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Abstract 
The temperature is one of the principal controlling parameters of oncological 
hyperthermia. However, local heating forms a complicated thermal distri-
bution in space and has developed over time, too. The decisional factors are 
the heterogeneity of the targeted volume, the electrolyte perfusions con-
trolled by thermal homeostasis, and the spreading of the heat energy with 
time. A further complication is that the energy absorption sharply changes 
by depth, so the spatiotemporal development of the temperature distribu-
tion requires specialized methods to control. Most of the temperature imag-
ing facilities (thermography, radiometry, electric impedance tomography, 
etc.) are less precise than the medical practice needs. In contrast, precise 
point sensing (like thermocouples, thermistors, and fluoroptical methods) is 
invasive and measures only a discrete point in the robustly changing thermal 
map. The two most precise thermal imaging methods, computer tomography, 
and magnetic resonance are expensive and have numerous technical compli-
cations. Our objective is to show the complexity of the temperature distribu-
tion inside the human body, and offer a relatively simple and cheap method 
to visualize its spatiotemporal development. A novel emerging technology, 
the application of ultrasound microbubble contrast agents is a promising 
method for solving complicated tasks of thermal distribution deep inside the 
living body. Noteworthy, the temperature distribution does not determine the 
full hyperthermia process, nonthermal effects make considerable impact, too. 
Additionally to the difficulties to measure the thermal heterogeneity during 
hyperthermia in oncology, numerous nonthermal processes, molecular and 
structural changes are triggered by the incoming electromagnetic energy, 
which presently has no spatiotemporal visualization technique. Microbubble 
imaging has a suitable spatiotemporal thermal resolution, and also it is sensi-
tive to nonthermal effects. Its application for characterization of the mod-
ulated electrohyperthermia (mEHT) may open a new theranostic facility, us-
ing the synergy of the thermal and nonthermal effects of the radiofrequency 
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delivered energy. This complex approach gives facility to follow the mEHT 
processes, and the proposed microbubble ultrasound imaging has a particu-
larly promising advantage sensing and acting also nonthermally, having po-
tential to characterize the thermally conditioned nonthermal electromagnetic 
effects in oncologic hyperthermia. The mEHT combined with microbubble 
ultrasound images could be a robust theranostic method against cancer. 
 

Keywords 
Microbubbles, Thermal Heterogeneity, Electric Heterogeneity, Bloodstream, 
Thermal and Nonthermal Synergy, Temperature Distribution, Temperature 
Measurements 

 

1. Introduction 

The medical processes using heat were the first curing approach, remaining a 
vital “household remedy” even nowadays. The heat from the sunlight is also a 
well-accepted universal support of health in our modern era, and the biological 
effects of the Sun (natural, organic vegetation, vitamin support for humans, etc.) 
are essential for our healthy daily life. Ancient hyperthermia included artificial 
fever as a common wish of doctors. Their wish was clear: “Give me the power to 
produce fever, and I will cure all diseases” [1]. The dream of ancient medical ge-
niuses Hippocrates and Rufus of Ephesus about the ability to induce artificial 
fever to cure cancer [2] seems to be valid, observing promising results. Hypo-
crites successfully applied local radiative heating to treat breast cancer [3]. Hy-
pocrites had no extended knowledge about the complex regulation of the human 
body in thermal homeostasis, which is primarily performed by blood perfusion 
to the heated volume. The temperature approximation by local heating was de-
duced from the daily practice in households and applied to nonliving systems 
(cooking, hot water production, etc.) Later, we understood more about the 
enormous complexity of the human being and its complex interactions with the 
environment, which defines thermal homeostasis and complicates the treatment 
with heat. Controlled and homogeneous (isothermal) heating is difficult, and 
due to physiological activity, it cannot be fixed for a longer time than physiologic 
relaxation. 

The whole body heating is one of the dream-realizing oncological methods of 
old Greek physicians. It has almost complete thermal homogeneity of the entire 
body like fever does. Seemingly, whole-body hyperthermia (WBH) offers the 
best heating possibility because of its easy control (measurements in body lu-
mens) and the complete isothermal load on all malignant cells and tissues. 
However, the WBH does not provide the expected good results despite the com-
plete isothermal load. Furthermore, this heating has a serious limitation: the 
physiologic temperature limit <42˚C). The overall survival was better when the 
chemotherapy was administered alone than in combination with WBH [4], and 
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the toxicity was also higher in the combined treatment [5]. Contrary to the 10+ 
times higher dose of WBH (measured with standard dose), a fourfold develop-
ment of metastases was measured in canine sarcomas combined with radiothe-
rapy compared to local heating [6]. The optimal local cell distortion needs high-
er temperature than the systemic physiological limit of 42˚C. The demand for 
higher temperatures for direct cellular degradation challenges such applications 
and favors the local heating applications. Contrary to WBH, the local heating 
does not load the patient’s cardiovascular system, and negligible electrolyte loss 
happens, making it possible to include more patients with comorbidities to ma-
lignancy.  

The local heating is a game-changer (Figure 1). The local temperature de-
pends on the local absorption and the local heat convection and conduction. 
Among such conditions, the apparently simple role of the thermal methods does 
not describe the processes with sufficient preciosity. The thermal effects are in-
homogeneous, reflecting the heterogeneity of the target tissues, so the isothermal 
explanation, which was appropriate in WBH, is not applicable to the local 
processes. The actual temperature depends on the local parameters in microre-
gions formed by the differences in electrolyte constituents, and the nonthermal 
effects on the molecular reaction and structures. The nonthermal effect involves 
the fact that when “under the influence of a field, the system changes its proper-
ties in a way that cannot be achieved by heating” [7]. 

Local hyperthermia in oncology has numerous technical challenges that must 
be solved to develop this excellent method further. Heating with mechanical 
waves (ultrasound) or electromagnetic methods has serious technical difficulties 
regarding the selective focusing of the energy absorption to the target deep in the 
body. There is a massive development in oncology in all its conventional and 
non-conventional therapy modalities. Modern oncological hyperthermia is a 
competitive method [8], but has not had enough attention in the medical com-
munity. One of the major factors of the lack of acceptance in the professional 
medical community and a narrow range of applications is the conception that 

 

 

Figure 1. The main categories of hyperthermia in human cancer treatment. 
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hyperthermia is a simple heating method. Most physicians think about this me-
thod as a “kitchen” process, considering the devices as the heat-providing oven, 
where the tumors are targeted and “cooked” (“Too hot for cancer” [9]). Indeed, 
the application of hyperthermia looks (but only looks!) very simple, so various 
“household” or technically underdeveloped solutions are applied widely, which 
tends to appear as charlatanism and has a danger of a completely negative opi-
nion from the medical experts. The general thinking about controlling the 
hyperthermia process is also kitchen-like, i.e., at what temperature and for how 
long is it applied, just like when we bake a biscuit at home. The terms “heat”, 
“temperature”, and “thermal”, are falsely used as equivalent meanings, making it 
difficult to understand the technical challenges. 

Temperature is always a critical issue in the hyperthermia treatment in on-
cology. There are intensive discussions about its role in heat treatment. The de-
bate became intensive when modulated electrohyperthermia (mEHT) was in-
vented, introducing nonthermal components to thermal activities [10]. The ex-
pectations from hyperthermia are high and varied by application. In oncology, 
selective tumor destruction is the principal goal, but not by ablation alone. It is 
expected to be more gently and well controlled, with a low rate of adverse effects. 
There are numerous challenges to fulfilling the expectations. The challenges are 
multifaceted: 

a) Heating the tumor in the depth of the body delivers energy through the 
healthy host which could cause its damage. The heat-induced toxicity is more 
frequent in the skin and the adipose tissue layer [11]. 

b) Avoid surface thermal toxicity; intensive cooling is applied in most heating 
techniques. The cooling causes vasocontraction in the area, and the decreased 
blood flow increases the risk of surface burn again. It is a positive feedback loop.  

c) The cooling sinks a large part of the incoming energy. The energy loss by 
cooling does not allow the incoming power to be used as a dose.  

d) Due to the complicated focusing techniques and problematic matching so-
lutions, a vast amount of energy is applied (>500 W) to reach the heating goals. 
This energy mostly does not reach the target; the process has low efficacy [12]. 
For example, an extremely low efficacy (<0.1%) is reached when a <2 g tumor is 
heated to 45 °C in a 10 min treatment period, with 600 W power [13]. 

e) The dose must be based on the absorbed power in the target. However, due 
to the lack of knowledge about the real absorbed energy, the temperature mea-
surement becomes mandatory to be oriented about the absorbed energy, assum-
ing that the tumor is isothermally heated, which is far from reality.  

f) The precise focus does not follow the patient’s movements (e.g., breathing, 
internal physiological movements, skeletal muscle activity), so the heating focus 
is larger than the tumor.  

g) The local heating of the tumor makes vasodilation at the most proliferative 
boundary of the tumor. The increased blood perfusion could increase the risk of 
cell dissemination and metastases. 
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h) Possible interference from the heating electromagnetic waves could create 
hot spots outside the target, causing uncontrolled safety problems.  

2. Temperature Development in Living Objects 

Contrary to its apparent simplicity, it is an extremely complicated technical task to 
heat selected body parts. The in-depth heating of the target faces serious physio-
logical and technical challenges. The primary obstacle is the heterogeneity of the 
target, which has various electrolytes enveloped by membranes and other struc-
tures, and between them, it has lymph and blood transport. The local active bio-
logical processes in the focused tissues and systematically regulated non-linear 
physiological feedback by thermal homeostasis make the phenomena non-ho- 
mogeneous and complicated, and the technical solution must fit these condi-
tions. 

Hyperthermia in oncology is at the crossroads of the development of heating 
methods. Hyperthermia includes a broad group of energy-absorption methods. 
The heating techniques determine the result of the clinical treatment, and the 
individual technical solutions require an appropriate protocol. The technical so-
lution may influence the heating speed, which may change the bloodflow, and 
the chosen frequency with the same instrumental solution may change the sur-
vival time [14]. The technical optimization could increase the temperature with 
reduced power [15]. The power does not linearly control the temperature [16] at 
inhomogeneities of the regional target and may cause frequent patient com-
plaints [17]. The contrary results of the cervix trial for the uterus cervix ([18] 
and disadvantages [19]) or the different observations of hyperthermia timing 
with RT combination ([20] and [21]) probably at least partly were the conse-
quence of the different techniques.  

The main possible direction is massive heating, intending to reach the highest 
available temperature with the most precise focus on the targeted tumor. Con-
trary to the macro selective focusing the micro/nano selection could be applied 
Figure 2. The macro method makes a focus arrangement by the device operator 
focusing on the tumor location, according to the focus plan obtained by software 
calculation from the available data [22]. The micro/nano selection concentrates 
on the special micro/nano objects (like nanoparticles, seeds, special bonds, etc.) 
inoculated or readily available in the tumor. The micro/nano objects are partic-
ularly good energy absorbers from external sources, and so those automatically 
and selectively heat up. These hot objects heat their surroundings, and so heat 
the tumor if they are located there. The advantage of this method is its more 
precise and controlled heating because the energy absorption happens surely in 
the micro/macro-objects. Thermal toxicity cannot be created in the volumes 
where the heated particles are not present, so surface burning is also avoided. 
The disadvantage of the micro/nano selection method is that it needs to inocu-
late particles in the tumor precisely. When the particles are delivered by the 
bloodstream, and those equally distributed in the body, then all the body parts,  
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Figure 2. Categories of local hyperthermia. 
 

which are under the external energy-delivery, will also be heated, including the 
subcutan area, and the same technical complication occurs as in the macro 
heating processes. 

The heat-induced temperature is not isothermal in the body. Because of the 
natural heterogeneity, the temperature development differs by tissue region, de-
termined by the thermal properties in the target. Heat conduction, convection, 
and surface radiation influence the local thermal parameters, which definitively 
depend on the transport (like blood and lymph) processes. Additionally, to 
thermal heterogeneities, the uneven distribution of energy delivery modifies the 
heat’s spreading (Figure 3). 

The local heating is naturally not isothermal; the temperature changes non- 
homogeneously [23]. The dose is, of course, lowered by the distance from the 
center of the heating focus. The quasi-isothermal circles (spheres) are denoted 
by xT  which refers on the temperature in %x  of the heated tumor. Conse-
quently, xT  average temperature decreases when x increases, well approached 
with normal distribution, Figure 4. Note the xT  may change over time because 
the heat spreads and changes the temperature in the target.  

The standard hyperthermia dose is the cumulative equivalent minutes at 43˚C 
(CEM43˚C). It usually refers to the effect at 43˚C. where the necrotic cell de-
struction is observed by Arrhenius fit in vitro [25]. A phase transition happens 
in lipid membranes [26] [27] which causes tell disruption [28] at approximately 
42.5˚C [29]. The characteristic phase transition change in the Arrhenius plot was 
observed clinically, too [30] [31]. 

The temperature difference between the center and the margin of the tumor is 
4˚C (from 45˚C to 41˚C Figure 5. [32]), which lowers the CEM 43˚C. The 
CEM43˚C difference appears between the 10T , 50T , and 90T  approach, ob-
served more than 10-times drop between the averaging volumes [33]. Knowing 
that the tumor margin has the most vivid proliferation, it looks that 45˚C is 
suboptimal to obtaining clinical results. However, we know from clinical prac-
tice the absorbed energy does the job, even much smaller central temperature of 
the tumor.  

The Tx may change over time because the heat spreads and changes the tem-
perature in the target. The temporarily defined homogeneous volume may dy-
namically change by elapsed time; the situation is far from equilibrium [34], and 
the temperature and space distribution vary Figure 6. Consequently, for better 
characterizing the hyperthermia thermal effect, the temperature distribution has 
to be measured in space and time. 
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Figure 3. The homogeneous and heterogeneous intention of cancer heating. 
 

 
(a)                          (b) 

Figure 4. The heated focus rapidly spreads, and the temperature increases in a broader 
region. (a) The CEM43 dose depends on the isothermal areas, which differ by distance 
and develop by time. (b) The temperature distribution across the tumor after 57 min of 
treatment was measured by MRI [24]. Θ  is the temperature measured by MRI. The dis-
tribution was measured in 0.5˚C intervals.  
 

 
(a)                                (b) 

Figure 5. Central spot of focus has a significantly higher temperature than the margin. (a) 
The temperature distribution with radiative phase array (800 W, 80 MHz) in the center of 
the applicator ~1.6 intensity compared to the normal, non-heated surrounding, which is 
zero [33]. The size of the radiated spot is ~40 × 20 cm. The temperature distribution is 
approximately Gaussian. (b) Human heating with radiative (RF phase array) has 45˚C in 
the center of focus, while the margin of the tumor has 41˚C. The size of the tumor is ~5 
cm [32]. 
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Figure 6. The energy absorption heterogeneously follows the tissue structures and their 
thermal and electric changes. (a) The heated spots dynamically overlap (b) and change 
over time. The complete phenomena spatial-temporarily change. The temperature max-
imum is assumed when the heating is in the equilibrium phase. (c) The smoothed distri-
bution curve of θ by time development [24]. The peak shows the shift to higher tempera-
tures and higher smearing over time. 

3. Temperature Distribution Imaging 

Thermometry is mandatory for homogeneous tumor heating when the dose 
CEM43˚C Tx defines the isothermal volumes x by Tx temperature of the target. 
The necessity of the temperature measurement appears with other clinical de-
mands too: 

1) Due to the intended mass heating, a vast amount of energy has to be 
pumped into the body. The skin area at the incident signal needs intensive sur-
face cooling, which takes out a not-controlled part of the energy. Due to the si-
zeable resistive bolus (saline in), a large part of the energy does not heat the tar-
get. This effect uncontrollably modifies the incident power to the target, and the 
absorbed energy in the target may be controlled only by the temperature. No 
other control of energy exists in the target. 

2) Surface burns and hotspots could happen. The safety requests temperature 
control. Hotspots are due to the heterogeneity of the body and the interferences 
of the electromagnetic waves. These spots are potential dangers of thermal toxic-
ity. 

The space and time heterogeneity of the tumor development needs an appro-
priate thermal measuring control, so the temperature in time development and 
in the space distribution together. The CEM43˚C thermal dose parametrization 
raises many doubts and debates [35]. In numerous cases, the calculated CEM43˚C 
fall to fit the observed tumor destruction [36]. The CEM43˚C dose cannot de-
scribe the real situation of the hyperthermia processes without collected real spa-
tiotemporal information. The challenge arises from the non-uniform spatio- 
temporal temperature distribution, heterogenic varying the cellular destruction 
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in the target. The contradictory measurement results could be caused by the dis-
crete temperature measurements in time and space locations while the effects 
rapidly and nonlinearly change with the temperatures. 

Measuring the temperature is relatively easy in phantoms, in vitro, and in vivo 
experimental conditions for small body animals when thermal homogenization 
can be ensured. In these cases, the spatiotemporal development of the tempera-
ture could be followed by point sensors (like thermocouples, thermistors, fluo-
roptical sensors, etc.) taking care that the detector material does not interact 
with the external energy source, itself making heating heterogeneity. The usual 
contact temperature sensors could give realistic control only when many inde-
pendent points are measured Figure 7. When the point is near the arteries of a 
highly vascularized area, the temperature is less than in the low vascularization 
part. The point sensors are invasively placed in the appropriate position. The 
invasive temperature sensing may induce severe safety and treatment problems: 
discomfort, pain, possible infections, ulcers, and even some metastasizing by re-
leasing tumor cells into the bloodflow. Due to these complications, the intralu-
minal or intracavitary catheters measure the temperature near the tumor in 
many practical clinical solutions. However, the measurement in a lumen (eso-
phagus, rectum, vagina, etc.) is not accurate to ensure focusing and safety (avoid 
hotspots) and far not enough to conduct a treatment focus on a tumor far from 
the lumen. A further challenge of temperature point sensing is technical. The 
invasive temperature sensors could behave like a receiver antenna, and its extra 
energy absorption heats the sensor, so the measured temperature is undoubtedly 
higher than that in the measurable media. Applying optical wire sensing [37] 
could be a solution when the dielectric optical cable absorbs no selective energy 
from the applied frequency. 

 

 

(a)                         (b) 

Figure 7. Challenges of temperature measurements: (a) the invasively inserted point sen-
sors detect the very local temperature and not the average isothermal; (b) the semi-invasive 
temperature sensing intraluminal (esophagus, bronchus, urethra, vagina, rectum) cathe-
ters in lumens. The nearest lumen could be far from the tumor and so does not measure 
its temperature. 
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The specific absorption rate (SAR) distribution has smeared the boundary of 
the intended focus even in the homogeneous media [33]. Isothermal heating in-
tention usually heats a much larger volume than the targeted tumor. The at-
tempt of the noninvasive temperature measurement in the nearby lumen in-
creases the heat loss in healthy volumes. The heat diffusion smears the boundary 
of the intended focus with elapsing time. The focus boundary does not vanish 
isotropically. The extension depends on the heterogeneous thermal parameters 
of the neighboring tissues. The cervix tumor temperature in direct vaginal con-
tact appears lower than in the vaginal lumen [38] [39]. The MRI contactless 
temperature measurement in treatment focusing on the prostate shows 4.2˚C 
and 3.8˚C in the treated tumor and its healthy neighboring muscle tissue [24]. 
The temperature dispersion also differs: it was 9˚C broad range in the prostate, 
while it was only 4˚C in the adjacent (out of focus) muscle tissue. The measure-
ments in other cavities also show higher temperatures than the targeted tumor in 
focus [40], contrary to the lower SAR outside the center of the focus [33]. All of 
the above challenges make the temperature measurements inaccurate the ob-
tained results are not precise enough and sometimes contradictory Figure 8. 
[40]. 

Due to the control complications of the temperature, some clinical trials di-
vide the patients into the “heatable” and “not-heatable” groups [41] [42]. This 
selection of the inclusion criteria is based on the possibility of a temperature in-
crease in the patient’s selected area. However, the temperature in one spacetime 
point alone does not decide the development of the temperature in the entire 
treatment. This selection puts the patients in incorrect categories when compli-
cations of the real temperature measurement are evaded in an incorrect way. 
The selection could exclude many patients who could have benefited from the 
treatment. Moreover, the “cherry picking” selection method of patients is statis-
tically incorrect and does not fit the medical approach.  

Control of electric impedance could also be a temperature-measuring method. 
The growing temperature decreases the electric impedance [43], and the correlation 

 

 
(a)                                                   (b) 

Figure 8. Measurement of the intratumoral temperature in radiative heating. (a) The intratumoral temperature is lower than the 
temperature of the surrounding lumen. (b) The intratumoral temperature is lower than the temperature of the tumor-surface 
(constant temperature). 
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makes the temperature non-invasively measurable [44]. The great advantage is 
that it is not invasive, but on the other hand, the information about the position 
of the heated volume is lost. The impedance changes offer a calibration possibil-
ity, but its application for humans is questionable due to the considerable elec-
tric inhomogeneities of the body under the sensing electrodes. 

Infrared thermography (thermocamera measurement) is widely applied for 
measuring the surface temperature [45]. It gives a detailed and spectacular 
temperature mapping in two dimensions. It could be used in diagnostics and 
screening, too [46]. But its sensing depth is very shallow (~100 μm). Moisture 
in the surface could block the measurement, which otherwise depends very 
much on the form of environmental conditions (environmental temperature, air 
movements, radiations, etc.) [47]. However, due to the murine model’s thermal 
conduction and convection, the surface measurement gives information in depth 
[48]. The method can be used to follow the thermal homeostatic physiology [49]. 

In the early 90th in last century thermal microwave radiometry was intensively 
studied in hyperthermia [50] [51]. This promising method directly measured the 
thermal effects because it measured the thermal radiation. Twenty years later, 
the mode-developed microwave techniques in the GHz region allowed a renewal 
of the method [52] [53]. Using an isothermal phantom (pork muscle), the meas-
ured temperature with radiometry agreed significantly with the point-sensing 
thermocouple [54]. The method allowed us to produce an internal thermal map 
of the internal organs and tissues, so the thermoradiometry research was accele-
rated a few years ago [55]. A multi-frequency volumetric thermoradiometry was 
applied to measure the local heat source inside the human chest with satisfactory 
accuracy [56]. However, the method is not yet completely prepared for hyper-
thermia practice. 

Thermometry can be provided with computed tomography (CT). An image 
obtained by a CT scan shows pixels with information about the X-ray attenua-
tion in the tissue elements of corresponding voxels. CT thermometry has a good 
spatiotemporal resolution in experiments: 1.2 mm spatial resolution with an ac-
quisition time of 500 ms [57]; however, its temperature resolution of 3 - 5˚C is 
not enough for hyperthermic application. The newest CT thermometry article 
[58] shows a strong correlation between CT-measured thermal volumetric ex-
pansion physical density and temperature changes. Still, its significance is shown 
in higher temperatures as hyperthermia in humans.  

Magnetic resonance imaging (MRI) is one of the advanced inside spatiotem-
poral temperature measurements. The MRI combination with a radiative hyper- 
thermia system could provide a temperature map [24] instead of point sensing 
only. Detailed research in an application has shown the feasibility of the method 
in some special clinical applications [59] [60] [61]. The MRI refers to the chem-
ical or structural fingerprints of the temperature. Its accuracy depends on the 
phantom calibrating the actual temperature measurement. The calibration will 
be insufficient if the phantom has no adequate materials containing physiologi-
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cal and chemical similarities to living. Most of the pitfalls of MRI thermometry 
occur due to the electromagnetic (electric permittivity, magnetic permeability, 
electric conductivity) and chemical (chemical shift) [62]. The image artifacts 
from the additional frequencies of the radiation heating are also common and 
need electric engineering correction with appropriate RF filters [63]. Using fre-
quency variation requires a variation of the filters too. The developed MR ther-
mal map of the temperature distributions with annular phased array radiative 
treatments shows limitations and requests control possibilities for various tumor 
sites [60]. Individual limitations of radiative HT include anatomical, biological, 
and clinical factors causing complications in controlling the SAR distribution 
[64]. The water calibration [65] validates the temperature change in the MRI 
thermal map. The temperature in the body changes with many other parameters, 
essentially modifying the MRI signal. Cellular disruption is the final goal of 
hyperthermia. It modifies the MRI signal. The MRI measurement, in addition to 
the temperature, strongly depends on the structure of the measured volume. 
However, the calibration does not consider the final task: no structural change 
happens in the reference phantom; however, the main expected change is the 
cellular destruction by the hyperthermia treatment. The false calibration may 
result in inaccurate temperature measurements. In humans, the temperature 
measured by MRI ( Θ  value, MRI-temperature) slightly correlates with the 
normal temperature [24]. The clinical hyperthermia treatment changes the pro-
ton resonance frequency shift, which is measured by MRI, which could cause 
inaccuracy. This could be partially corrected with oil reference [66]. 

It is very promising that a good temperature measurement was achieved in 
high-intensity focused ultrasound (HIFU) [67]. The speed of sound monitoring 
gives precise spatiotemporal temperature information with ±0.2˚C resolution, 
providing stable and accurate hyperthermia control for an extended treatment 
time, too. This result encourages us to think about the ultrasound temperature 
measurement in electromagnetically energized hyperthermia methods, too. 

4. Discussion 

The role of temperature is a permanent question of hyperthermia applications in 
oncology. There are discussions and debates about its importance and problems 
of how to measure its rising inside the human body. There are intensive discus-
sions about the controlling parameters and dose of the treatment. The doubts 
about temperature as a goal of hyperthermia have multiple origins with sharply 
differing arguments. The debate concentrates on the difference between temper-
ature and the absorbed energy. In a homogeneous, nonliving matter, the ab-
sorbed energy and the temperature growth are linearly changing; both parame-
ters equally describe the thermal state of the matter when we know the mass and 
the specific heat of the absorbed material. The realistic assumption in this case is 
that the total absorbed energy is devoted to raising the temperature homoge-
neously in the entire target. This assumption is entirely baseless in living objects. 
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The living object is heterogeneous and reacts to absorbed energy with various 
molecular and physiological responses. There is no direct linear connection be-
tween the temperature and the absorbed energy [68]. 

The temperature impacts the body’s homeostatic control, which monitors 
thermal conditions and regulates the body’s temperature and its parts compared 
to a set point in the hypothalamus [69]. The feedback tries to restore the baseline 
condition of the unheated target. Feedback regulation non-linearly increases the 
blood flow [70] [71], as an effective heat exchanger, and the regulation intensi-
fies other physiological mechanisms to forcefully control conditions [72]. The 
thermally regulated blood flow delivers more oxygen for complementary radio-
therapy and increases the drug concentration from chemotherapies. On the oth-
er hand, the higher nutrition support and increased metabolic rate of the tumor 
by growing blood perfusion, as well as the higher risk of malignant dissemina-
tion by intensive blood circulation, contradicts the general goal of the treatment 
to destroy the malignancy. The absorbed energy and the temperature have no 
direct connection in the heating of living objects; they are connected by the pe-
culiarities of the living target [73] The contradictory balance of the temperature 
development (Figure 9) has multiple uncertainties. It delivers good local control 
of tumors with complementary treatments but does not increase the survival 
times due to the metastatic risks. An early phase III clinical study faced this 
problem; the clear local advances of HT+RT compared to RT alone did not ap-
pear in the survival time in breast tumors [74]. Another study obtained the same 
controversy: local remission success and the opposite in the overall survival [75]. 
The development of distant metastases was also observed [76]. The same reason 
led to a debate about local hyperthermia results for the cervix, showing both ad-
vantages [18] and disadvantages [19] in survival. A further study of cervix car-
cinomas supports the survival benefit [77], but again a critic has questioned this 
result [78] [79]. Another phase III trial of cervical carcinomas with HT plus 
brachytherapy involving 224 patients noticed the same controversies between 
survival time and local control [80]. The controversy was observed in a study of 
locally advanced non-small-cell lung cancer (NSCLC) having a significant re-
sponse rate improvement, although there was no change in overall survival [81]. 
A multicenter phase III trial for NSCLC also showed no improvements in overall 
survival in the hyperthermia cohort [82]. The cause was directly shown: distant 
metastases appeared five times higher (10/2; p = 0.07) in the HT+RT group than 
in the RT cohort [82]. The study of the surface tumors had the same contradic-
tion between the local control and survival rate [83]. The thermally assisted dis-
semination of malignant cells creates micro- and macro-metastases that cause 
contradictory results. We must learn from the contradictions and follow the 
admonishment of Dr. Storm, a recognized specialist in hyperthermia: “The mis-
takes made by the hyperthermia community may serve as lessons, not to be re-
peated by investigators in other novel fields of cancer treatment” [84]. 

The solution to get out of the trap is using thermal-independent effects. The  
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(a)                                 (b) 

Figure 9. The balances of dynamic control of hyperthermia applications. (a) The division 
of the electrodynamic energy to thermal and nonthermal components, and its complex 
cooperation. (b) The thermal homeostasis balances, and fluctuates between the complex 
variants. The nonthermal processes force the advantageous effects. 

 
thermal effects rapidly increase the chemical rate constant, promoting the 
chemical (enzymatic) reactions. The nonionizing radiation causes two groups of 
effects: thermal processes [85] and nonthermal molecular excitations [86]. These 
effects are in synergy and influenced by homeostatic surveillance. The thermal 
energy absorption component improves the conditions of the molecular and 
chemical changes forced by nonthermal activity. The increasing target’s temper-
ature promotes the nonthermal “chemical machinery” [87] [88]. These effects 
have to be used in synergy which is realized by the well-chosen modulated radi-
ofrequency electromagnetic effect in the mEHT technique [89]. The thermal 
component provides the appropriate temperature of the TME by heating the 
membrane rafts [90]. Another general thermal action affects the extracellular 
matrix (ECM) and a part of the TME. This acts mechanically and molecularly 
[91], accompanying the thermal absorption of transmembrane protein clusters. 
The nonthermal component excites the membrane receptors of the cells. The 
well-chosen electric current can deliver energy for molecular excitations involv-
ing various ionic and molecular interactions [68]. The process only has a subtle 
thermal effect and excites the molecules or structures that fit the applied reso-
nant conditions [92]. 

The complex thermal and nonthermal processes must be measured for dosing 
the mEHT treatment. The temperature provides basic information about the 
chemical reaction rate, which undergoes rapid nonlinear development in the 
physiological range of temperature, described by the Arrhenius plot as shown 
above. It needs such a method, which is well sensitive to both factors and makes 
the imaging in space in real-time. One of the promising methods is ultrasound 
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imaging with microbubble contrasting agents [93], [94]. The microwave also has 
thermal and nonthermal effects [95], [96], which may have addition to the 
cell-membrane focused mEHT by increase the cell membrane permeability for 
Ca2+ ions [97]. The ultrasound-exposed microbubbles have an impact on the 
membrane potential and so increase the Ca2+ influx, and the activation of the 
Ca2+-dependent potassium channels [98]. Noteworthy, the Ca2+ ion exchange 
also has an important factor in mEHT treatment [99] [100]. Another remarkable 
nonthermal effect of ultrasound is enhancing the voltage-sensitivity of myocar-
dial perfusion imaging [101], which could be a great advantage in sensing the 
voltage-sensitive impacts of mEHT, too. The mEHT essentially varies the mem-
brane-driven processes, showing high voltage change even at low SAR [102], 
which can help the signal’s excitation of the raft proteins [103]. The electrostatic 
charge of the membrane attracts the ions from the ECM, which is sufficient to 
establish a transmembrane potential [104]. Blocking the cell cycle is connected 
to the electric field activity and it is primarily nonthermal [105]. The electric 
field enters the cell, using partly the voltage-sensitive phosphatase (VSP) [106] 
and alters the cytoskeletal polymerization [107]. The cytoskeleton reconstruction 
has field-controlled phosphorous hydrolysis with a resonant-type change. The 
mEHT produces stochastic resonance, selectively inducing various biological 
enzymatic reactions and polymerization processes [92], which selection could be 
promoted by ultrasound processes like the electric field influences the acoustic 
response with a low-strength electric field on the order of 1 V/cm [108], which 
promotes the effect of mEHT. The ultrasound could influence the charge distri-
bution [109], supporting mEHT to suppress cancer development [110]. The ul-
trasonic wave may induce an electric current [111], which may cooperate with 
the mEHT activity against the tumor-stimulating injury current. All of these 
cooperative possibilities could build up a novel, effective theranostic method, 
creating a successful cancer treatment.  

5. Conclusion 

The most requested parameter of hyperthermia treatments is the temperature. 
The local heating of humans is never homogeneous. The body heterogeneities, 
the developing thermal spot of energy absorption make distribution of the ther-
mal processes in space and time. The spreading of the local focus by heat con-
vection and conduction is mandatory information for the clinical use of the 
conventional radiation heating. However, measuring the temperature in the 
deep-seated malignant volume is not simple. Together with the heterogeneity of 
the SAR distribution, the structural inhomogeneities are inherent features of the 
living system. The various structural scales have different modifications to the 
temperature distribution. Numerous conditions make it difficult to determine 
the temperature of a living object. The temperature is very much non-homo- 
genous site by site. The temperature does not characterize the cellular and phy-
siological changes but does general conditions for chemical reactions. The non-
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thermal processes use the conditions to accelerate the caused changes and op-
timize the synergy with thermal homeostasis. The only temperature as dosing 
works perfectly if the physiological factors (bloodflow/vascularization, metabol-
ism, chaperone-protein production, dissemination, apoptotic action, etc.) are 
not involved, and the tissue can be regarded as homogeneous and semi-isolated 
mass from its surroundings.  

Due to this inevitable heterogeneity temperature imaging in space and its de-
velopment in time is requested for the proper characterization of the heating as 
the condition of the nonthermal molecular changes. Multiple methods are 
available, but all have some serious disadvantages: point sensors are accurate but 
measure only a point invasively, thermography is applicable only on the very 
surface distribution, and electric impedance and radiometry are not accurate in 
registering the space distribution. The expensive CT and MRI imaging are com-
plicated methods, their combination with the heating device is complicated, and 
their thermal distribution measurements have a lot of pitfalls. Furthermore, the 
nonthermal components of the induced processes are not measurable with the 
above methods. A novel emerging technology, the application of ultrasound mi-
crobubble contrast agents is a promising facility for solving complicated tasks. It 
has good spatiotemporal resolution and is sensitive to nonthermal effects. The 
microbubbles could be synergized with modulated electrohyperthermia (mEHT), 
completing it as a strong theranostic method in the “war” against cancer. 
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