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Abstract 
Virtual screening is a computational technique widely used for identifying 
small molecules which are most likely to bind to a protein target. In the 
present work, a molecular docking study is carried out to propose potential 
candidates for preventing the RBD/ACE2 attachment. These candidates are 
sixteen different flavonoids present in the peppermint leaf. Results showed 
that Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher 
binding affinity regarding the RBD/ACE2 complex (about −9.18 Kcal/mol). 
On the other hand, Sakuranetin presented the lowest affinity (about −6.38 
Kcal/mol). Binding affinities of the other peppermint flavonoids ranged from 
−6.44 Kcal/mol up to −9.05 Kcal/mol. The binding site surface analysis 
showed pocket-like regions on the RBD/ACE2 complex that yield several in-
teractions (mostly hydrogen bonds) between the flavonoid and the amino ac-
id residues of the proteins. This study can open channels for the understand-
ing of the roles of flavonoids against COVID-19 infection. 
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1. Introduction 

The COVID-19 is an infectious disease caused by the coronavirus SARS-CoV-2 
[1] [2] [3] [4] [5]. It has reached the status of a pandemic in March of 2020. Up 
to January of 2022, it has already infected more than 300 million people, leading 
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to the death of more than 5 million ones [6]. Since the earlier stages of this pan-
demic, a worldwide effort has been devoted to producing vaccines and antiviral 
drugs to combat this virus. Some successful investigations yielded vaccines that 
have started to be applied very recently [7]-[14]. Despite the beginning of vacci-
nation, no consensus about an efficient treatment for already infected patients 
has been reached so far. 

Sars-CoV-2 has a crown-like (spherical) form, and its surface protein (Spike) 
is directly involved in the infectious process [15] [16] [17]. The receptor of this 
virus in human cells is the angiotensin-converting enzyme 2 (ACE2) [18] [19] 
[20]. Sars-CoV-2 surface protein has two subdivisions, named S1 and S2, being 
S1 the receptor-binding domain (RBD) [21] [22] [23] [24]. The RBD plays a 
major role in the attachment mechanism of Spike protein to ACE2 [25]. After 
the attachment between them, the virus enters the cell and starts the replication 
process [21]. In this sense, the strategy of virtual screening for possible inhibitors 
for the RBD/ACE2 attachment [26] may pave the way for novel therapeutic ap-
proaches for the treatment of COVID-19. 

Drug repurposing is a feasible way to combat diseases with some similarities 
[27] [28] [29]. In this scenario, the use of phytochemicals is always an important 
option to be considered [30]. Among their sub-classes, the flavonoids—a class of 
small molecules found in fruits, vegetables, flowers, honey, teas, and wines, stand 
out [31] [32] [33]. Their pharmacological properties include antimicrobial, an-
tioxidant, anti-inflammatory, and antiviral functions [34] [35] [36]. 

Flavonoids have been employed as inhibitors for the infection mechanism of 
several diseases [37]. Among them, one can mention malaria, leishmaniasis, 
Chagas, and dengue [38]-[43]. They have also been considered in studies aimed 
at developing therapeutic approaches for cancer treatment [44] [45] [46]. Very 
recently, it was reported that Luteolin (a flavonoid found in leaves and shells) is 
efficient as an anti-inflammatory that can interact with the Sars-CoV-2 surface 
[47] and its main protease [48]. More specifically, it is adsorbed in the Spike 
protein, inhibiting the Sars-CoV-2 attachment to the ACE2, thus preventing in-
fection. Ngwa and colleagues used computer simulations to address the feasibil-
ity of Caflanone, Hesperetin, and Myricetin flavonoids in acting as inhibitors for 
the ACE2 active site attachment [49]. Their results pointed to the ability of Caf-
lanone in inhibiting the transmission of the Sars-CoV-2 virus from mother to 
fetus in pregnancy. Pandey et al. conducted molecular docking and dynamics 
simulations considering ten flavonoid and non-flavonoid compounds (by using 
phytochemicals and hydroxychloroquine, respectively) to verify their perfor-
mance in inhibiting the RBD/ACE2 interaction [50]. Their findings indicate that 
Fisetin, Quercetin, and Kamferol molecules couple to RBD/ACE2 complex with 
good binding affinities. In this sense, they can be explored as possible anti-Sars- 
CoV-2 agents. Despite the success of these molecules inhibiting the RBD/ACE2, 
other flavonoids should be tested to broaden the list of possible inhibitors and to 
confirm their potential in developing new therapeutic approaches for the treat-

https://doi.org/10.4236/ojbiphy.2022.122005


M. L. P. Júnior et al. 
 

 

DOI: 10.4236/ojbiphy.2022.122005 134 Open Journal of Biophysics 
 

ment of COVID-19. 
Herein, in silico molecular docking analysis was carried out to propose poten-

tial flavonoid candidates in preventing the RBD/ACE2 attachment. These can-
didates are sixteen different flavonoids present in the Peppermint (Mentha pipe-
rita) leaf [51]-[57]. Peppermint is a perennial herb and medicinal plant native to 
Europe widely used for treating stomach pains, headaches, and inflammation of 
muscles [52] [56] [57]. Well-known for their flavoring and fragrance traits, pep-
permint leaves and the essential oil extracted from them are used in food, cos-
metic and pharmaceutical products [51] [52] [53] [54]. Our results revealed that 
Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher bind-
ing affinity regarding the RBD/ACE2 complex (about −9.18 Kcal/mol). On the 
other hand, Sakuranetin was the one with the lowest affinity (about −6.38 Kcal/ 
mol). Binding affinities of the other peppermint flavonoids ranged from −6.44 
Kcal/mol up to −9.05 Kcal/mol. These binding affinities are equivalent to other 
ones reported in the literature for the interaction between flavonoids and the 
RBD/ACE2 complex [47] [48] [58]-[64]. Moreover, the binding site surface 
analysis showed pocket-like regions on the RBD/ACE2 complex that yield sever-
al interactions (mostly hydrogen bonds) between the flavonoid and the amino 
acid residues of the proteins. Definitively, experimental studies and clinical trials 
should be further performed to evaluate the efficacy of these compounds in the 
inhibition of the RBD/ACE2 attachment. 

2. Materials and Methods 

Since Sars-CoV-2 infects human cells through the RBD/ACE2 coupling, the idea 
of checking for small molecules that may inhibit this interaction is recurring and 
can be useful to propose a combatant drug [65]. Here, we used molecular dock-
ing to study the interaction between the peppermint flavonoids with the RBD/ 
ACE2 complex. Below, we present the proteins, inhibitors (flavonoids), and the 
computational protocol involved in our study. 

2.1. Protein Preparation 

Figure 1 presents the main proteins involved RBD/ACE2 interaction that were 
obtained from Protein Data Bank, ID 6M0J [66]. In the left panel of this figure, 
the ACE2 protein is in blue, while the RBD Sars-CoV-2 one is in red. Three es-
sential regions of inhibition between these proteins were highlighted with the 
black squares R1, R2, and R3. In the right side of Figure 1 we show the binding 
site surface colored as gray, red, blue, and white for carbon, oxygen, nitrogen, 
and hydrogen atoms, respectively. The yellow rectangle highlights the total sur-
face for inhibition with a clear cavity within region R2. The protein resolution is 
2.45 Å, and no pKa prediction was carried out. The modeled structure has 41 re-
sidues less than the deposited one, but all the important residues in the RDB/ 
ACE2 interface were considered in our study. Just metal ions were considered in 
the docking study, water molecules were not included. 
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Figure 1. Schematic representation of the (a) main proteins involved RBD/ACE2 interaction. These proteins were 
obtained from Protein Data Bank, ID 6M0J [66]. (b) The binding site surface has the following color scheme: gray, 
red, blue, and white for carbon, oxygen, nitrogen, and hydrogen atoms, respectively. Only the three regions (R1, 
R2, and R3) were considered in the docking processes since they define the whole RBD/ACE2 interface. The 
TYR4, GLN24, PHE486, and ASN487 are the residues present in the region R1; GLU35, LYS31, and GLN493 are 
the residues present in the region R2; ASP355, THR500, GLY502, GLN498, LYS353, and ASP38 are the residues 
present in the region R3. 

2.2. Ligand Preparation 

The peppermint leaf contains sixteen flavonoids [51] [54], classified into three 
subcategories: Flavones (Flavonols), Flavorings, and Flavanones [51] [54]. The 
flavonoids studied here are Acacetin, Apigenin, Apigenin 7-O-neohesperidoside 
(Apigenin*), Chryseoriol, Hesperidin, Hesperitin, Ladanein, Luteolin, Luteolin 
7-O-glucoside (Luteolin*), Luteolin 7-O-glucuronide (Luteolin**), Luteolin 7-O- 
neohesperidoside (Luteolin***), Narigenin, Pebrellin, Sakuranetin, Thymusin, 
and Xanthomicrol. Their 3D structures were extracted from PubChem [67]. The 
chemical structures of these flavonoids can be seen in Figure 2, while relevant 
information such as PubChem ID, molecular weight, molecular formula, and 
subcategory of the flavonoid is presented in Table 1. 

2.3. Molecular Docking Simulation 

Molecular docking consists of computationally analyzing the non-covalent binding 
between macromolecules (receptor) and small molecules (ligand). Here, the ma-
cromolecule is the RBD/ACE2 protein complex (Figure 1), while the ligands are 
the sixteen flavonoids present in the peppermint leaf (Figure 2). SWISSDOCK 
server was used for the docking simulations [68] [69]. In SWISSDOCK, the 
docking energies are obtained through the CHARMM (Chemistry at HARvard 
Macromolecular Mechanics) force field [68] [69] using a blind docking strategy  
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Figure 2. Chemical structure of peppermint leaf flavonoids: (a )Acacetin, (b) Apigenin, (c) Apigenin 7-O-neohes- 
peridoside (Apigenin*), (d) Chryseoriol, (e) Hesperidin, (f) Hesperitin, (g) Ladanein, (h) Luteolin, (i) Luteolin 
7-O-glucoside (Luteolin*), (j) Luteolin 7-O-glucuronide (Luteolin**), (k) Luteolin 7-O-neohesperidoside (Lute-
olin***), (l) Narigenin, (m) Pebrellin, (n) Sakuranetin, (o) Thymusin, and (p) Xanthomicrol. 
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Table 1. Potential inhibitors (peppermint leaf flavonoids) of RBD/ACE2 complex and 
their compound information. 

Compound PubChem CID 
Mol. Weight 

(g/mol) 
Mol. Formula Type 

Acacetin 5280442 284.26 C16H12O5 Flavones and Flavonols 

Apigenin 5280443 270.24 C15H10O5 Flavones and Flavonols 

Apigenin* 5282150 578.5 C27H30O14 Flavones and Flavonols 

Chryseoriol 5280666 300.26 C16H12O6 Flavones and Flavonols 

Hesperidin 10621 610.6 C28H34O15 Flavorings 

Hesperitin 72281 302.28 C16H14O6 Flavanones 

Ladanein 3084066 314.29 C17H14O6 Flavones and Flavonols 

Luteolin 5280445 286.24 C15H10O6 Flavones and Flavonols 

Luteolin* 5280637 448.4 C21H20O11 Flavones and Flavonols 

Luteolin** 5280601 462.4 C21H18O12 Flavones and Flavonols 

Luteolin*** 5282152 594.5 C27H30O15 Flavones and Flavonols 

Naringenin 932 272.25 C15H12O5 Flavorings 

Pebrellin 632255 374.3 C19H18O8 Flavones and Flavonols 

Sakuranetin 73571 286.28 C16H14O5 Flavanones 

Thymusin 628895 330.29 C17H14O7 Flavones and Flavonols 

Xanthomicrol 73207 344.3 C18H16O7 Flavones and Flavonols 

 
that spans over 100 trial configurations for each target/ligand input [70]. The 
target/ligand configuration with higher binding affinity is selected using the 
UCFS CHIMERA software [71], a visualization tool capable of directly import-
ing data from the SWISSDOCK server. Finally, the Protein-Ligand Interaction 
Profiler (PLIP) server [72] is used to characterize the target/ligand interaction 
for the configuration with a higher binding affinity for each flavonoid regarding 
the RBD/ACE2 complex. It is worth mentioning that the screening for the ligand 
position was limited just to the ACE2/RDB interface (regions R1, R2, and R3 in 
the left panel of Figure 1). This interface is the crucial region to be considered 
for blocking the coronavirus entry and replication cycle. The simulation (dock-
ing) box used in the screening for the ligand position was limited just to the 
ACE2/RDB interface (regions R1, R2, and R3 in the left panel of Figure 1). The 
docking box has 27.5 Å × 9.0 Å × 8.5 Å of dimension and it was centered at 
(31.5, −36.0, 1.5) Å. These parameters cover the three regions depicted in Figure 
1. The accuracy in estimating the ligand positions and related binding affinities 
are ±2 Å and ±0.01 Kcal/mol, respectively. 

3. Results 

After successful docking of the peppermint flavonoids to the RBD/ACE2 com-
plex, several modes of ligand/target interactions were generated with a particular 
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docking score (binding affinity). The binding mode with the lowest binding af-
finity is regarded as the best one, once it tends to be the most stable. The binding 
affinity results (ΔG) obtained here are summarized in Table 2. SWISSDOCK 
simulations for all the ligands in Figure 2 revealed significant binding affinities 
with the target RBD/ACE2 proteins. Luteolin 7-O-neohesperidoside is the pep-
permint flavonoid with a higher binding affinity regarding the RBD/ACE2 com-
plex (about −9.18 Kcal/mol). On the other hand, Sakuranetin was the one with 
the lowest affinity (approximately −6.38 Kcal/mol). Binding affinities of the oth-
er peppermint flavonoids ranged from −6.44 Kcal/mol up to −9.05 Kcal/mol. 
Sakuranetin has presented hydrogen and π-stacking bond distances higher than 
3.05 Å, leading to weak bond strengths and a lower binding affinity. The other 
flavonoids showed bond distances varying from 1.86 Å to 2.96 Å. The hydrogen 
bond between Sakuranetin and the amino acid LYS335 has 3.73 Å (the largest 
bond obtained in our study). Consequently, Sakuranetin has the lower van der 
Waals interaction, about −35.3 Kcal/mol, as shown in Figure 7. 

As one can note in Table 1 and Table 2, the best docked flavonoids have 
greater molecular weight. All the binding affinities are close to the ones reported 
for the RBD/ACE2 interaction with other species of flavonoids [47] [48] [58]-[64]. 
Moreover, they can outperform the binding affinities reported by docking stu-
dies using other types of compounds targeting RBD/ACE2 [26] [73]-[79], such 
as Chloroquine and Hydroxychloroquine, which are lower than −8.0 Kcal/mol  
 
Table 2. Peppermint leaf-based flavonoid candidates undergoing docking experiment 
with their most favorable conformation (lowest binding affinity ΔG in Kcal/mol). 

Compound ΔG [Kcal/mol] 

Acacetin −6.70 

Apigenin −6.87 

Apigenin 7-O-neohesperidoside −8.08 

Chryseoriol −6.78 

Hesperidin −8.67 

Hesperitin −6.80 

Ladanein −6.56 

Luteolin −7.24 

Luteolin 7-O-glucoside −8.01 

Luteolin 7-O-glucuronide −7.74 

Luteolin 7-O-neohesperidoside −9.18 

Naringenin −6.44 

Pebrellin −7.07 

Sakuranetin −6.38 

Thymusin −6.94 

Xanthomicrol −6.83 
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[26]. This fact can be attributed to the abundant phenolic hydroxyl group in fla-
vonoids. The hydroxyl group in the sugar group of flavonoids tends to bind 
more easily with the heteroatoms of amino acids from RBD/ACE2, as discussed 
later. In this sense, peppermint flavonoids can compose the list of potential phy-
tochemical inhibitors for the RBD/ACE2 interaction. 

Figure 3 and Figure 4 illustrate the binding site surface (BSS) for the putative  
 

 
Figure 3. Binding site surface (BSS) for the putative best docking target/ligand configurations of (a) Acacetin, (b) Apigenin, 
(c) Apigenin*, (d) Chryseoriol, (e) Hesperidin, (f) Hesperetin, (d) Ladanein, and (d) Luteolin. 
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Figure 4. Binding site surface (BSS) for the putative best docking target/ligand configurations of (a) Luteloin*, (b) Luteloin**, (c) 
Luteloin***, (d) Naringenin, (e) Pebrellin, (f) Sakuranetin, (d) Thymusin, and (d) Xanthomicrol. 

 
best docking target/ligand configurations. For the sake of clarity, these figures 
show the BSS only for the RBD/ACE2 region highlighted by the yellow rectangle 
in Figure 1(b). The following color scheme is adopted for the BSSs: gray, red, 
blue, and white for carbon, oxygen, nitrogen, and hydrogen atoms, respectively. 
In the ball-stick representation for the flavonoids, the carbon, oxygen, and hy-
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drogen atoms are shown in the colors cyan, red, and white, respectively. As a 
general trend, one can note that the flavonoids fit inside the core pocket region 
(cavity) of the RBD/ACE2 complex. This cavity is displayed as region 2 in Fig-
ure 1(a). Acacetin, Luteolin*, Luteolin**, Thymusin, and Xanthomicrol were 
adsorbed on region 1 (see Figure 1(a)) of the RBD/ACE2 complex. The ligands 
tend to interact with the oxygen atoms (red spots in the BSS) in regions 1 and 2. 
These regions establish pocket-like media that yield interactions (mostly hydro-
gen bonds) between flavonoids and amino acid residues of proteins. 

Figure 5 and Figure 6 provide a clear picture of the interaction between the 
amino acid residues of the proteins and peppermint flavonoids. The docked 
poses (obtained using PLIP [72] show the residues names and the bond types. In 
the stick representation of flavonoids, the carbon and oxygen atoms are in orange 
and red colors, respectively. The hydrogen, hydrophobic, and π-staking bonds 
are denoted by the blue, dashed gray, and dashed yellow lines, respectively. The 
yellow sphere represents the charge center. In Figure 5, one can note that Aca-
cetin, Apigenin, Apigenin*, Chryseoriol, Hesperidin, Hesperetin, Ladenein, and 
Luteolin interact with RBD/ACE2 mainly through 4, 5, 5, 6, 12, 5, 4, and 8 hy-
drogen bonds with distinct amino acid residues in both RBD and ACE2 pro-
teins. Similarly, Figure 6 shows the interaction mechanism between Luteloin*, 
Luteloin**, Luteloin***, Naringenin, Pebrellin, Sakuranetin, Thymusin, and 
Xanthomicrol with RBD/ACE2 is mediated by 7, 5, 9, 8, 5, 5, 4, and 4 hydrogen 
bonds with distinct amino acid residues in both RBD and ACE2 proteins, re-
spectively. In total, 12 hydrophobic bonds were found. The flavonoids and ami-
no acid residues of the proteins involved in this kind of interaction are hig-
hlighted below. Some π-stacking bonds are also present in the RBD/ACE2 inte-
ractions with flavonoids expecting for the Hesperidin (Figure 5(e)), Luteolin* 
(Figure 6(a)), and Xanthomicrol (Figure 6(h)) cases. 

Generally speaking, we identified 31 distinct amino acid residues of the RBD/ 
ACE2 interacting with the peppermint flavonoids. The RBD amino acid residues 
(and their occurrence) are TYR738 (4), LYS682 (5), GLU761 (6), GLN674 (6), 
TYR770 (6), ARG688 (8), ASP670 (2), GLY761 (4), GLY741 (2), GLN39 (1), 
ALA740 (1), LYS723 (3), ARG673 (1), and SER759 (1). The ACE2 amino acid 
residues (and their occurrence) are GLU5 (3), SER1 (5), ASP12 (7), PHE372 (4), 
ARG375 (9), ASN15 (8), GLU19 (9), PRO371 (1), ANS15 (1), THR71 (1), 
ALA369 (4), ARG37 (1), ALA368 (1), LYS335 (2), ASP20 (1), TYR760 (1), and 
LYS8 (1). This result suggests that the target RBD/ACE2 amino acid residues for 
this class of phytochemicals are ARG375, ASN15, and GLU19 from ACE2, and 
ARG668 from RBD, based on their higher occurrence. The flavonoids that present 
hydrophobic bonds with the RBD/ACE2 amino acids, highlighted in the follow-
ing as (flavonoid/residue), are Ladanein/GLU19, Luteolin/LYS682, Hesperetin/ 
ASN15, Hesperetin/GLU19, Pebrellin/TYR760, Sakuranetin/GLU19, Thymusin/ 
LY58, Acacetin/GLU5, Apigenin/ASN15, Apigenin/PRO371, Apigenin/TYR770, 
and Chryseoriol/LYS682. Finally, we estimate the number of times a particular 
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Figure 5. PLIP docked poses for the RBD/ACE2 interaction with (a) Acacetin, (b) Apigenin, (c) Apigenin*, (d) Chryseo-
riol, (e) Hesperidin, (f) Hesperetin, (d) Ladanein, and (d) Luteolin. The hydrogen, hydrophobic, and π-staking bonds are 
denoted by the blue, dashed gray, and dashed yellow lines, respectively. The yellow sphere represents the charge center. 
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Figure 6. PLIP docked poses for the RBD/ACE2 interaction with (a) Luteloin*, (b) Luteloin**, (c) Luteloin***, (d) 
Naringenin, (e) Pebrellin, (f) Sakuranetin, (d) Thymusin, and (d) Xanthomicrol. The hydrogen, hydrophobic, and 
π-staking bonds are denoted by the blue, dashed gray, and dashed yellow lines, respectively. The yellow sphere 
represents the charge center. ACE2 and RBD moieties are shown above and below the horizontal line, respectively. 
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Figure 7. van der Waals interactions (ΔG vdW) between the protein and ligands. 
 

 
Figure 8. Counts of bonds between ligands and amino acids of a specific kind. This figure 
suggests that ARG are the crucial amino acids in promoting the flavonoids attachment to 
RDB. 
 
amino acid interacts with the ligands. We count 21 bonds (14 hydrogen bonds 
and the van der Waals bonds) between the ligands and amino acids of kind 
ARG. This trend suggests that ARG are the crucial amino acids in promoting the 
flavonoids attachment to RDB (Figure 7 & Figure 8). 

4. Conclusions 

In summary, a set of phytochemicals (peppermint flavonoids) were screened 
against the SARS-CoV-2 Spike receptor-binding domain interacting with the 
human ACE2 receptor. The approach is based on computationally fitting small 
molecules for the target RBD/ACE2 complex proteins using the 3D structure of 
the active site with SWISSDOCK [68] [69], subsequently the ranking of the 
docked compounds with Quimera [71] and interaction analysis with PLIP [72]. 
Results revealed that Luteolin 7-O-neohesperidoside has a binding affinity of 
about −9.18 Kcal/mol, the higher one among the flavonoids studied here. On the 
other hand, Sakuranetin was the one with the lowest affinity (about −6.38 Kcal/ 
mol). Binding affinities of the other peppermint flavonoids ranged from −6.44 
Kcal/mol up to −9.05 Kcal/mol. These values outperform the binding affinities 

https://doi.org/10.4236/ojbiphy.2022.122005


M. L. P. Júnior et al. 
 

 

DOI: 10.4236/ojbiphy.2022.122005 145 Open Journal of Biophysics 
 

reported by docking studies using other types of compounds in which the RBD/ 
ACE2 complex was also the target [80] [81]. 

The binding site surface analysis showed pocket-like regions on the RBD/ 
ACE2 complex that yield several interactions (mostly hydrogen bonds) between 
the flavonoid and the amino acid residues of the proteins. The interaction me-
chanism between the flavonoids and amino acid residues of the proteins is me-
diated by hydrogen bonds, essentially. The presence of some hydrophobic and 
π-stacking bonds was also observed. In total, we identified 31 distinct amino acid 
residues of the RBD/ACE2 interacting with the peppermint flavonoids. The tar-
get RBD/ACE2 amino acid residues for this class of phytochemicals are ARG375, 
ASN15, and GLU19 from ACE2, and ARG668 from RBD, based on their higher 
occurrence. 

Some in vitro studies investigated the antiviral activity of flavonoids in com-
bating SARS-CoV [64] [82] and SARS-CoV2 [83] [84] [85] [86] infection. Hes-
peretin, Luteolin, and Apigenin have been demonstrated as potent inhibitors of 
SARS-CoV-2 3CLpro in vitro and can be considered proper candidates for fur-
ther optimization and development of therapeutic interventions, particularly 
those related to inflammation processes and immunity [86]. A Luteolin deriva-
tive and Apigenin showed the best docking scores in our study. 
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