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Abstract 
A hybrid model is proposed in this study to predict rectal tumour response 
during radiotherapy treatment. As the oxygen partial pressure distribution 
(pO2) is a data which is naturally represented at the microscopic scale, we firstly 
estimate the optimal pO2 distribution using both a diffusion equation and a 
discrete multi-scale model (that we proposed in a previous study). The aim is to 
use the effectiveness in algorithmic complexity of the discrete model and its 
multi-scale aspect in this work to estimate biological information at cellular 
scale and then construct them at macroscopic scale. Secondly, the obtained pO2 
distribution results are used as an input of a biomechanical model in order to 
simulate tumour volume evolution during radiotherapy. FDG PET images of 21 
rectal cancer patients undergoing radiotherapy are used to simulate the tumour 
evolution during the treatment. The simulated results using the proposed hy-
bride model, allow the interpretation of tumour aggressiveness. 
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1. Introduction 

The simulation of tumour growth and tumour response to radiation therapy 
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remains a major research topic due to the overall impact of cancer [1] [2]. Ac-
cording to the World Health Organization (WHO), cancer burden rises to 18.1 
million new cases and 9.6 million deaths worldwide in 2018. In this context, re-
search on the treatment of malignant tumours is obviously a major concern and 
requires the mobilization of multidisciplinary research communities. In the lite-
rature, a wide series of mathematical or computational approaches to tumour 
growth modelling is proposed [3]-[8]. Such studies are generally theoretical and 
rarely tackle the individual specificities of real patients. Therefore, building rele-
vant relationships between mathematical models and actual data like morpho-
logical or anatomical images corresponding to standard clinical use remains a 
real challenge. In addition to this macroscopic aspect, the microscopic scale of 
the tumour microenvironment should also be taken into account. For example, 
partial oxygen pressure (pO2) is a very important local factor to consider when 
simulating tumour growth [9] [10]. Unfortunately, reliable and precise data 
concerning local pO2 remain difficult to obtain for a given patient. The absence 
of such information makes it difficult to realistically evaluate simulation models. 
A potential solution is to build an autonomous model which calculates the oxy-
gen partial pressure from available information and then uses it as an input for 
the main model, i.e. the one which predicts tumour growth. In the literature, 
several approaches to pO2 modelling exist both at the microscopic scale [11] [12] 
and macroscopic scale [13]. Partial oxygen pressure is also of crucial importance 
for radiotherapy outcomes since hypoxic tumours, with a low level of oxygen, 
are known to be more resistant to radiation than non-hypoxic tumours. Ideally 
the dynamics and the heterogeneity of pO2 distribution inside the tumour must 
be manageable. Furthermore, the impact of pO2 and the response to radiation 
may differ according to the tumour cell types. The behaviour of the different 
types of tumour cells, either proliferative, hypoxic or quiescent, can be distin-
guished by the way they manage pO2. In this context, taking oxygen partial 
pressure heterogeneity into consideration in tumour growth modelling during 
treatment is important, because the microenvironment has a significant impact 
on the efficacy of radiotherapy. Generally, pO2 modelling does not take into ac-
count the dynamic nature of his evolution during the entire treatment [14], it is 
considered constant across the whole tumour, or not taken into account at all 
[15]. We previously described a multi-scale approach allowing to take images 
and cellular cycle phases into account but pO2 was considered constant inside 
the volume of interest and the tumour surface evolution was not addressed [16]. 
Typical cancer treatment generally consists of a combination of surgery, radio-
therapy and chemotherapy. When radiotherapy is associated with the treatment, 
it is sometimes performed to reduce the size of the tumour before surgery [17]. 
After surgery, radiotherapy can still be used to reduce local recurrence risks. 
Surgery obviously requires careful planning, and indications leading to the least 
complicated therapeutic strategy are welcome. For this purpose, morphologic 
and metabolic images are used in order to get some characteristics of the tumour 
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without necessarily going through biopsies. Furthermore, a CT scan (x-ray com-
puted tomography) and FDG PET images (fluorodeoxyglucose positron emis-
sion tomography) are acquired before radiotherapy in order to delineate target 
and organs at risk, and also for optimizing treatment planning through relevant 
ballistics. In cases of potential tumour evolution during radiotherapy, additional 
images are acquired in order to adapt treatment according to the new size or 
shape of the tumour. In this context, the main objective of this study is to build a 
numerical tool able to predict the evolution of the tumour during radiotherapy 
by using images of the patient as an input. The proposed methodology is built 
on our previously described multi-scale and discrete framework [16]. In this new 
approach, a dynamic and heterogeneous map of pO2 is generated and combined 
with a system of partial differential equations for modelling the tumour volume 
evolution. This hybrid process is evaluated using real FDG PET images acquired 
at different moments of radiotherapy in 21 rectal cancer cases. 

2. Materials and Methods 
2.1. Model Description 

The new dynamic model for tumour response to radiotherapy that is proposed 
in this study comprises two main steps. As a first step, a diffusion equation is 
used to model the pO2 evolution in the tumour at each time step [13] [18]. This 
equation is incorporated into a previously described multi-scale framework in 
order to take the personalized images of the patient into account [16]. As a 
second step, an advection reaction equation is proposed in order to predict the 
tumour volume evolution during radiotherapy treatment. These two steps com-
pose the proposed hybrid approach and are described separately in the following 
sections. 

2.1.1. pO2 Evolution Modelling 
Oxygen transport in tissues via blood vessels obviously depends on vessels 
structure but also on other biological constraints linked to the tumour beha-
viour. In the present study, Equation (1) was chosen to locally model the pO2 
evolution [18]: 

( ) ( )2 2
2 2 max

2

2 m
cap

h

PpO pOp pO D pO c
t R pO P

ρ
∂

= − +∇ ⋅ ∇ − ⋅ ⋅
∂ +

      (1) 

where, ρ  represents the cell density in a voxel, with: 

• ( )2
2 m

cap
P

p pO
R

− : the source term, mP  is the blood vessels permittivity and  

R the radius;  
• ( )2D pO∇⋅ ∇ : the diffusion term, D is the diffusion coefficient; 

• 2
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pOc
pO P

⋅
+

: the oxygen consumption per unit cell density, maxc  is the 

maximum consumption of pO2, and hP  is the pO2 at max

2
c
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In order to provide personalized simulation according to patient specific data 
coming from images, a parameter controlling the source term was introduced. 
By denoting µ  this parameter, pO2 distributions for a given patient are ob-
tained by solving Equation (2). The values of the fixed parameters are given in 
Table 1. 

( ) ( )2 2
2 2 max

2
cap

h

pO pOp pO D pO c
t pO P

µ ρ
∂

= − +∇ ⋅ ∇ − ⋅ ⋅
∂ +

        (2) 

Since pO2 consumption is a process that takes place at the cellular scale, a 
multi-scale approach is used in order to estimate the optimal distributions from 
macroscopic PET image data. The diagram shown in Figure 1 describes the op-
erating steps of this multi-scale stochastic methodology, but full details can be  
 
Table 1. List of parameters used in this work. 

Parameter symbol Value and reference 

Diffusion coefficient D  2 × 10−9 m2·s−1 [11] 

Maximum consumption of pO2 maxc  1 mmHg s−1 [11] 

pO2 at max 2c  hP  2.5 mmHg [11] 

pO2 in the arterie capP  40 mmHg [20] 

Radio-sensitivity coefficient α  0.044 Gy−1 

Radio-sensitivity coefficient β  0.089 Gy−2 

Hypoxic threshold 2
hpO  fixed at 5 mmHg [3] 

 

 

Figure 1. Diagram showing all the processes involved in the stochastic model, 0 , ft t    is 

the time interval between the beginning and the end of a cell cycle. In this case 28 hft = . 
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found in [16]. The model is based on transitions between the successive phases 
of the cellular cycle. The total number of active tumour cells ( cellN ) inside a 
voxel of the image is directly calculated from the voxel intensity ( vi ). Then, the 
number of tumour cells in each cellular cycle phase (

1 2 0
, , , ,G S G M GN N N N N ) are 

deduced using a precomputed distribution ( λ ). 

2.1.2. Estimation of the Optimal pO2 Distributions 
Optimal pO2 distributions are estimated by minimizing a cost function which 
depends on the number of cells given by simulated and real data. These numbers 
are calculated from clinical and simulated FDG PET [19] images obtained at the 
8th day following the beginning of radiotherapy. The simulated number of cells 
was derived from the multi-scale stochastic model. Let us now describe the op-
timization algorithm which consists of five steps: 

1) an acceptability criterion is defined by means of a cost function F (Equation 
(3)); for every voxel index ( ), ,l n m : 

( )( ) ( )
( )

( )
( )

2 2

8 15
1 2

8 15

, , , ,
, , , 1 1

, , , ,

s s

c c

N l m n N l m n
F P P l m n

N l m n N l m n
   

= − + −      
   

      (3) 

where, 8
sN  and 15

cN  are the total numbers of tumour cells calculated respec-
tively from simulated and clinical images. 1P  and 2P  are pO2 distributions at 
day 0 and at day 8 respectively;  

2) The capillary pressure is initialized at 0t t=  ( 0t  corresponds to day 0) as 
40 mmHgcapP =  (pO2 in the arteries [20]);  

3) Equation (2) is solved at each time step using finite difference method;  
4) pO2 distributions obtained in 3) are used as an input for the discrete model 

[16]; Then the results are used to calculate the cost function 1);  
5) If the result of the cost function is less than a set threshold, the value of the 

parameter µ  and the pO2 distributions are saved, and the algorithm is stoped. 
Otherwise, the parameter µ  is modified using simulated annealing method 
[21] and the algorithm is resumed from step 2.  

The final optimal pO2 maps are used as input of a biomechanical model that 
we describe now. 

2.1.3. Description of the Biomechanical Model 
We denote by 3⊂A R  an image containing a patient tumour at time [ ]0,t∈ ϒ , 
where ϒ  is the time between the beginning of the first image acquisition (be-
fore treatment) and the last acquisition (15 days after the beginning of the irrad-
iation for 17 patients, or after radiotherapy and just before surgery for 4 pa-
tients). Then, we denote by ( )tΩ , the tumour zone in the image A  (See Fig-
ure 2). ( )tΩ  is given by the set of standardized uptake values (SUV) calculated 
from FDG PET images [22]: 

( ) ( ) ( ){ }, , / , , , 0t x y z x y z tρΩ = ∈ >A                (4) 

In this study, it is assumed that the tumour tissue is composed either of proli-
ferative cells, quiescent cells, or necrotic cells [23] [24]. These cells densities  
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Figure 2. An example of data obtained from clinical images: (a) before the beginning of 
treatment 0A , (b) after one week of treatment 8A  and (c) after two weeks of treatment 

15A . The corresponding tumour zones are respectively ( )0tΩ , ( )8tΩ , ( )15tΩ . 
 
are denoted by ( ),p tρ x , ( ),q tρ x  and ( ),N tρ x  respectively,  
( ( ) ( ), ,x y z t= ∈Ωx ). They satisfy an advection-reaction-diffusion equation [15] 
[25]: 

( ) ( )l
l lSr Tr

t
ρ

ρ ρ
∂

+∇ ⋅ = +∇ ⋅ −
∂

K J                (5) 

where, , ,l p q N=  and: 
• Sr is the modelling tumour cells natural death and birth phenomena;  
• ∇⋅J  models migratory movements; with ( ) lD ρ= ∇J x , D is the diffusion 

coefficient;  
• T models the cell death caused by radiotherapy;  
• ∇⋅  is the divergence operator. lρ= ⋅K v  is the physical flow given by the 

system advection (all cells have the same advective velocity v ). 
Since rectal tumours are solid tumours, we assume that there is no migratory 

phenomenon caused by cells movement. Therefore, J  in Equation (5) vanish-
es. The only cell movements considered are the movements caused by the tu-
mour volume variation. The source term Sr is modelled by a logistic function: 

( ) ( )2 1 l
l lS pO

ρ
ρ ζ ρ  = − Φ 

                   (6) 

with, 

( )
( )2 2

2

1 tanh

2

hpO pO
pOζ σ

+ −
= ⋅                 (7) 

where, 0σ >  is the intrinsic growth rate, Φ  is the maximum capacity of a 
voxel. 2

hpO  is the hypoxic threshold and tanh represents the classical hyper-
bolic tangent function. The term ζ  gives a distinction between proliferating 
and quiescent cells, and was inspired by [26]. Cells survival probability after ir-
radiation is given by the time-dependent linear quadratic model [27]. 

( )2 2 2exp 1SF pO d pO d pOβα ι
α

  = − ⋅ ⋅ + ⋅ ⋅ ⋅  
  

          (8) 
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where, ι  is an adjustment parameter of radiotherapy d accumulation while α  
and β  are classical radio-sensitivities parameters. Thus, tumour cells densities 
killed by irradiation are modelled as: 

( ) ( )( )21l lT SF pOρ ρ= − ⋅                       (9) 

In this study, a macroscopic representation of the oxygen partial pressure in 
the tumour is considered. Indeed, according to the value of the pO2 in the voxel, 
for methodological reasons, it exists either a density of proliferating and necrotic 
cells, or only a density of quiescent and necrotic cells. After normalization, we 
obtain the following Relation (10): 

( ) ( ) ( ) ( ), , 1 or , , 1p N q Nt t t tρ ρ ρ ρ+ = + =x x x x            (10) 

As one can notice, Equation (5) is not closed because it has two unknown va-
riables: cell density and velocity v  ( lρ= ⋅K v ). To close this equation, it is as-
sumed that tumour environment is isotropic and porous, allowing to use Darcy’s 
law: 

= −∇Πv                             (11) 

where, Π  represents the local pressure. Based on the previous descriptions, 
tumour cells densities evolution equation is given by ( { },p qρ ρ ρ∈ ): 

( ) ( )( ) ( )( ) ( )( )
( )

( ) ( )

, , , ,

0

, ,
t N N

t t S t T t

t t

ρ ρ ρ

ρ ρ

∇ ⋅ = −
∂ +∇ ⋅ =
 = −∇Π

v x x x x

v

v x x

              (12) 

The determination of pressure Π  will lead to the knowledge of v  allowing 
to close the system (12). By summing the first two equations of this system and 
by using (10), we obtain: 

( ) ( )S Tρ ρ∇ ⋅ = −v                         (13) 

Then by replacing v  by its expression given by (11) in (13), we obtain: 

( ) ( )S Tρ ρ−∆Π = −                         (14) 

The system (15) summarizes all the equations needed for the simulation: 

( ) ( ) ( )( ) ( )( ) ( )( )
( )

( ) ( )
( ) ( )

( )
( ) ( )0

, , , , ,

0

, ,

, 0

,0

t

t N N

t t t S t T t

t t

S T

t

ρ ρ ρ ρ

ρ ρ

ρ ρ

ρ ρ

∂ +∇ ⋅ = −

∂ +∇ ⋅ =


= −∇Π

−∆Π = −
Π =
 =

x v x x x x

v

v x x

x

x x

       (15) 

2.2. Simulation of the Biomechanical Model 
2.2.1. Meshing and Simulation Algorithm 
For simulation purposes we used a finite volumes based method and a 3D carte-
sian grid [ ] [ ]0, 0, 0,x y zI I I × ×  , where xI , yI  and zI  are voxels numbers in 
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the x, y and z directions, respectively (see Figure 3). This grid corresponds to the 
distribution of cells densities in the SUV medical images. The simulation of the 
first equation in system (15) was performed by using the Strang splitting method 
[28] [29] and then by determining the fields of proliferating and quiescent cells 
densities. For this latter purpose, Equations (16) and (17) are simulated: 

( ) ( ) ( )( ), , , 0t t t
t
ρ ρ∂

+∇ =
∂

x x v x                  (16) 

( ) ( )( ) ( )( )d , , ,
d

t S t T t
t
ρ ρ ρ= −x x x                 (17) 

In practice, the two equations above are simulated by running the following 
algorithm: 

1) Equation (14) is used to determine the pressure field Π ; 
2) Equation (11) is used to compute the velocity field v , knowing the pres-

sure field Π ; 
3) Proliferating ( pρ ) and quiescent ( qρ ) cells densities are computed by si-

mulating Equations (16) and (17); 
4) If necessary, necrotic cells densities were computed as follows:  

1N p qρ ρ ρ= − − .  
The discretization and numerical schemes used are presented in the Subsec-

tion 6.1. 

2.2.2. Evaluation of the Model 
The proposed model (Equation (15)) contains three parameters: σ , Φ  and ι , 
which are analyzed using Sobol sensitivity indices [30]. 

The tumour volume at time t is calculated by: 

( ) ( ) ( ){ }/ , 01 dtt
V t ρ >Ω

= ∫ x x x                       (18) 

where, ( ){ }/ , 01 tρ >x x  is the indicator function defined on ( ){ }/ , 0tρ >x x . 

The correlation formula for clinical and simulated volumes comparison is: 

( )% 1 100s c

c

V V
Corr

V
 −

= − ⋅ 
 

                   (19) 

where, Corr  is the correlation result, sV  and cV  are the simulated and clin-
ical volumes, respectively. 
 

 
Figure 3. Meshing of the study domain. 
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3. Results 

A clinical database containing 17 patients is used to evaluate the proposed mod-
el. First, optimal pO2 distributions are estimated using the diffusion equation 
and the stochastic multi-scale model, as explained above. Second, the obtained 
pO2 results are used as an input to the biomechanical model in order to simulate 
tumour volume evolution during radiotherapy. FDG PET images are used for 
both the pO2 estimation and the tumour volume evolution for each patient. 

3.1. Estimation of the pO2 Distributions 

The specific data for patient 5 and 12 are given as examples of obtained results. 
For these two patients, values for the parameter µ  are 0.13 and 0.8 respective-
ly. The distribution of oxygen partial pressure over time is given in Figure 4 and 
Figure 5. In these figures, (a) and (c) show a cross-section of the pO2 images at 
day 8 and day 15 after the beginning of irradiation; (b) and (d) are histograms 
over the whole volume of each of these pO2 images. The estimation of pO2 dis-
tributions for the whole set of patients is shown in Table 2. From this table one 
can see that oxygen partial pressure is increased for almost all patients after one 
week of treatment. This is an expected result but a validation cannot be put for-
ward in the absence of a real pO2 measurement. Nevertheless, the results suggest 
that the evolution of pO2 should be taken into account for the tumour growth 
simulation, supporting published data [31]. 
 

 
Figure 4. (a) and (c) sections of pO2 distribution images, obtained at the 8th and 15th days, 
(b) and (d) histograms of these images for the patient 5 example. 
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Figure 5. (a) and (c) sections of pO2 distribution images, obtained at the 8th and 15th days, 
(b) and (d) histograms of these images of the patient 12 example. 
 
Table 2. pO2 optimal distributions results, at 8th (day 8) and 15th days (day 15) after the 
start of treatments. 28pO  and 215pO  are the pO2 average values, respectively at the 8th 
and 15th days. 

Patient # day 8 28pO  day 15 215pO  

1 21.863 6.448pO≤ ≤  4.525 
22.186 10.480pO≤ ≤  6.787 

2 21.267 6.157pO≤ ≤  3.59 
20.386 11.548pO≤ ≤  6.886 

3 22.198 5.284pO≤ ≤  3.688 
23.027 11.422pO≤ ≤  8.281 

4 21.616 5.73pO≤ ≤  3.646 
23.023 10.333pO≤ ≤  6.991 

5 20.937 3.098pO≤ ≤  1.768 
21.018 5.129pO≤ ≤  2.696 

6 21.112 4.033pO≤ ≤  2.656 
20.899 9.250pO≤ ≤  5.717 

7 21.179 4.722pO≤ ≤  3.043 
21.697 9.821pO≤ ≤  6.345 

8 21.120 4.243pO≤ ≤  2.308 
21.864 9.234pO≤ ≤  5.236 

9 21.207 4.550pO≤ ≤  2.969 
22.174 9.144pO≤ ≤  6.129 

10 20.514 2.226pO≤ ≤  1.185 
20.195 3.930pO≤ ≤  0.670 

11 20.801 4.378pO≤ ≤  1.812 
20.781 6.749pO≤ ≤  3.275 

12 21.531 5.029pO≤ ≤  3.257 
20.970 7.893pO≤ ≤  6.717 

13 20.800 5.181pO≤ ≤  2.449 
21.122 9.014pO≤ ≤  5.053 

14 20.479 4.237pO≤ ≤  1.602 
20.635 7.300pO≤ ≤  3.187 

15 20.719 6.912pO≤ ≤  3.003 
20.867 9.827pO≤ ≤  5.338 

16 20.844 6.218pO≤ ≤  3.100 
21.197 9.018pO≤ ≤  5.129 

17 20.731 5.956pO≤ ≤  2.439 
20.376 9.305pO≤ ≤  4.887 
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3.2. Simution of the Tumour Volume Evolution 

According to the value of pO2 in a voxel, the system of Equation (15) is simu-
lated by considering only the proliferating and necrotic cells or only the necrotic 
and quiescent cells in the voxel. Sensitivities of biomechanical model parameters 
according to Sobol analysis are presented in Table 3. The results show that, con-
trary to parameters σ  and ι , the parameter Φ  can be fixed because a small 
disturbance of the latter does not influence the output of the model. Throughout 
the simulation and for all patients, we fixed 2Φ = . The two other parameters 
are estimated using the annealing method [21] for each patient. As an illustra-
tion, tumour volume evolution during the treatment is showed, Figure 6 illu-
strates the case of patient number 5 (and Figure 7 shows a 2D section). Also, the  
 

 
Figure 6. Tumour volume evolution, case of patient 5. 

 

 
Figure 7. (a) Clinical SUV image and (b) Simulated SUV image, case of 
patient 5. 
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optimal adjustment parameters obtained for patients 5 and 12 are given in Table 
4. The aim of Table 5 is to give an overview of the correlations (using Equation 
(19)) between simulated and clinical images at day 8 and at day 15 after the be-
ginning of radiotherapy. For day 15 one can observe that 10/17 of patients have a 
correlation superior to 90%, 4/17 of patients have an average correlation of 70% - 
80%, 2/17 of patient have an average correlation of 60% - 70%, and 1/17 has an 
overall correlation <60. 
 
Table 3. Sobol total sensitivity indices for the biomechanical model parameters. 

Parameter # Indice 

σ  0.482031 

Φ  0.020014 

ι  0.430759 

 
Table 4. Optimal parameters obtained for patients 5 and 12. 

Patient # σ  Φ  ι  

5 0.028 2 0.001 

12 0.00026 2 0.0016 

 
Table 5. Results of correlations between clinical and simulated images at 8th and 15th days 
after the beginning of the irradiation. 

Patient # Correlations at day 8 (%) Correlations at day 15 (%) 

1 92.954 51.495 

2 94.444 91.270 

3 99.324 64.925 

4 94.759 61.851 

5 97.721 95.584 

6 92.366 92.135 

7 93.092 98.739 

8 98.624 92.661 

9 98.361 70.238 

10 91.008 92.830 

11 95.432 96.388 

12 90.074 71.585 

13 98.895 96.244 

14 90.452 70.435 

15 99.214 94 

16 91.150 72 

17 91.667 90.415 
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In order to compare the aggressiveness of tumours, the example of patient 12 
is also given (see Figure 9 and Figure 10). Additionally, Figures 8-11 give a 3D 
representation of the simulation results for patients 5 and 12 respectively. 

One of the objectives of this study is to build a model able to propose the po-
tential extent of the tumour a few days before surgery in order to help resection 
planning. To this end, the model is also applied to four other patients who have 
one additional PET image a few days prior to surgery. Results can be seen on 
Table 6 where correlations between simulated and clinical images are pre-
sented at day 8, day 15 and day 90 after the beginning of radiotherapy. Except 
for patient 19 who has a low correlation <50%, the other three have a correla-
tion >90%. 
 

 
Figure 8. 3D illustration of clinical and simulated volumes, case of patient 5. 
 

 
Figure 9. Tumour volume evolution, case of patient 12. 
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Figure 10. (a) Clinical SUV image and (b) Simulated SUV image, case of patient 12. 
 

 
Figure 11. 3D illustration of clinical and simulated volumes, case of patient 12. 
 
Table 6. Correlations results, between clinical and simulated images at the 8th (day 8), 15th 
(day 15) and 90th (day 90) days after the beginning of irradiation. 

Patient # day 8 (%) day 15 (%) day 90 (%) 

18 97.861 86.186 90.698 

19 98.540 90.0552 35.112 

20 82.031 96.774 97.678 

21 88.799 91.242 98.233 
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4. Discussion  

The impact of pO2 remains one of the most studied biological phenomena in 
simulations of tumour growth and tumour response to radiotherapy [32] [33]. 
Most of the latest studies focus either on space-time aspects via reaction-diffusion 
equations [34] or on purely biological aspects at the cellular level [35]. These al-
gorithms are generally compared with each other [36] or challenged against 
theoretical models [37] or empirical information [38], but they are rarely con-
fronted with real data. In the present work, we proposed a method based on ful-
ly-described reaction-diffusion equations driven by a cellular-based stochastic 
approach [16]. The obtained platform can be adapted to available clinical data 
and is evaluated by using a series of FDG PET images from 21 patients. The dis-
tribution of pO2 inside the tumour is known to have an impact on radiotherapy 
effects, but it remains diffcult to obtain personalized and reliable pO2 information 
from images. Often, functional imaging during cancer monitoring only consists 
of FDG PET images depicting glucose metabolism. For this reason, we separated 
our simulation approach into two parts working concomitantly. The first part is 
a multi-scale model which simulates temporal and spatial evolution of oxygen 
concentration from available patient images. The second part simulates the tu-
mour growth using a biomechanical approach based on the reaction-diffusion 
equations and the pO2 knowledge as provided by the first step. 

Concerning this second part, the source term is a logistic function whose 
growth rate depends on the oxygen partial pressure. This made the entire reac-
tion term dependent on pO2, leading to an increased complexity. The challenge 
is to find the oxygen distribution that would provide the best prediction in terms 
of tumour volume evolution. This hybrid methodology is applied to a set of real 
data and the obtained results appeared satisfactory since a reasonably good 
agreement is observed between real and computed data (see Table 5). In addi-
tion to obtain information on the tumour volume evolution during radiothera-
py, it is worth mentioning that the model also suggests a qualitative overview of 
the tumour aggressiveness. As an illustration, one can observe that the tumour 
of patient 5 is found more radioresistant than that of patient 12 (see Figures 
7-10) while in the same time the simulated levels of oxygen partial pressure for 
patient 5 are found lower than those of patient 12 (Table 2). This difference in 
aggressiveness is also markedly observed before the beginning of treatments 
since tumour 5 appears to grow very rapidly while tumour 12 appears constant 
in volume. This general observation is in accordance with the obtained intrinsic 
growth rates, with σ  values of 0.028 for patient 5 and 0.00026 for patient 12 
(Table 4). 

The above encouraging results suggest that this study will benefit from a vali-
dation on a larger database, including a comprehensive clinical follow-up of the 
patients. However, despite the variation of tumour cell densities between voxels, 
as driven by the computed flux, this model does not directly take into account 
tumour deformations. This is illustrated by the fact that according to Dice  
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Table 7. Dice index of simulated images on the 90th day after the beginning of irradiation, 
cases of patients 18, 19, 20 and 21. 

Patient # 18 19 20 21 

Dice 0.2456 0.1583 0.4062 0.5524 

 
metric [39] the proposed hybrid model does not predict the tumour shape evo-
lution accurately. Also known as an overlap index, the Dice metric is a similarity 
index that is widely used for volume comparison purposes. The values of Dice 
index for patients 18, 19, 20 and 21 are given in Table 7 and show that simulated 
and real images at day 90 do not overlap (Dice < 0.6). 

The mechanical constraints that are at the origin of the shape alteration are 
indeed difficult to control. This point clearly represents a potential improvement 
of our method, and in this context, it will be valuable to use anatomical informa-
tion provided by CT or MRI images for example. 

5. Conclusion  

In this study, we proposed a methodology for simulating tumour growth and 
tumour response to radiation therapy. The adopted approach is based on the 
synergy between a discrete multi-scale stochastic model and a continuous model 
based on advection-reaction equations. This image-based process can be perso-
nalised according to available clinical data. The evaluation of the method on ac-
tual FDG images of patients suffering from rectal cancer is encouraging and 
opens several opportunities for improvement. The use of multi-modal images 
providing additional functional information instead of the single modality as 
presented here will certainly reinforce the robustness and the reliability of the 
simulations. Also, the introduction of morphological images like X-ray com-
puted tomography is expected to help manage the mechanical constraints that 
can modify the shape of the tumour and influence its deformation. 
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Appendix 
Discretization and Numerical Schemes  

Denote by ( )( ), , , , ,n
i j k i j k nx y z tρ ρ= , the local cells densities at time nt  and at 

the position ( ), ,i j kx y z , by ( )( ), , , , ,n
i j k i j k nx y z t=v v  and  

( )( ), , , , ,n
i j k i j k nx y z tΠ = Π  the corresponding advection velocity and local pres-

sure respectively. The numerical approaches used for the simulation are as fol-
lows: 
• A finite difference method based on an implicit Euler scheme is used for si-

mulating Equation (14); 
• A finite volume method with the 5th order WENO scheme (Weighted Essen-

tially Non-Oscillatory [40]) is used for simulation of Equation (16). By re-
writing this equation in the form: 

( ) ( ) ( ) 0t x x y y z zv v vρ ρ ρ ρ∂ + ∂ + ∂ + ∂ =                (20) 

and by integrating it, we obtain: 

( ) ( ) ( )1 2
1 2 1 2 1 2 1 2 1 2 1 2

n n
ijk ijk i i j j k k

t t tF F G G H H
x y z

ρ ρ+
+ − + − + −

∆ ∆ ∆
= − − − − − −

∆ ∆ ∆
 (21) 

where, n
ijkρ  is the mean local tumour cells densities, iF , jG  and kH , are their 

numerical flow, respectively in the x, y and z directions. For all i, j and k, we 
wrote ix x∆ = ∆ , jy y∆ = ∆ , and kz z∆ = ∆ , with x∆ , y∆ , and z∆  repre- 
senting voxel dimensions in the x, y and z directions. t∆  is the time step;  
• A finite differences method based on an explicit Euler scheme is used for si-

mulating Equation (17), with a discretization given by: 

( )1 2 1 21
, , ,

1
,

2n n n n
ijk ijk i j k i j kt S Tρ ρ+ + + += + ∆ ⋅ −                  (22) 

where, ( )( )1 2
, , 1, , 2,n

i j k i j kS S x y z tρ+ = + , and ( )( )1 2
, , 1, , 2,n

i j k i j kT T x y z tρ+ = + . 
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