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Abstract 
Hyperthermia in oncology is an emerging complementary therapy. The clin-
ical results depend on multiple conditional factors, like the type of cancer, the 
stage, the applied treatment device, and the complementary conventional 
therapy. The molecular effect could also be different depending on the tem-
perature, heating dose, kind of energy transfer, and timing sequences com-
pared to the concomitant treatment. This article examines the molecular im-
pacts of a specific technique used in oncological hyperthermia called mod-
ulated electro-hyperthermia (mEHT). What sets mEHT apart is its emphasis 
on harnessing the combined effects of thermal and nonthermal factors. Non-
thermal energy absorption occurs through the excitation of molecules, while 
the thermal component ensures the ideal conditions for this process. The ap-
plied radiofrequency current selects the malignant cells, and the modulation 
drives the nonthermal effects to immunogenic cell death, helping to develop 
tumor-specific antitumoral immune reactions. The synergy of the thermal 
and nonthermal components excites the lipid-assembled clusters of trans-
membrane proteins (membrane rafts) as the channels of transient receptor 
potentials (TRPs), the heat-shock proteins (HSPs), the voltage-gated chan-
nels, and the voltage-sensitive phosphatases (VSPs). All these transmembrane 
compartments channeling various ionic species (like calcium and proton) in-
teract with the cytoskeleton and are involved in the apoptotic signal path-
ways. 
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1. Introduction 

Electromagnetism appears as a continuous challenge in biology. The search for 
the use of electromagnetic effects for therapies ignited considerable research and 
hypotheses [1]. The ionizing radiation beam (high energy electromagnetic spec-
trum) shows immediate effects. The absorbed energy spectacularly destroys the 
biomaterial in the path of the beam. The non-ionizing radiation has less energy 
and more complexity. It modifies the chemical compounds and reactions and could 
impact enzymatic processes [2]. The complexity of living structures with physio-
logical self-regulations challenges the therapeutic applications of non-ionizing ef-
fects. The challenges highlight the physiological importance of electric currents, 
deriving much intensive research, including neuroscience [3] and controlling the 
cellular effects [4]. A general hypothesis of “biologically closed electric circuits” 
(BCEC) introduced bioelectromagnetic homeostasis based on the existence of 
intrinsic electric currents in the body [5] [6], modified by malignant diseases [7] 
[8]. The pathological disorders [9] and wounds induce intrinsic injury currents 
[10], driven by the automatic biological charge transfers induced by the tis-
sue-repair process [11] [12]. Observations have been made regarding the biolog-
ical effects of low-level, non-stationary magnetic fields [13] [14]. The bioelec-
tromagnetic effects may have resonance characters [15] [16] [17]. 

All electromagnetic interactions deliver energy to the biomaterials. The energy 
could be realized by heat (which may increase the temperature) and electron ex-
citation (which makes chemical changes). These effects are naturally combined. 
The bioelectromagnetic interactions partly modify the chemical bonds and struc-
ture of compounds with electromagnetic forces, while the part of the energy ab-
sorption heats the target. The preferences may change the treatments. For exam-
ple, radiotherapy breaks the DNA strands, modifying the chemical bonds, where 
the heating is an adverse effect, while the focus of hyperthermia is to heat and 
neglects the direct chemical effects of the electric field. Initially, hyperthermia 
used both the field and heat effects combined in the middle of the 18th century, 
but later it split by dominant electric (by French doctor Arsene d’Arsonval) and 
heat (by Danish doctor Kristian Overgard) effects. To produce, control, and un-
derstand the heat effects were more accessible, promoting its worldwide spread 
and helped by some industrial devices manufactured by Siemens in the early 20th 
century. 

Nowadays, a novel approach tries again to combine the thermal and non-
thermal factors of non-ionizing radiation using modulated radiofrequency (RF) 
signals [18]. The method (modulated electro-hyperthermia, mEHT [19]) applies 
definite heating in the fever range [20] and bioelectromagnetic effects in the bi-
oprocesses using the nonthermal electromagnetic activity [21] [22] in the energy 
range selectively exciting transmembrane proteins on the malignant cells [23]. 
The principal selectivity of mEHT concentrates on the physiologic specialties of 
malignant cells and how they differ thermally and electrically from healthy ones.  

The malignant cells have a higher metabolic rate that drives the RF current by 
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high ionic density in the tumor-cell microenvironment (TME). Moreover, healthy 
cells maintain homeostatic electrolyte concentrations in various regions by well- 
controlled electrolyte balance having body electrolytes in the right concentra-
tions regulated by heart, kidney, and neurological function, controlling the ac-
id-base, fluid concentration balance, oxygen delivery, carbon dioxide transport, 
and other processes in the complex human body. The kidneys maintain a mas-
sive sodium regulation, which balances the important Na/K balance and calcium 
concentration for cellular functions. Calcium is involved in the function of en-
zymes and serves in signal transduction pathways, acting as a second messenger, 
in neurotransmitter release from neurons, in contraction of all muscle cell types, 
and in fertilization. Cancer cells alter the electrolyte balance concentrations. Some 
tumors have hypercalcemia, and the dysregulated pH causes electrolyte imbal-
ance in cancer. 

The measured impedance between healthy and cancerous tissues exhibits sig-
nificant differences [24]. This impedance assists in selecting appropriate radio-
frequency (RF) parameters [25] and enhances current density within the can-
cerous tissue [26] [27]. MRI images the selection showing high RF current den-
sity in the tumor [28] and prove the self-selection of the malignant region by the 
current flow [29] [30]. Electrical impedance tomography pro provides further 
feasibility of focusing on impedance differences [31]. The preclinical experi-
ments in various investigations show the temperature differences between the 
tumor and its surroundings (Figure 1). 

The growing temperature on the membrane makes a particular thermal im-
pact compared to the conventional heating (water-bath, wHT) (Figure 2).  

The mEHT focuses on the complex equilibrium of the human body [39] with 
an appropriate technical solution [40], synergizing thermal and nonthermal 
energy components [41] by strong interaction of heat production with field  

 

 
Figure 1. Temperature differences between the tumor and its surroundings, B16F10 (melanoma allograft) [32], SCCVII (oral 
squamous allograft) [33], B16F10 (melanoma lung-metastases allograft) [34], 4T1 (triple negative breast isograft) [35], lung 
(squamous xenograft) [36], lung (squamous xenograft) [37]. 
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Figure 2. Measurement of the membrane temperature [38]. (a) Calibration of the membrane temperature by 10 µM DIL dye 
(RPMI + 10% FCS + 1% L-glutamine + 0.4% gentamycin). HT29 (human CRC cell line). Dilutions were kept at discrete tempera-
tures for 30 minutes. (b) The temperature of the medium of the cell culture. (c) Significantly higher membrane temperature was 
achieved with mEHT than with wHT. 
 

effects [42]. The central concept of mEHT uses the natural homeostatic control 
of the human body [43], using a low-frequency modulation to stimulate healthy 
homeostatic regulation [44] [45]. 

2. Thermal Impact 

The intensive metabolic activity of the malignant cells [46] increases electric 
conductivity by the ionic density in the TME. Furthermore, the tumor has a 
higher water content [47], which further increases the electric conductivity of 
the tumor. In this way, the entire tumor conducts better than its neighbor [48] 
[49] [50] [51]. An additional selection factor is that the malignant processes de-
stroy the networking orders [52] [53] [54]. The presence of the disorder leads to 
an increase in the dielectric permittivity (ε) of the microregion [55] [56] [57] 
[58]. Consequently, the electric current will naturally follow the most accessible 
route, which is typically the most conductive path, thereby flowing through the 
tumor. The water content within the tumor microenvironment (TME) interacts 
with the membrane [59], forming various bonds [60] and significantly impacting 
the membrane’s functionality. This phenomenon results in a low specific ab-
sorption rate (SAR) but a high voltage drop [61], facilitating the excitation of raft 
proteins [62] by the signal. The electrostatic charge of the membrane attracts 
ions from the extracellular matrix (ECM), producing a diverse effect that is suf-
ficient to establish a transmembrane potential [63]. 

Selective raft heating makes a higher cell-killing rate with apoptotic processes 
than conventional homogeneous water bath heating (wHT). A calibration curve 
by wHT describes the apoptotic rate by temperature. The mEHT heterogeneous 
heating has a higher impact on the membrane proteins than wHT (Figure 3). 

The transient receptor potential (TRP) channels are a set of transmembrane 
proteins and form a family of cation control channels [67]. These channels rec-
tify the ionic transport, mainly calcium Ca2+, through the membrane. The recti-
fication parameters primarily depend on thermal conditions sensing the relative 
to homeostasis oppositely in hot and cold temperatures. The hot sensing shifts  
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Figure 3. Thermal calibration with wHT measured with cell-lines U937 () [64], HepG2 
( ) [65], CT26 () [66], and the mEHT with U937 () [64], and HepG2 () [65], 
cell-lines. RF homogeneous heating with a conventional capacitive device for HepG2 cells 
is also given () [65]. 

 
the Ca2+ ion-flux to the opening direction [68], while the cold one shifts oppo-
sitely [69] to the closing side. TRPs regulate the membrane polarization, func-
tion as primary thermal sensors of cells [70], inducing action potential for phy-
siological sensation, and cover chemo-, mechano-, and photosensation [71] of 
individual cells. The intracellular organelles and cellular compartments also have 
TRP channels in various vesicular processes [72] [73]. The Ca2+ intra and extra-
cellular transmembrane ionic exchanges have a decisional role [74], allowing the 
individual cells to react to all intra and extracellular stimuli signals. The intra-
cellular TRPs actively participate in membrane fusion and fission, signal trans-
duction, and general vesicular homeostasis [73]. The TRPV5 and TRPV6 are the 
only TRPV channels that are highly selective for Ca2+ [75]. Others have low or 
no selection on this ion. The TRPV1 is also a proton channel [76], which lowers 
the pH of the cytosol [76]. However, the Ca2+ -selective ORAI channel [77] has 
tight interactions with non and weak Ca2+ selective TRP channels and may acti-
vate the TRPCs while that may localize the ORAI [78]. 

The TRP channels have an exceptionally high temperature-coefficient Q10 
[79]. It is notable that both the enthalpy and entropy components of its transi-
tion through the ion-permeability barrier are high [79]. 

The vanilloid receptors (TRPVs) cover the temperature sensing in mammals 
from low skin temperature (~25˚C - 45˚C TRPV4) to the necrotic high up to 
~50˚C - 60˚C, TRPV2 [80] [81]. The hyperthermia fits TRPV3 (~24˚C - 34˚C) 
and TRPV1 (~41˚C - 50˚C) ranges [81]. 

The cell-membrane rafts became in focus [82] and well-studied [83]. The TRP 
receptors could also be a part of these clustered microdomains in the membrane 
and present effective thermosensors of the cell [84]. There are essential observa-
tions indicating a coherent cluster structure of a large number (~105) of vol-
tage-gated ionic channels [85] [86], and it could have transient receptor poten-
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tial (TRP) receptors in one temperature-sensing domain [84]. Small temperature 
changes may affect the TRP channels with membrane lipid assistance in the raft 
microdomain. The membranes are inhomogeneous, which is enhanced by the 
mild temperature change. Notably, the activated TRPV1 channel’s ionic current 
may disappear at the multiple repetitions of the thermal ignition [87]. The 
opening of the TRPV channel for ionic current needs a relatively large enthalpy, 
while its closing depends less on the provided energy [88]. This asymmetry 
works oppositely in cold-activated channels like TRPM8 [89]. 

The primary energy absorbers in the mEHT method are the cytoplasmic mem-
brane rafts, heating them selectively. The selection is based on these microdo-
mains’ high specific absorption rate (SAR). The thermal influence of mEHT has 
traditional hyperthermic functions, promoting the cell death in various ways 
[90]. Nevertheless, the difference is significant: the mEHT selectively heats the 
tumor. The selection focuses on membrane rafts, the cholesterol-stabilized mi-
crodomain cluster of transmembrane proteins [82], participating in the mem-
brane dynamics [83]. The rafts have exceptionally high energy absorption from 
the RF current [91], allowing cellular selection of malignant cells with signifi-
cantly high raft density [92] without substantially heating the healthy ones [93]. 
The concentrated heating of the molecular groups in the membrane rafts creates 
a heterogenic situation, where the rafts heat the entire cell and, in a second step, 
the tumor [94]. While the tumor, on average, remains in the <40˚C fever range, 
the rafts reach < 3˚C higher temperatures [95]. 

The temperature increase of the nano parts in the target is negligible with 
homogeneous heating [96]. However, when the heating is heterogenic (which is 
the case of all nanoparticle heating and in the mEHT too), the local SAR could 
be extremely high due to the small particle size. This is used in nanoparticle 
heating when the SAR on the nanoparticles could be as much as more than 1 
MW/g (1,000,000,000 W/kg), depending on the absorber’s concentration [97]. 

The inhomogeneous electric field in the case of mEHT, where the dielectro-
phoretic force drifts the rafts forwards, gives an additional factor to increase the 
micro-heterogeneity of cellular heating (Figure 4). This process exhibits a sig-
nificant level of selectivity because the dielectric permittivity of the transmem-
brane proteins is at least two orders of magnitude higher than the permittivity of 
the surrounding membrane through which they traverse [98]. 

The TRP regulative processes are dynamic. The transmembrane protein dis-
places by the temperature action [99]. In malignant cells, the motility of tran-
sient receptor potential (TRP) channels is more pronounced compared to their 
healthy counterparts [100]. As a result, the drift movement of these channels in-
dicates regions of higher energy density, where the specific energy absorption 
(SAR) is also elevated. The SAR values increase specifically at these points of the 
membrane known as micro-contacts (Figure 5(a)). 

The telophase → cytokinesis phase forms another significant vital direct con-
tact during the mitotic spindle, which has high importance in the proliferative  
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Figure 4. The electric field polarizes the membrane. Hyperpolarizing happens on one and depolarizing on the opposite side of the 
cell. The rafts have the electrophoretic force to drift by the electric force. The mEHT uses a 13.56 MHz carrier frequency. Conse-
quently, the direction of all processes changes by ~0.07 μs, and so the movable proteins will be enriched in both sides of the cell. 
 

 
Figure 5. Developing extra hot spots on the cell membrane. (a) The cells touch each oth-
er, which enhances the SAR value and increases the spot’s temperature. (b) The cytoki-
netic phase of mitosis has a “neck” between the forming daughter cells. This small area 
behaves like a touching point shown in Figure 5(a). 

 
malignant cells. The neck between the just-forming daughter cells induces cata-
phoretic forces [101]. The small cross-section of the neck may absorb an ex-
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tremely high SAR when its directional position matches to electric-field vector. 
The absorbed energy by the cytokinetic “neck” depends on the cellular orienta-
tion, having a maximum when the field lines are directly parallel to the cytoki-
netic “neck” [102] [103]. The exceptionally concentrated energy may arrest the 
cytokinesis and block malignant proliferation [104] (Figure 5(b)). 

In the outer membrane, dominantly the TRPV1, while in the membrane of 
intracellular compartments, the TRPV3 is thermally activated by mEHT’s hete-
rogeneous heating. The TRPs actively participate in membrane fusion and fis-
sion, signal transduction, and general vesicular homeostasis [75]. 

The thermal load has another well-known consequence: the development of 
protective chaperoning heat-shock proteins (HSPs) [105] [106]. The HSPs are 
also part of the complex regulation of the living organization, resulting in cellu-
lar defense or promoting cell death [107]. The complexity of HSPs questions 
their role as a “friend” or “foe” [108] [109] [110]. This dual behavior [111] [112] 
appears to decide their function as inflammatory or anti-inflammatory, pro-tumor 
or antitumor, immune-stimulatory or immune-suppressant, etc. The intensive 
thermal stress secrets membrane [113] and extracellular HSPs [114], which may 
reverse their cell-protecting activity [115]. The HSP expression can link to the 
plasma membrane processes by mild heat [116], which may cause non-specific 
clustering [117] by fever-like temperatures, where TRPs are particularly sensi-
tive. 

3. Nonthermal Impact 

The electromagnetic effects differ between healthy and cancerous tissues. The 
essential differences appear in the conductivity and dielectric properties of the 
tissues. The breaking healthy cellular network in cancer better conducts the ra-
diofrequency current, and its dielectric permittivity (polarizability) is also sig-
nificantly higher. Further differences appear in the electromagnetic excitability 
of the signal pathways in the cells due to the expressive contrasts of the healthy 
and malignant cellular membranes. The low membrane potential and high 
number of intercellularly unconnected transmembrane proteins appear in ma-
lignancy which interacts profoundly differently with the external electric field 
than the healthy cell. Using the apoptotic calibration in Figure 3, the impact of 
mEHT for cell-killing is rather significant (Figure 6). The basic structural dis-
ruption of healthy order makes the tumor also distinguishable by its electro-
magnetic interactions. 

Any other than thermal stress that influences the homeostatic equilibrium al-
so activates the HSP synthesis [118], which induces the cellular chaperoning 
function with HSPs. Living objects have not only thermal interactions. The do-
minant number of living regulation effects is not feasible with thermal effects. 
Enzymatic reactions and other molecular changes are mostly nonthermal, and 
their functions are mandatory for life. Thermal conditions are responsible for 
optimizing the nonthermal chemical reactions, and many biological processes  
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Figure 6. The heterogenic impact of mEHT () compared to homogeneous heating (). 
The percentage of apoptosis shows much higher temperature of the process than the 
measured 42˚C in the cell culture medium. (a) HepG2 [65], (b) U937 [64]. 

 
synergize thermal and nonthermal components [119]. RF radiation induces 
nonthermal effects [120] together with the well-known thermal one for conven-
tional hyperthermia treatments [121]. There is a large family devoted to vol-
tage-gating ionic control [122] [123], which has an also large subfamily of vol-
tage-gated calcium channels [124]. 

Even the thermally sensitive TRP channels also have nonthermal voltage de-
pendence [125], which is effective in different temperature ranges. The high val-
ue of the transition entropy of TRPVs [126] shows that the transition follows 
Eyring’s theorem [127]. This transition explains how the enzymatic reactions 
decrease the energy barrier with quantum-mechanical effects (e.g., tunneling 
[128]) and what mechanism is behind the reaction rate changes of catalyzes. The 
interdisciplinary applications [129] could use the quantum-mechanical consid-
erations [130] [131] of the transition process, making possible a first-order phase 
transition when only the entropy changes the overall reaction rate, and the tem-
perature remains constant when a new phase appears. The process is nonther-
mal, at least in its part. In this way, the large entropy in the TRPV transition al-
lows the nonthermal transition when the temperature is unchanged but opti-
mizes the complete process. The high entropy points the structural changes, 
which have a critical role in the nonthermal activity [132]. The probability of 
changes has a similar expression for temperature and electric field [133], which 
further supports the nonthermal activity. Notable, while the repetition of ther-
mal stimuli decreases the signal level [90], the repetition of the nonthermal 
chemical stimuli increases it [68]. 

The electric field produces such excitations, which is impossible with thermal 
conditions [21] [22]. A notable example showing the exceptional excitation abil-
ity of electromagnetic field is that using a broad-band (0.2 - 20 MHz) signal in-
creases the HSP70 expression [134] in such volume that to produce the same rise 
of HSP70 by temperature, the perturbation should have been 14 orders of mag-
nitude greater [135]. The electric field significantly modifies the cells [136], ma-
nipulates protein expressions, and induces extrinsic molecular pathways [137]. 
The modulated electric field’s vibrational effect, along with the associated elec-
tro-osmotic process, operates within the intracellular environment [138], poten-
tially triggering various processes within intracellular compartments. The pola-
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rization and polymerization may affect the cytoskeleton structure and the path-
ways that use it. The network of cytoskeleton forms and changes by the various 
signal transmissions in the cells. These polarizable parts of the cytoskeleton 
(their main components are the microfilaments, intermediate filaments, and 
microtubules, and their building blocks the tubulin dimers the actin subunits, 
and the fibrous subunits) are all interacting with external fields and are all capa-
ble of rapid growth or disassembly. The field-sensitive polymerization processes 
are the most basic of the mitotic rebuilding of the cell-structure of the newly 
born daughter cells. The membrane rafts incorporating thermosensitive TRPVs 
could considerably increase the Ca2+ influx to the cytoplasm by heating. The Ca2+ 
ionic balance has an important controlling function in homeostasis. It controls 
several processes in tumorigenesis [139]. It participates in gene transcription 
[140], cellular motility [141], invasion [142], cell-cycle regulation [143], and an-
giogenesis [144]. The balance between cell proliferation and apoptosis is tightly 
regulated by the influx of calcium ions Ca2+. The intracellular concentration of 
Ca2+ plays a crucial role in determining whether a cell undergoes division or 
apoptosis [145]. Several steps of the killing of cancer cells are Ca2+ dependent 
[146]. The cytosolic and mitochondrial Ca2+ overload strongly stimulates the 
apoptotic processes [147] [148], but, as is usual in complex processes, the low 
nM Ca2+ concentration may help the survival of malignant cells by promoting 
proliferation by lowering the membrane potential [149] [150] and increasing the 
malignant differentiation [151]. On the contrary, the rise of intracellular Ca2+ 
concentrations to μM may support apoptosis [152]. 

The regulation of various pathways by Ca2+ together with its concentration 
dependence, a temporal component has an important role in tumorigenesis 
[153]. The amplitude and duration of Ca2+ signals involved are different proin-
flammatory activation of B lymphocytes [154] by decoding its information of 
amplitude and duration. Amplitude modulation of the Ca2+ signal may produce 
positive or negative antigen response in gene activation of B cells [155] [156]. 

Bioelectromagnetic interactions make numerous molecular excitations and 
chemical changes, which thermal interactions cannot achieve [157]. For exam-
ple, the various intensities of electromagnetic signals make an entirely different 
activity of the hormone 5-hydroxytryptamine, which could even cause transepi-
thelial potential oscillation [157]. 

These nonthermal effects characterize the mEHT method [21] [22] and ap-
pear in all molecular changes made by thermal effects, even in the TRPV thermal 
sensors [158] and HSPs [159] [160]. The mEHT uses the gaining possibility of 
the cell membrane. According to in-silico models, the electric field-strength 
gain, which refers to the ratio of the induced field within a material compared to 
the externally applied field, is highest in the cell membrane [161]. Specifically, 
for frequencies up to a few tens of MHz, the gain remains approximately ≈ 5 × 
103 and follows a power-law decrease of 1/f as the frequency increases [161]. In 
more realistic tissue models, the membrane gain varies depending on the cell’s 
position within the tissue, but it never falls below 102 in tissue arrangements 
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[162]. In the case of cancer cells, while the intracellular gain is comparable to that 
of non-cancerous cells, the membrane gain in malignant cells is twice as high as 
that of their healthy counterparts [162]. 

The TRPV investigation of activating and deactivating potentials proves their 
voltage dependence [163] and that thermal conditions optimize voltage action 
[164]. In addition to heat and electric effects (like potential change or proton in-
fluence), the chemical effects (like capsaicin) and proinflammatory cytokines 
may activate the TRPV1 [165], which is upregulated in many cancer types [166]. 
The multiple influences make synergy [130] [167]. The multi-sensing behavior 
makes these channels critical for communication with the changes in TME. The 
voltage alone cannot wholly activate the TRPV1 channel [168]; the thermal 
component works for it in synergy, in the complexity of the membrane poten-
tial, ligand binding, mechanical force, and temperature [169]. 

An essential aspect of TRPs activity is its interplay with the cytoskeleton [103], 
which is based on electromagnetic interactions [170]. The role of the cytoskele-
ton in signal transduction and its connective role between the intra and extra-
cellular information exchange makes it especially important. The connecting 
structure of TRP and cytoskeleton allows Ca2+ independent signaling [171]. 
TRPV1 essentially regulates the dynamics of the cytoskeleton by colocalization 
and stable binding with microtubules when there it is resting. However, in an 
excited state, TRPV1 rapidly disassembles the microtubule polymers [169]. 

The microtubules of the cytoskeletal network have a polymer structure [172]. 
The loss of the polymerization order of the cytoskeleton probably causes the 
high motility of cancer cells [173] because it makes the cells especially soft and 
detachable [174]. The increasing motility induces high metastatic potential and 
high deformability [175]. The extracellular matrix (ECM) plays a role in the cel-
lular motility of cancer cells connected to its rigidity [176]. The heightened mo-
tility observed in cells is likely attributed to the loss of polymerization order 
within the cytoskeleton [172], resulting in increased cell softness and mobility 
[173]. 

The polymerization process follows a chain polymerization model known as 
Einstein’s polymer [177] [178]. However, this model is unable to account for 
multi-bonding processes where chemical bonds can form branches in tubulins, 
leading to the creation of various space-filling structures. The reorganization of 
the cytoskeleton also promotes the formation of multi-strand cases. Multi-strand 
structures have longer chains compared to single-strand structures due to their 
multiple free ends and energy centers, making them energetically less favorable. 
As a result, according to Boltzmann statistics, the concentration of multi-strand 
chains is lower than that of single-strand chains. There is a relationship between 
the polymer concentration [Mn] and the polymer length, expressed in terms of 
the number of monomers, denoted as “n” as 

[ ] 0

n
n

nM e
−

∝                           (1) 
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where n0 is constant. Consequently, the high concentration has shorter poly-
mers. 

The modulation employed in modulated electro-hyperthermia (mEHT) ampl-
ifies the effective electric field, thereby supporting the polymerization and reor-
ganization of the cytoskeletal network. When using 1/f fractal noise modulation 
[15] [44] [45], this effect becomes more potent due to the continuous spectrum 
of frequencies present in the non-discrete noise signal. The application of noise 
modulation bears a resemblance to the harmonizing method [179], which is 
gaining recognition in the field of physiology [180]. In cancer cells, cytoskeletal 
polymerization holds particular significance, as the destabilized and incomplete 
polymerization of the cytoskeleton contributes to increased cell motility and fa-
cilitates metastatic spread. 

The influence of the modulated electromagnetic field on the cytoskeleton can 
also involve voltage-sensitive phosphatase (VSP) [181]. Field-controlled phos-
phorous hydrolysis mediated by VSP could play crucial roles in cytoskeletal re-
structuring and exhibit resonant-type behavior. VSP, a macromolecule with a 
voltage sensor and cytoplasmic phosphatase domains [182], regulates the influx 
of calcium ions Ca2+ into cells [183]. VSP is sensitive to external fields and oper-
ates within the cytoplasm, allowing the transmission of external field effects to 
the cell interior. This process generates biochemical signals that may contribute 
to intracellular organization. Through these signals, it is possible to generate bi-
ochemical cues within the cytosol that can control internal processes, most likely 
including cytoskeletal polymerization. The fundamental mechanism involves 
membrane depolarization leading to phosphoinositol hydrolysis [184]. This is a 
reversible decomposition reaction that the external electric field may modify. 

Phosphorylation plays a crucial role in regulating the activity of microtu-
bule-associated proteins (MAPs) within the cytoskeletal network. The activation 
or deactivation of phosphorous groups controls the functioning of MAPs. Spe-
cifically, the phosphorylation of MAPs destabilizes microtubules by weakening 
the internal bonds that contribute to their structural stability [185]. The mem-
brane potential of proliferative cells has a lower absolute value than that of 
quiescent neighbors [186]. Due to this, the malignant cells present low mem-
brane potential [187]. Consequently, the VSPs influence the cytoskeleton in the 
permanently depolarized cancerous cells. The low level of cytoskeletal polyme-
rization supports the proliferation and mobility of malignant cells. 

The phosphorylation of MAPs not only affects microtubule stability but also 
plays a crucial role in the proper functioning of various ion channels, transpor-
ters, and vesicle movement within the cell. This mechanism enables the active 
modulation of intercellular electrolyte levels and protein connections in re-
sponse to external electric fields. The dynamic stability of the system is governed 
by the Le Chatelier principle: a sudden change in membrane potential triggers 
phosphorylation, leading to an increase in potassium transport and the simulta-
neous suppression of sodium transport. This intricate process aims to restore the 
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original membrane potential and effectively interacts with the cell proliferation 
process. The phosphorylation of VSP is energized by ATP. This energy consump-
tion decreases ATP concentration, which increases the depolarization of the cell 
membrane by suppressing the other, ATP-dependent active membrane transport 
of ions. The VSP has a role in anaerobic glycolysis and cancerous transformation 
when permanent stress conditions massively demand ATP. These conditions may 
activate the oncogenes, inhibiting apoptosis and producing high concentrations 
of stress proteins. This situation combats normal homeostatic regulation, so it is 
ideal for developing cancer. 

The electric field polarizes the cytoskeleton’s fibers [188], so it reorganizes the 
cytoskeleton in static (direct current, DC-field) [189] and dynamic (alternating 
current, AC-field) conditions [188]. The AC has the greatest influence at around 
1 Hz [190], while in amplitude modulation of high frequency, it is optimal around 
16 Hz (Adey window) [191]. This phenomenon exhibits resonant effects that can 
be described by stochastic resonance [192]. It assumes a bistable two-position 
state of voltage-sensitive phosphatase (VSP), like voltage-gated ion channels 
[193]. In the presence of a DC electric field, the membrane polarizes in opposite 
directions at different sides of the cell relative to the field vector. One side be-
comes hyperpolarized while the opposite side becomes depolarized. Depolariza-
tion triggers phosphorous hydrolysis, initiating cytoskeletal formation on the 
hyperpolarized side. However, in the presence of an AC electric field, both sides 
exhibit stochastic resonance and become hyperpolarized, leading to cytoskeletal 
reorganization. In the belt region perpendicular to the DC field, where there is 
no resonance, phosphorylation proceeds normally, creating a general phosphor-
ous gradient in this region. The reorganization of the cytoskeleton is driven by 
specific forces, resulting in a pattern perpendicular to the pattern induced by the 
DC field. 

The AC electric field induces resonance-like reorganization of the cytoskele-
ton, with a distinct peak at a specific frequency dependent on thermal noise 
[193]. It has been rigorously demonstrated that amplitude-modulated carrier 
frequencies can generate stochastic resonance, leading to various biological ef-
fects [193]. This phenomenon selectively stimulates enzymatic reactions, acti-
vates and deactivates voltage-gated ion channels, and reorganizes cytoskeletal 
polymerization processes [43] [45]. Moreover, the amplitude-modulated carrier 
can modify complex processes [44]. The modulating signal alone may also pro-
duce resonances. However, the requested low frequency alone, due to the im-
pedance barrier of the skin, does not penetrate deep enough into the body. The 
0.1 - 15 MHz high frequency has enough penetration to the human body and, as 
a carrier, delivers the signal for stochastic resonances. The optimal carrier fre-
quency, as used in mEHT, may select the cancer cells with β, δ frequency disper-
sions [119] [194] and cause definitive apoptotic cell destruction of malignant 
cells [23]. 

Another approach is when the cytoskeleton polarization is optimized without 
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modulation in high frequency (~0.2 MHz). These tumor-treating fields (TTF) 
target the cytokinetic “neck” with nonthermal polarization effects [195]. The 
electric field generated by TTF (Time-varying Tumor Treating Fields) exerts an 
influence on the polarizable microtubules and actin fibers within the cell. It has 
the potential to reorient these structures and, importantly, can impede the po-
lymerization process of the cytoskeleton and hinder the assembly of the mitotic 
spindle [105]. The process does not use considerable SAR as mEHT does to ar-
rest the proliferation by targeting the cytokinetic neck. This difference affects the 
treatment protocol. The TTF must be applied 18 hours/day for months, while 
mEHT with thermal optimizing has only 10 - 12 treatments for 60 min each. 

4. Immune Effects 

Immunogenic cell death is one of the main advantages of mEHT [196], which 
produces damage-associated molecular pattern (DAMP) [197] by extrinsic exci-
tation of apoptotic pathways through various channels, including the TRAIL-R2 
(DR5) death receptors [198] with the complex interaction of FAD + FASS mo-
lecules [41] [199]. The concomitant immune-stimulative treatments with den-
dritic cells [33] [66] and another stimulator [200], with the applied bioelectro-
magnetic forces by modulated RF signal [19] [44] [45] [201], improve the im-
munogenic processes. The immunogenic effects represent the oncology trend, 
especially oncological hyperthermia oncologic hyperthermia [18]. 

Due to the missing apoptosis, intensive proliferation is the assertive behavior 
of cancer. The mEHT, with its bioelectromagnetic excitations, promotes a mas-
sive preference for apoptosis against proliferative survival [23] [38] [202] [203]. 
Multiple excitable transmembrane proteins exist in the malignant cells (Figure 
7(a)). The excitation could be thermal or nonthermal, but dominantly the syn-
ergy of the two, when the thermal process ensures the optimal conditions for the 
nonthermal excitation. The apoptosis may go through various signal pathways 
(Figure 7(b)). 

The apoptosis uses an extrinsic pathway through Caspase-8 (Cas-8), an in-
trinsic pathway (Cas-9) finally, with Cas-3, to the programmed cell death 
(Figure 8). The caspase-independent way through apoptosis-inducing factor 
(AIF) is also activated, making it possible to execute the apoptosis when the cas-
pase paths are blocked. 

When one pathway is blocked by the malignant evasion of apoptosis, the oth-
er pathways may completely substitute the missing line. 

The elevated levels of BAX observed in the affected cells [205] [206] further 
support the apoptotic effect induced by the treatment. The increased presence of 
BAX suggests the activation of apoptotic pathways and reinforces the notion that 
the treatment is triggering programmed cell death in the affected cells. The se-
lective energy absorption of mEHT produces heterogenic membrane tempera-
ture, intensively heating the transmembrane proteins, including the TRPV 
channels. The TRPV promoted Ca2+ influx massively overloads the intracellular  
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Figure 7. The critical protein involvements in apoptosis by mEHT. (a) The caspase involvements relative to the untreated samples 
(HepG2 cell-line in vitro [65]). (b) The AIF percentages in the samples from in vivo xenograft experiments for A2058 melanoma 
[204] and HT29 colorectal carcinoma [205] tumors. 
 

 
Figure 8. Forming apoptotic signals. (a) Multiple excitable transmembrane proteins accept the thermal and nonthermal effects 
from mEHT. (b) Multiple signal pathways are available, ensuring that a block in one can not terminate the apoptotic process. 

 
conditions with Ca2+ concentration. The thermal and nonthermal synergy of 
mEHT ensures the requested apoptotic level of Ca2+ overload. 

The thermal and nonthermal stresses imposed on homeostatic control typi-
cally stimulate the production of chaperone stress proteins. The chaperoning 
HSPs are exhausted by mEHT and cannot meet the chaperone function to pro-
tect the cells against apoptosis [207]. A part of HSP70s is secreted on the mem-
brane [119], and this localization [208] promotes apoptosis [209] and has a vital 
role in the membrane “fluid’ to keep it functional [210]. 

While cancer has strong proliferation, it is weak in its loneliness. The cellular 
autonomy is a weak side, which offers a correction possibility. Immune surveil-
lance is critical in attacking the weakness of malignancy and guaranteeing ho-
meostatic balance. The counterbalance of the evasion of immune effects by ma-
lignant cells needs local and systemic activity, which rebuilds the standard 
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healthy conditions. The autonomy of malignant cells shows the breaking of ad-
herent and junctional connections with the neighboring cells, substantially mod-
ifying the homeostatic electrolyte composition and concentration in the TME 
[26], which offers an electric selection factor [211] [212]. The reorganization of 
the cytoskeleton by nonthermal electric polarization of mEHT promotes the 
form (β-catenin + E-cadherin) complexes [65] [213], giving a possibility to rees-
tablish the lost adherent connections and fix the cancer cells in their position, 
block the dissemination. 

Immune control creates an additional possibility to block the cellular auton-
omy of malignant cells by destroying the freely moving cancer cells. The great 
and unique advantage of tumor-specific immune activity is its ability to find and 
eliminate distant micro and macro metastases locally and systemically. The fre-
quently applied CAR-T method has the same purpose [214], preparing tu-
mor-specific T-cells from the patient’s blood sample. Immune effects integrate 
the TRP channels for multiple purposes [215]. All immune cells, including NK 
cells [216], T-cells [217], and dendritic cells [218]), have TRPV1 channels with 
significant functions. The CD34+ hematopoietic stem cells express TRPV2, 
which is also expressed in granulocytes, monocytes, and CD56+ natural killer 
cells and orchestrates the Ca2+ signals in CD4+ and CD8+ T-cells and CD19+ B 
lymphocytes [219]. Moreover, TRPV1 modulates macrophage-mediated res-
ponses [220]. 

The adaptive immune reaction was measured, detecting significant develop-
ment of DC cells (S100) for maturation (antigen-presenting) CD3+ CD4+, CD8+ 
T-cells and suppressing Treg cell-population (Foxp3) (Figure 9) [33]. 

The TRPV1 and TRPV4 channels have been implicated in T-cell activation 
and the production of effector cytokines. These channels play a role in sup-
pressing the release of tumor necrosis factor (TNF) and interleukin-2 (IL-2), 
which are important immune signaling molecules involved in inflammation and 
immune responses [217]. Furthermore, the TRP channels have a critical role in 
controlling phagocytosis, the production of chemokines and cytokines, and cell 
survival [221]. 

The HSPs are not less important in cell fate and immune activity than TRPs. 
The thermal and nonthermal stress combination overloads the malignant cells  

 

 
Figure 9. The relative development of the critical immune-surveillance cells in SCCVII 
allograft after mEHT [33]. Measured with (a) flow cytometry and (b) optical density. 
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with chaperoning HSPs, which have much more function than only chaperon-
ing, depending on their position in the cell [210]. To initiate the apoptotic 
process, the mitochondrial heat shock proteins (mHSPs) must first bind to a 
complex formed by tumor peptides [222]. The membrane-localized HSP70s 
[223] are mainly localized in the rafts [224] and activate the NK cells in the im-
mune response [204] [225]. 

A part of the HSPs may leave the cells and become extracellular [226]. Their 
importance in building up an appropriate immune response is crucial. These re-
leased molecules deliver tumor-specific information for antigen presentation to 
develop antitumoral immune reaction [115], which process attracts much atten-
tion in studies of the overall immune reactions of the bio-systems [227] [228]. 
The antigen-presenting cells (APCs) develop the tumor-specific CD8+ killer and 
CD4+ helper T-cells, which are delivered by the bloodstream and combating with 
the cancer cells in the entire body (abscopal effect) [229]. The local treatment 
developed a whole-body effect by mEHT [230] (Figure 10). The in-situ and 
real-time production of tumor-specific immune activity is the advantage of 
mEHT [231]. 

Significant development of the DAMP molecules characterizes the results of 
mEHT treatment. The abscopal effect of distant, untreated tumors was observed 
when immune stimulation was added to the protocol (Figure 11) [200]. 

The thermal and nonthermal effects work in synergy to produce the in-situ 
immune effects with mEHT. In the thermal aspect, the relative mild tissue tem-
perature is crucial for immune development. The enhanced temperature eases 
the enzymatic processes and increases the molecular reaction rate, but a higher 
temperature than 40˚C blocks the activity of the immune cells [232] and so does 
not allow the real-time processes for APC prepared by immunogenic cell death 
[231]. Furthermore, the > 40˚C temperature paralyzes the NK cells to attack the 
cells with the marks of the HSP70s on their membrane [233]. The immune cells 
may restore their activity with elapsing time [234] or by bloodstream replace  

 

 
Figure 10. The thermal and nonthermal processes develop immunogenic cell death. The genetic information 
used by antigen-presenting produces tumor-specific T-cells. In this way, the adaptive immune machinery 
starts a systemic attack of malignant cells all over the system. 
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Figure 11. Development of DAMP molecules in colorectal allograft preclinical experiment of C26 tumor [22, 200]. (a) 
The sham treatment and untreated tumor on the same animal had treatment at a distant location. (b) Development of 
the DAMPs in the treated and untreated tumors on mice. (c) Development of DAMPs in treated and untreated locations 
when immune stimulants were added to the protocol. 

 
them from the non-treated parts of the body, but the real-time processes with 
the simultaneous reactions vanish. The heterogenic heating of mEHT with the 
high temperature of rafts and simultaneously mild of the tumor microenviron-
ment (TME) solves the contradictory demands of the hyperthermic temperature 
range and the immune requirements. 

The nonthermal processes in mEHT are also essential for the abscopal effect. 
The excitation of the TRP channels sensitizes the immune lymphocytes [215] 
and promotes apoptosis [101], helping with the ICD processes. The substantial 
nonthermal stress exhausts the evasion of apoptosis in cancer cells and produces 
transmembrane HSP70, which also supports apoptosis [209]. It activates ligands 
for NK cells [208], forming an innate immune response [235], especially in tu-
mor cells [223]. The well-forming temporal order by mEHT of membrane secre-
tion calreticulin, the extracellular release of HMGB1 and HSP70 developing the 
APCs for an active adaptive immune response [231]. 

Numerous preclinical studies prove the specialties of mEHT (Figure 12). A 
recent review summarizes the results [236]. 

Based on the regulatory conditions the mEHT method received the necessary 
certifications and numerous clinical trials were performed in different hospitals 
in various countries (Figure 13). Some protocols allow geriatric and pediatric  
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Figure 12. Some preclinical experiments with mEHT method. The numbers refer on the 
references: 1. = [42], 2. = [237], 3. = [238], 4. = [94], 5. = [202], 6. = [198], 7. = [239], 8. = 
[65], 9. = [207], 10. = [203], 11. = [240], 12. = [64], 13. = [207], 14. = [206], 15. = [204], 
16. = [32], 17. = [205], 18. = [66], 19. = [241], 20. = [200], 21. = [33], 23. = [205]. 

 
considerations, too. A recent review summarizes the results up to 2019 [242]. 

5. Conclusion 

The modulated electro-hyperthermia focuses on the nonthermal and thermal 
effects synergy when the thermal component provides optimal conditions for the 
nonthermal electric molecular excitation. In this review, we concentrate on the 
role of the ionic channels as TRPs, VSPs, and voltage-gated channels in the se-
lective antitumoral processes. These transmembrane compartments primarily  
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Figure 13. The clinical studies with mEHT. It contains various levels of evidence including case reports and phase 
II/III trials. The numbers refer to the references: 1. = [243], 2. = [244], 3. = [245], 4. = [246], 5. = [247], 6. = [248], 
7. = [249], 8. = [250], 9. = [251], 10. = [252], 11. = [253], 12. = [254], 13. = [255], 14. = [256], 15. = [257], 16. = 
[258], 17. = [259], 18. = [260], 19. = [261], 20. = [262], 21. = [263], 22. = [264], 23. = [265], 24. = [266], 25. = [267], 
26. = [268], 27. = [269], 28. = [270], 29. = [254], 30. = [271], 31. = [272], 32. = [273], 33. = [274], 34. = [275], 35. = 
[276], 36. = [277], 37. = [278], 38. = [20]. 

 
promote the Ca2+ and the H + influxes, interact with the cytoskeleton and are in-
volved in the apoptotic signal pathways. The DAMP forming TRAIL-FAS-FADD 
excited extrinsic apoptotic signal combined with the Ca2+ induced apoptosis en-
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sures a “gentle” distortion of the malignant cells, which, together with the fully 
functioning other DAMP molecules, uses the membrane secreted and extracel-
lularly released HSPs with the exhaustion of their intracellular chaperoning to 
form APCs. The innate and adaptive tumor-specific immune activity appears by 
the membrane HSP70 and the APC-produced killer and helper T-cells. The 
bloodstream-delivered T-cells attack the cancer cells all over the body (abscopal 
effect), so the immunogen processes transform the local mEHT to systemic. 
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