 
a continuous process with mean 0 and variance σ2t). He was able to define 
processes related to Brownian motion, such as finding the maximum change 
during a time interval. Bachelier was the first to suggest using Brownian motion 
to model stock prices. In creating his model, Einstein assumed Bachelier’s find-
ing that Brownian motion was a stochastic process with independent increments, 
continuous paths, and stationary Gaussian increments. He concluded that the 
visible random movement of particles in water that Robert Brown observed was 
due to water molecules’ invisible and random motion. In a statistical mechanics 
approach, he modeled these molecules as randomly moving particles that collide 
with suspended particles to cause erratic movements. Most importantly, he de-
rived the diffusion equation, which relates the mean square displacement of a 
particle to the time interval of observation, which is given by 

2 2x Dt=  

where 2x  is the mean square displacement of the particle, D is the diffusion 
coefficient, and t is the time interval. If the kinetic energy of fluids was right, the 
molecules of water moved at random, and a small particle would receive a ran-
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dom number of impacts of random strength from random directions in any pe-
riod of time, which would cause the particle to move in the same way that Brown 
first observed (University of Illinois at Urbana-Champaign, 2023). 

Economist Paul Samuelson found Bachelier’s thesis in the MIT library and 
argued that prices must have fluctuated randomly in 1965, 65 years after Bachelier 
assumed it. His papers became the basis of the efficient market hypothesis and 
the foundation of option pricing theory. Samuelson proposed that changes in fu-
ture prices were uncorrelated across time, a generalization of Bachelier’s random 
walk model, and claimed that this postulate could be extended to an immediate 
application to options (Jarrow & Protter, 2012). 

As for Einstein’s contribution to financial modeling, the stock price can be 
envisioned as a particle undergoing Brownian motion. Just as in Einstein’s mod-
el driven by molecular collisions, a stock price moves randomly, caused by vari-
ous unpredictable market factors. Based on his derived diffusion equation, the 
analogous function for stock prices would be  

2 2S t= σ  

where 2S  is the variation in stock price, σ2 quantifies the degree of risk asso-
ciated with the price, and t is the time interval. This equation implies that the 
uncertainty or random movement in stock price increases with time (Ermogen-
ous, 2006). 

Brownian Motion Models 

Stock markets, foreign exchange markets, commodity markets, and bond mar-
kets are all assumed to follow Brownian motion, where random amounts alter 
the change of state on the assets. The models used to describe this motion are 
fundamental tools on which financial asset pricing and derivatives pricing mod-
els are based. The assumption that asset prices follow Brownian motion is essen-
tial to options pricing models. Options, which give its holder the right but not 
the obligation to buy or sell a certain amount of a financial asset by a certain date 
for a certain strike price, are determined by derivative pricing. Using Brownian 
motion to determine the fair price of an option, these models can more accu-
rately describe how prices change over time (Lamberton & Lapeyre, 2007). 

In this paper, the Dow Jones Industrial Average (DJIA) will be used to discuss 
Brownian Motion’s accuracy in predicting stocks. The DJIA is a stock market 
index measuring the performance of 30 large and publicly owned companies. 
The index is price-weighted: the components are weighted based on their stock 
prices rather than their market capitalization. The DJIA index is relatively 
measured; its value represents the aggregate stock prices of its component com-
panies. The units of the index are not specified in terms of a specific unit, cur-
rency, or percentage. The DJIA values indicate the index level at a point in time. 
The index value refers to the combined stock prices of the 30 companies in the 
index, weighted by their prices, equated to that numerical value. Changes in the 
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DJIA over time reflect the overall performance of the stock market as represented 
by these 30 companies. The DJIA can be used to track the overall health and trends 
in the stock market as the companies within it span many important industries 
and commodities. 

3. Options Pricing and Geometric Brownian Motion 

Because Brownian motion can take on negative values, it is not always suitable 
for modeling stock prices. As a result, we use a non-negative variation called 
Geometric Brownian motion. A stochastic process St is said to follow a Geome-
tric Brownian motion if it can be defined by  

( ) ( )
0e

X tS t S=  

where ( ) ( )X t B t t= σ + µ  is Brownian motion with drift and ( ) 00 0S S= >  is 
the initial value. After taking the natural logarithm, the equation becomes  

( ) ( )( ) ( )( ) ( )0 0ln ln lnX t S t S S t S= = −  

( )( ) ( ) ( )0ln lnS t S X t= +  is normal with mean µt + ln(S0), and variance σ2t. The 
idea of using this model is to create a “level playing field” where the activity of 
buying or selling stock offers no arbitrage or simultaneously buying and selling 
the same asset in different markets to try to profit off of the tiny differences in 
price between markets, so no one should be able to make a profit with certainty 
(Murwaningtyas et al., 2019). 

It also must satisfy the following stochastic differential equation  

( )d d dt t tS S t B= µ + σ  

where dSt is the change in the stock price, St is the stock price at time t, µ is the 
percentage drift representing the expected return of the stock per unit of time, σ 
is the percentage volatility measuring the standard deviation of the stock’s re-
turns, and dBt represents a Brownian motion process. Higher volatility increases 
the option’s value since there is a greater chance that the stock price will move 
significantly by the expiration date. This equation has an analytic solution:  

( )2 2 d
0e

tt B
tS S

µ−σ +σ
=  

for an arbitrary initial value S0. The expected price grows like a fixed-income se-
curity with a continuously compounded interest rate. In practice, the compounded 
interest rate is much greater than the real fixed-income interest rate so that one 
would invest in stocks. This model is used in options pricing (University of 
Pennsylvania, 2023).  

The rights without obligations that options provide have financial value, so 
option holders must purchase them and make them assets. They are called de-
rivative assets because they derive their value from other assets. For an exercise 
price K and an exercise date T, one has the right to buy stocks with price K and 
sell them with ST in the market if ST > K. If not, one has no obligation to pur-
chase. This option is called a European call option, and we define claim C 
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(payoff at time T) by 

( ) ( )max ,0T TC S K S K
+

= − = −  

So, if ST > K, then the option owner will obtain the payoff C at time T, while if 
ST ≤ K, then the owner will not exercise their option, and the payoff is 0. At the 
time of writing the option, ST is unknown and therefore raises the problem of 
pricing the option, or how should one price at time t = 0 an asset worth (ST − K)+ 
at time T? The primary goal is to determine the fair price at t = 0 for a European 
call option, which is only one example of financial derivate. The oldest derivative 
and most natural claim on a stock is the forward. If two parties enter into a for-
ward contract, the seller agrees to give the other party the stock at some set time 
for some set price. If T denotes the expiry date, F denotes the strike price, and 
the value of the stock at time t > 0 is St. The stock must be exchanged at time T 
for $F, so to determine the fair value of this contract means to determine the 
value of F (Kozdron, 2023). 

Markov Property 

Geometric Brownian Motion follows the Markov property, a memoryless feature 
that allows the future price to be independent of the past prices, given the 
present price. This feature aligns with the efficient market hypothesis that all 
past information is already reflected in current prices. In the context of Brow-
nian Motion, the Markov property simplifies the process’s modeling. The prop-
erty allows for the future movements of a particle in Brownian motion to rely 
only on its current position, disregarding the path the particle took to get there. 
This simplifies the analysis and modeling of Brownian motion because once the 
current state of a particle is known, its history of motion can be ignored, as its 
past does not influence its future.  

The Markov property is defined by the equation 

( ) ( )| | for all , ands t s s t sX A X A X s t T A+ +∈ = ∈ ∈ ∈    (Siegrist, 2021) 

The starting point is a probability space (Ω,  ,  ), so that Ω is the set of 
outcomes,   the σ-algebra (a subset of the set algebras) of events, and   the 
probability measure on (Ω,  ) (Sengupta, 2005). The time set is either   (dis-
crete time) or [0, ∞) (continuous time).  

The defining condition states that the conditional distribution of s tX +  given 

s  is the same as the conditional distribution of s tX +  just given sX . Condi-
tional distribution is the probability distribution of a random variable (Kuter, 
2019). It is calculated according to the rules of conditional probability after ob-
serving another random variable. In the equation, s can be thought of as present 
time, so that s + t is a time in the future. The present state, sX  is known, so the 
events in the past are irrelevant for predicting the future state, s tX + .  

4. Comparing Brownian Motion Stock Index Models 

Python and Sublime Text were used to simulate Brownian Motion (Skinner, 
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2008). A random seed value, 42, was generated. The specific value doesn’t matter; 
what’s important is that using the same seed value will produce the same se-
quence of random numbers, making your code more predictable and reproduci-
ble. When prompted with “code for Brownian motion with the value of Dow 
Jones stocks as y-axis and from 2000 to 2015 in Python,” and “code for Brow-
nian motion with the value of Dow Jones stocks as y-axis and from 1900 to 2000 
in Python,” ChatGPT-generated code for the simulated graphs (OpenAI, 2023). 
These codes were edited to produce better results and to fix minor errors. 

To create the Brownian Motion function, the line def brownian_motion (dt, 
n_steps) was used to define a function named brownian_motion that takes two 
parameters, (1) dt (time step) and (2) n_steps (number of steps). t = np.linspace 
(1900, 2000, n_steps + 1) creates an array t representing time from 1900 to 2000 
with n_steps + 1 points. Increments = np.random.normal (0, np.sqrt(dt), n_steps) 
generates random increments from a normal distribution with mean 0 and 
standard deviation √dt. Bm = np.cumsum (increments) calculates the cumula-
tive sum of the increments to obtain the Brownian motion values .return t,bm: 
Returns the time array t and the corresponding Brownian motion array bm. To 
set the function’s parameters, dt = 1/252.0 was used to set the days per year in 
which stocks are traded (252 trading days in a year). n_years = 2015-2000 or 
n_years = 2000-1900 was used to calculate the number of years. In Figure 1, 
n_years = 2015-2000 was used. In Figure 3, n_years = 2000-1900 was used. 
Lastly, to generate Brownian Motion t, bm = brownian_motion (dt, n_steps) was 
used to call the brownian_motion function to generate time (t) and correspond-
ing Brownian motion values (bm) based on the specified time step and number 
of steps. To simulate Dow Jones Stock Values, initial_price = 10,000 was used to 
set the initial index value to 10,000. Then, dow_jones = initial_price * np. 
exp(0.02 * t + 0.1 * bm) simulates Dow Jones stock values using the geometric 
Brownian motion equation. To plot geometric Brownian Motion  

plt. figure(figsize = (10, 6)): Creates a new figure with a specified size. 
plt.plot(t, dow_jones, label = “Dow Jones Index”): Plots the Dow Jones stock 

values against time. plt.title(“Brownian Motion with Dow Jones Stock Values 
(1900-2000)”)sets the plot’s title, plt. label (“Time (Years)”) sets the label for the 
x-axis, plt. label (“Dow Jones Index”) sets the label for the y-axis, plt.legend(), 
adds a legend to the plot, plt.grid(True), adds a grid to the plot, and plt. show(), 
displays the plot. 

4.1. Comparing Brownian Motion Stock Index Models: 2000-2015 

In comparing the simulated Dow Jones Industrial Average (DJIA) index to the 
real-life index over fifteen years, from 2000 to 2015, the overall trends of the si-
mulated graph are accurate, but the changes in the index from year to year are 
not. In the simulated chart, the index starts at around 10,000, whereas the index 
in 2000 was about 20,000. The start value of the simulated graph is set to 10,000 
as that value cannot be predicted or changed by Brownian Motion. Over time, 
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the predicted values become more closely related to the real-life values without 
considering any events that significantly affect the economy and stock market. 
In the time period from 2000 to 2015, the DJIA index lost nearly half its value 
because of the stock market crash of 2008 but then made a complete recovery. 
However, because this decrease in the index happened so suddenly and the econ-
omy was able to recover quickly and completely, the trend of the simulated 
graph is still closely related to the actual health of the stock market. The simu-
lated value of the DJIA steadily rose, with minor depressions, from 2000 to 2015, 
which aligns with the real-life stock market trends, except for the 2008 crash. In 
both the real-life and simulated graphs, during 2015, the index was about 25,000, 
with the simulated value slightly higher than the actual index. Overall, Brownian 
Motion on a small time interval is semi-accurate compared to the true DJIA in-
dex but is not precise enough for any factual claims to be made. The trends of 
the graphs mirror each other well, but when observing shorter time periods or a 
specific year, the values differ greatly (Figure 1 & Figure 2). 

4.2. Comparing Brownian Motion Stock Index Models: 1900-2000 

In comparing the simulated Dow Jones Industrial Average (DJIA) index to the 
real-life index over one hundred years, from 1900 to 2000, the overall trends of 
the graphs are very similar. The start value, randomly generated in the simulated 
graph, is inaccurate, but the simulation quickly balances out as time progresses.  
 

 
Figure 1. Simulated Brownian motion from 2000-2015 measuring Dow Jones industrial average index (Hunter, 2007). 
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Figure 2. Real-life Dow Jones industrial average index from 2000-2015 (Macrotrends.net, 2020). 

 
When analyzing large periods of time, especially in the last century, where sig-
nificant advances have been made (including the inception of the internet), it 
makes sense that the simulated graph would be inaccurate. While the real-life 
diagram depicts sharp declines and increases, the geometric Brownian Motion 
steadily rises with time, providing incorrect results. Due to the nature of Brow-
nian Motion and its properties of randomness, sharp peaks and valleys like those 
depicted in the real-life graph are unlikely to be represented. Overall, the long-term 
estimate of the DJIA is almost entirely different from the actual graph, primarily 
due to the many events occurring in the 20th century. Although this depiction is 
inaccurate, Brownian Motion’s uses are still helpful as a baseline for predicting 
future stock values. In the shorter period of fifteen years, while disregarding the 
stock market crash, the simulated graph is closely related to the actual stock val-
ues (Figure 3 & Figure 4). 

5. Discussion 

The primary motivation behind these models comes from the nature of the sto-
chastic processes. In practice, the price changes in the stock market are so fre-
quent that a discrete-time model can hardly follow its movement. On the other 
hand, continuous-time models such as the ones used in Brownian motion lead 
to more explicit computations, even if they require code for simulation. While 
the Brownian motion model effectively captures the randomness of market 
movements through its stochastic components, it also reveals the challenges of 
predicting large-scale economic events.  

This analysis emphasizes the need for continuous refinement of financial mod-
els to better understand and predict market behaviors. Incorporating elements  
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Figure 3. Simulated Brownian motion from 1900-2000 measuring Dow Jones industrial average index with the 
y-axis being in the thousands (Hunter, 2007). 

 

 
Figure 4. Real-life Dow Jones industrial average index from 1900-2000 (Macrotrends.net, 2020). 

 
into the algorithm that account for sudden, significant economic events could 
greatly enhance the model’s accuracy in real-world scenarios, leading to more 
informed investment strategies and better financial planning. The balance be-
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tween mathematical modeling and practical economic realities underscores the 
importance of considering both random and systematic factors in economic fo-
recasting. As the global economy continues to evolve in complexity, the adapta-
tion and improvement of models such as Brownian motion become imperative. 
The ability of models like Brownian motion to provide insight into market dy-
namics directly impacts financial decision-making, risk management, and policy 
formation. With the world still grappling with the effects of the COVID-19 pan-
demic, understanding how major events disrupt the economy is pivotal in navi-
gating current and future economic crises. By striving to refine and improve these 
models, one can hope to achieve a more stable and predictable financial future. 
Although geometric Brownian motion has widespread uses, it has many limita-
tions and faces criticism for its oversimplification and the many assumptions it 
makes. For instance, GBM assumes constant volatility over time, which isn’t true 
in the real market (Ermogenous, 2006). Additionally, actual financial returns of-
ten exhibit fat tails—greater-than-expected probabilities of extreme values—and 
are not normally distributed. Geometric Brownian Motion also does not account 
for market crashes or price jumps. While the model provides a framework for 
understanding stock pricing, real-world financial markets are influenced by fac-
tors that are not entirely random, like global pandemics and depressions, and 
can exhibit trends and cycles. Therefore, while the Brownian motion model is 
useful, it oversimplifies the complexities of financial markets. 

6. Conclusion 

Geometric Brownian Motion (GBM) is widely used, but it has limitations and 
faces criticism for oversimplification and unrealistic assumptions. One such as-
sumption is constant volatility over time, which doesn’t align with real market 
conditions. Actual financial returns often deviate from normal distribution, show-
ing fat tails with greater-than-expected probabilities of extreme values. GBM 
fails to account for market crashes, price jumps, and external factors like global 
pandemics or depressions. While GBM offers a framework for stock pricing, it 
oversimplifies the complexities of financial markets, which are influenced by 
non-random factors, trends, and cycles. 
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