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Abstract 
Living objects have complex internal and external interactions. The complex-
ity is regulated and controlled by homeostasis, which is the balance of mul-
tiple opposing influences. The environmental effects finally guide the self- 
organized structure. The living systems are open, dynamic structures per-
forming random, stationary, stochastic, self-organizing processes. The self- 
organizing procedure is defined by the spatial-temporal fractal structure, 
which is self-similar both in space and time. The system’s complexity appears 
in its energetics, which tries the most efficient use of the available energies; 
for that, it organizes various well-connected networks. The controller of en-
vironmental relations is the Darwinian selection on a long-time scale. The 
energetics optimize the healthy processes tuned to the highest efficacy and 
minimal loss (minimalization of the entropy production). The organism is 
built up by morphogenetic rules and develops various networks from the ge-
netic level to the organism. The networks have intensive crosstalk and form a 
balance in the Nash equilibrium, which is the homeostatic state in healthy 
conditions. Homeostasis may be described as a Nash equilibrium, which en-
sures energy distribution in a “democratic” way regarding the functions of 
the parts in the complete system. Cancer radically changes the network sys-
tem in the organism. Cancer is a network disease. Deviation from healthy 
networking appears at every level, from genetic (molecular) to cells, tissues, 
organs, and organisms. The strong proliferation of malignant tissue is the 
origin of most of the life-threatening processes. The weak side of cancer de-
velopment is the change of complex information networking in the system, 
being vulnerable to immune attacks. Cancer cells are masters of adaptation 
and evade immune surveillance. This hiding process can be broken by elec-
tromagnetic nonionizing radiation, for which the malignant structure has no 
adaptation strategy. Our objective is to review the different sides of living 
complexity and use the knowledge to fight against cancer. 
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1. The Biological Regulation—Homeostasis 

Living systems are open, dynamic structures performing random, stochastic, 
self-organizing processes. Together with the space arrangement, they create a 
temporal self-similarity [1] and follow the dynamic equilibrium in homeostasis 
[2]. The temporal self-similarity forms an intrinsic self-time of the living objects 
[3].  

The openness of the biosystems is sensitive to environmental influences, 
which trigger some internal processes keeping homeostasis in the human body 
Figure 1. Adynamic hierarchical structure characterizes the biosystems. 

The hierarchy is not one-directional. Every level interacts with all others, al-
lowing the physiological control to react to all the environmental challenges, 
keeping homeostasis stable. The living system forms dynamic interactions be-
tween the various parts (like molecules, cellular compartments, cells, tissues, and 
organs), ensuring the spatiotemporal control of homeostasis and balancing mul-
tiple opposite regulatory feedback. The promotion and inhibition are activated in 
parallel “like twins” in the homeostatic balance [4]. The vibrant “competition” of 
suppressor-promoter pairs have an essential role in the homeostatic balance dy-
namic regulation Figure 2. The chemical principle governs the balance of the 
promoter-suppressor pair in the complex equilibrium of homeostasis like the Le 
Chatelier-Braun principle: a perturbation in the system in equilibrium has an 
opposite effect of the perturbation, balancing the equilibrium. 

Promoter suppressor balance forms a transition probability instead of strict 
determinism. The transition depends on the overall conditions and their fluctua-
tions. 

While these pairs may not have the same “promoter-suppressor” terminology 
used in genetics, they serve similar balancing functions. Here are some examples: 

1) Agonist ↔ Antagonist. In physiology, agonists are molecules that activate a 
receptor or cellular response, while antagonists are molecules that inhibit or 
block the receptor or response. For example, neurotransmitters and their recep-
tors often have agonists and antagonists that help regulate neural signaling. 

2) Activator ↔ inhibitor: This pair is similar to the genetic promoter-sup- 
pressor concept. Activators enhance a specific process, while inhibitors hinder or 
slow it down. For instance, enzymes can have activators and inhibitors to control 
their activity. 

3) Stimulator ↔ Repressor: In various biological contexts, stimulators pro-
mote a particular response, while repressors dampen or reduce that response. 
Hormonal regulation often involves stimulators and repressors. 
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(a)                                                     (b) 

 
(c) 

Figure 1. Physiologic networks in human living complexity. (a) The external and internal impacts induce processes to keep equi-
librium in the human body. (b) The organism network has various interdependent complex subsystems, which could have differ-
ent evolutional principles (random, scale-free, copying, fitness) and produce hierarchical networking. (c) The homeostatic balance 
controls physiological regulatory systems, which are also interconnected and deeply connected to the subnetworks in (a). The four 
physiological feedback loops shown regulate the most important feedback loops, but these are not alone; six more have multipur-
pose systematic effects, and further regulatory loops exist with less complexity.  

 
4) Pro-inflammatory-Anti-inflammatory: In the immune system, pro-inflam- 

matory molecules (e.g., cytokines) promote inflammation as part of the immune 
response, while anti-inflammatory molecules (e.g., cytokines and prostaglan-
dins) help resolve inflammation and maintain tissue homeostasis. 

5) Excitatory-Inhibitory: In neuroscience, excitatory neurotransmitters and 
receptors promote neuronal firing and signal transmission, while inhibitory 
neurotransmitters and receptors suppress neuronal activity. 
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(a)                                            (b) 

Figure 2. The feedback mechanisms (a) the negative feedback loop controls the dynamic balance. (b) The dynamic balance of the 
suppresser and promoter effects defines the equilibrium through transition states. 

 
We use the promoter-suppression effector-pair in general meaning. The pro-

moter-suppressor negative feedback balance typically refers to a regulatory me-
chanism within biological systems where specific molecules or genes act as pro-
moters to increase the expression of a particular gene. In contrast, others act as 
suppressors to inhibit that expression. The goal is maintaining a dynamic equi-
librium or balance between these opposing forces. Both effectors in dynamical 
equilibrium (promoter and suppressor) evaluate the cost/benefit ratio and fluc-
tuate around the optimum for both when the cost of further steps is higher than 
the benefit of the result. The negative feedback process regulates the cost/benefit 
ratio. 

The negative feedback in every promoter-suppressor balance makes fluctua-
tions Figure 3. The fluctuations appear even in the simplest molecular bonds, 
where the temperature and the bond strength oppose and balance. In chemical 
reactions, the two-way reaction direction represents the opposing driving forces. 
The biological processes are more complex, and the overall negative feedback 
processes tune the equilibrium. The fluctuations are “chaotic” [5], [6] which 
means that no deterministic temporal prediction of the subsequent opposing 
steps exists. The chaos in physiology has a special meaning [7]. The “constrained 
randomness” [8] is usual in physiology, and its study is a valuable tool to under-
stand its mechanisms as well as recognize the deviation from “normal”. 

By the essential fluctuations around the equilibrium, the life is on the “edge of 
chaos” [9] [10]. It has a self-organized criticality [11], which is widely used in bi-
ological perspectives [12] [13]. The control of the regulation compared to the 
reference value is ensured by the feedback mechanism within a predetermined 
range. The system does not require precise adjustment. The proportional feed-
back mechanism driving forces on the opposing actors realize an automatism, 
keeping the system in equilibrium. Fuzzy logic may model it. It evaluates the 
“degrees of truth” instead of the “true or false” choices [14]. The fuzzy logic di-
rects the homeostatic control of the entire spatiotemporal arrangement of the  
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(a)                                                    (b) 

Figure 3. The permanent dynamic changes cause a never-rest situation. (a) The dissipation consumes the energy, while the ener-
getically open conditions drive the process. When a promoter increases the growth of the signal (energy, info, etc.), the opposing 
suppressor becomes active to avoid the overshot of the change. The same happens with the suppressor, which is limited by the 
promoter in the opposite direction. The opposing activity of the promoter-suppressor pair creates fluctuation around the equili-
brium level. (b) The connections between the various parts dynamically fluctuate at all levels of the organizational structure (A 
hypothetical part of the network connection is shown for clarity). 

 
living systems. This distribution results from the strongly interconnected nega-
tive feedback loops, which regulate the balances in all ranges, stabilizing the dy-
namic system. Each step of dynamic equilibrium is based on the interconnected 
balance of suppressor-promoter pairs of the regulatory homeostatic process [15]. 
The complex dynamic equilibrium drives the living regulative activities from 
genomic to global adaptation to environmental challenges [16]. The time-de- 
pendent processes realize the observed signal with a probability as the actual ex-
position from the possibilities of the fluctuations of the measured signal. These 
phenomena request a stochastic approach instead of deterministic descriptions 
[17]. The deterministic reductionism can mislead the research. The stochastic 
approach is fundamental in biological dynamism [18] [19]. The vivid dynamic 
equilibrium forms a stable system with active fluctuations in the predetermined 
range. This self-regulatory system is complex; every process in the system is in-
volved in multiple interactions and embedded in the network of numerous other 
functions. The homeostatic equilibrium induces compensatory strategies against 
every external influence and activates backlash mechanisms. In this way, any 
drug therapies, together with their targeted effect, cause an opposite compensa-
tory process, developing resistance against the impact of the drug. This simple 
rule appears in chemistry (Le Chatelier-Braun principle) and fits the Darwinian 
selection rules. Reacting to the environmental challenges, the regulative activities 
are tuned by the complex dynamic balance of the living systems from genomic 
to global adaptation [16]. Instead of conventional deterministic changes, the dy-
namic events request a stochastic approach, introducing a time-dependent 
probability of the processes [17]. 

Biological complexity is a well-proven fact based on physical and physiologi-
cal principles [20] [21]. Darwin developed a non-deterministic idea through the 
theory of evolution that introduces probability in biological species develop-
ment, having uncertainties as consequences. This idea drives biological devel-
opment everywhere. The environment drives the Darwinian selection and whose 
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the easiest adaptability to the changed conditions. This is a complex mechanism. 
Contrary to the complexity of human organisms, the paradigm of modern med-
ical research does not deal with the consequences of complexity [22]. Misinter-
preting the complexity, some research uses homeostasis as a static framework for 
effects [23]. The biological dynamism is fundamentally stochastic [18]. The ob-
served complex phenomena cannot be studied in isolated parts [24]. “A living 
thing cannot be explained in terms of its parts but only in terms of the organiza-
tion of these parts” [25]. Living complexity has a logical incompleteness [26], 
discovered in the mathematical application a century ago [27]. Incompleteness 
in biology means there are no answers to valid questions, which have complex 
feedback with self-reference, like the “classical” question: what was the first, the 
hen or the egg? The answer needs evolutionary thinking, and determinism is not 
applicable. A similar question in the complex homeostatic stability has no direct 
answer: what existed first: the promoter or the suppressor? The feedback needs 
developmental, non-deterministic, and non-linear consideration. The complex 
system is regulated and controlled primarily by negative feedback loops with 
Darwinian law, having incompleteness, which is a challenge in theoretical biol-
ogy [28]. 

2. Self-Organization 

Self-organization characterizes the living organism in its spatiotemporal ar-
rangement at every level of the structure [29] [30]. The self-organized complex 
feedback processes compensate for the extended number of perturbations and 
secure the system’s stability. The self-organizing procedure is defined by the spa-
tial-temporal-fractal structure, which is self-similar in space and time [31]. The 
self-similar construction of the living objects statistically repeats the same build-
ing block (template), connects them with forming a network [16], and creates a 
self-similar harmony. Self-similar harmony is dominant in life. The self-organized 
hierarchical clustering has robust stability against internal and external noise. 
The constructional template repetition makes a similar structure by some orders 
of magnitude magnification. Self-similarity characterizes the time set of different 
interactions and energy exchanges. 

The random unicellular life structure vividly functions when the cells have 
plenty of energy for their life, so their environmental dependence is marginal. 
However, when the living mass grows, the resources become limited, and the 
cells must organize themselves to survive. The organization needs to “sacrifice” a 
part of the individual energy budget in exchange for the possibility of joint sur-
vival. The driving force of the limited resources to the direction of collectivity is 
observed in starving slime molds [32] [33]. The collective actions help distribute 
the available, limited energy intake to share between the parties on their needs 
and, in this way, satisfy the group’s survival. Those cells that give up their inde-
pendence and are connected to other cells by work division share the available 
resources and thus ensure their survival. Collectivity balance appeared in evolu-
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tion [34]. The size of the colonies of cooperative cells is matter [35]. The acci-
dentally created more adaptive subjects have evolutional advantages and start 
the complexly self-organized building of the living structure. The goal of group 
formation is cooperation, which optimizes energy input. The driving force of the 
limited resources to the direction of collectivity is observed in starving slime 
molds [32]. Such collective strategy appears not only in the case of living subjects 
but also in animal or human societies, where self-organized connections help in-
dividuals survive environmental fluctuations. Interestingly, the grouping protec-
tive survival strategy is more general than the energy-sharing triggers, which is a 
driving force for the collective actions of some prey animals against the preda-
tors. Artificial intelligence models show the advantage of collectivity [36] and 
among many others in ant colonies [37] [38]. 

2.1. Energetics 

The transition state at the biological reactions creates significant fluctuations in 
the transition energy. The system tries to keep the utilized energy as low as 
possible, but the independent “environmental” energy quanta nondeterministi-
cally interact and make the regulation process noisy. Homeostasis guarantees the 
local stability of living objects and compensation for the effects of internal and 
external noises. The homeostasis is a dynamic process adjusted to the energeti-
cally open system. The dynamic processes are self-organized [30], driving the 
system’s evolution [39] in a non-linear way [29]. The dynamic complexity ensures 
the robust stability of living objects following homeodynamic processes rather 
than a homeostatic one. It continuously interacts with its environment, 
cross-transporting energy, materials, and information, and during these processes, 
both parties have dynamic modifications. 

The environment and the entire organism with its subunits (like cells, tissues, 
and organs) have open energy trade with each other in the living system. The 
self-organized process with self-similar rules develops fractal structures [40], 
which characterize the clustering of the cells well distinguished from the patho-
logical forms [41]. Homeostasis optimizes the energy expenditure of the system, 
maximizing its efficacy. The efficacy maximum means a minimal dissipation loss 
of working energy. Entropy production increases energy dissipation loss, mean-
ing the energy is manifested in heat instead of creative structural utilization. En-
tropy characterizes the system’s disorder, referring to the lost energy already be-
ing used for disordering the structure. The activation energy (molar enthalpy) of 
a process linearly depends on the molar entropy [42] [43], connecting the in-
vested energy and limiting its efficacy by the non-active energy part. 

Healthy homeostasis maintains a stable internal environment and minimizes 
entropy production, trying to limit the increase in entropy with regulative feed-
back, efficient resource utilization, and adaptation and repair. The idea of the 
minimum entropy production in a system was introduced by Prigogine [44], 
[45]. His theorem was generalized in a dynamic equilibrium of stationarity [46], 
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trading with the stability of the stationer systems [47] [48]. Normal cellular divi-
sion and organization in a balanced energy flow inherently involve some entropy 
production generating metabolic heat. Cancer cells have metabolic alterations 
and higher entropy production than normal cells. The excess entropy produc-
tion results from uncontrolled proliferation, leading to increased energy expend-
iture and disorganized growth patterns, developing a higher lesion temperature. 
Cancer is a typical entropy producer with its uncontrolled proliferation and the 
energy demand to supply it. The disrupted protein function by genetic alteration 
and the modified cellular regulation contribute to disordered energy flow and 
increase entropy production. Network structure plays a crucial role in deter-
mining the overall entropy production of a complex system. Efficiently arranged 
networks with optimal flow paths can facilitate processes with lower entropy 
generation compared to poorly connected ones. However, the minimal entropy 
production is not a universal law and doesn’t always apply to all complex sys-
tems. Specific system properties and external constraints can influence the do-
minant principle governing entropy production. 

Homeostasis and minimal entropy production are intricately connected con-
cepts that shed light on how living systems maintain stability and efficiency 
amidst the constant flux of the world. Homeostasis maintains the internal envi-
ronment in dynamical equilibrium, while entropy production is a universal 
trend toward disorder. Homeostasis minimizes entropy production. Living sys-
tems constantly defy the tendency towards increasing entropy by actively main-
taining homeostasis. The balancing process involves negative feedback loops. 
The balances are used judiciously to maintain vital processes, take care of the 
energy and matter resources, and minimize waste and dissipation. Some note-
worthy examples of how homeostasis works with minimal entropy production. 
• The metabolic enzymatic processes in pathways are arranged and regulated 

to optimize energy extraction and minimize waste production. 
• Sweating and shivering are examples of how the body minimizes entropy 

production by maintaining a stable internal temperature. 
• The immune system identifies and eliminates foreign invaders, preventing 

cellular disorganization and maintaining tissue integrity. 
• Systems with homeostasis can adapt to changing conditions and repair dam-

age, preventing entropy from gaining a foothold. 
The interplay between homeostasis and minimal entropy production offers a 

fascinating lens to understand living systems’ remarkable resilience and effi-
ciency. 

The minimal entropy production, which is connected to the optimal use of 
energy resources, is slightly connected to the Darwinian evolution principle, 
which governs the long-term evolution of the species. The species that can 
manage minimal entropy production have advantages due to better energy utili-
zation. 

Network structure plays a crucial role in determining the overall entropy 
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production of a complex system. Efficiently arranged networks with optimal 
flow paths can facilitate processes with lower entropy generation compared to 
poorly connected ones. Specific network properties, like modularity, redundan-
cy, and feedback loops, can contribute to minimizing entropy production. Mod-
ular systems can isolate inefficiencies, while redundancy ensures continued 
function despite disturbances. Feedback loops can regulate processes and op-
timize resource utilization, reducing waste and entropy generation. 

In a simple energy exchange, the energy intake linearly depends on the mass, 
so the mass of the living object linearly defines the metabolic energy. This ex-
change distributes the metabolism equally and proportionally to the metabolic 
mass. The most straightforward situation for average distribution is when the 
cells are entirely independent, with no interaction, and the energizing nutrients 
are unlimited. Such a situation happens in well-supported cell cultures, where 
the medium has plenty of nutrients for all the cells. All cells metabolize equally, 
so the individual metabolic rate is equal, independent of how many cells are in-
volved [49]. The specific energy usage (the basal metabolic rate (BMR) of a unit 
mass (M) of the living object 0B BMR M∝ ) shows the efficacy of the energy 
utilization in the resting state. Experiments clearly show the difference between 
individual satisfaction with energy supply and collective optimization. The in vi-
tro cell cultures provide plenty of nutrients in the supporting medium where the 
cells are living. In this case, there is no cooperation and no self-organization 
among the cells, so their intaking metabolic power is equal, B0 = const. indepen-
dent of the number of cells involved in the experiment [49]. Optimizing energy 
distribution is unnecessary when the environmental conditions may be unlim-
ited to ensure the nutrients for life energy. There is no self-organizing; all cells 
participate equally in the unicellular setup. The challenge of individuality starts 
when the resources are limited. The limit of natural resources soon begins to 
develop a competition between the neighboring living fellow-subjects for the re-
sources. Similar individuals, having the same “body mass” compete intensively 
with relatively equal chances to win. However, when a more massive object ap-
pears by accidental variation of cellular contacts, its chances to adapt to the 
challenges and survive increase. The equality of the participating cells is broken; 
they specialize in various tasks in the collective, which mainly depends on their 
position in the structure and participation in the energy and information trans-
fer. The adaptation maximizes the use of resources, like when starving the object 
maximizes the material payoffs [50], as we had seen in molds where the starting 
multicellularity realized the available maximum. 

Living objects have enormous heterogeneity. Their parts are not similar in 
their form, shape, size, structure, behaviors, properties, physiologic parameters, 
living preferences, etc. Due to these features being universal for living creatures, 
space and time similarities of living organisms (“allometry”) are observed [51]. 
Various concepts of metabolic studies may use allometry [52]. However, the self- 
organizing of their integrity and the energy sharing of the metabolic process is 
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common, giving the possibility of allometry [53]. Irrespective of their evident 
and enormous differences, self-organized self-similarity is general for all kinds of 
life realization. In the complex self-organized order of cells, the power intake in 
unit mass (𝐵𝐵0) follows an allometric scaling [54] 

1
4

0
BMRB M

M
−

∝ ∝                             (1) 

It is a clear tendency: when the mass is more significant (the unit has more 
individuals cooperating), the requested basal metabolic rate decreases the specif-
ic energy utilization and efficacy. The reason for these relations is rooted in 
self-organizing and self-similarity [55]. Allometry has a role in self-organized 
evolution [56]. In this way, the allometry preferring the larger mass for optimal 
use of the available energies has an additional preference in the evolution 
process. Optimal energy management may limit cellular tumor thermogenesis. 
Suppressed thermogenesis reduces entropy production. This change is one of the 
reasons the animals with large masses, despite having more cells and a higher 
probability of cellular divisions, have less cancer prevalence [57]. Homeostatic 
control and minimal entropy production optimize energy utilization, which 
could have a pivotal role in cancer prevalence. Random genetic mutations offer a 
linear expectation of cancer incidence but have a power law function, indicating 
that several sequencing mutations lead to cancer.  

The minimal entropy production, interspecies allometry, and homeostatic 
control show living systems’ adaptive strategies and intricate organization, in-
cluding the deviations leading to cancer. Deviation from physiological optimiza-
tion and resource utilization could hint at the mechanisms of cancer develop-
ment. The disruption of the optimizing principles (including the deviations in 
the homeostatic regulation) contributes to malignant conditions. It builds a the-
rapeutic strategy to restore homeostasis and minimize entropy production in 
dysregulated states. The predictability of gene interactions could be a great addi-
tion to personalized medicine with a better estimation of the risk of the malig-
nancy and increase the treatment efficacy. 

Scaling, a power function dependence like (1) is fundamental in living 
processes. The relative changes are generally proportional in a complex system 
[58]. Consequently, when a parameter ℘  depends on the parameter g, then  

their relative changes and g
g

℘
℘

 ∆ ∆ 
 
 

 are proportional by an empirical factor z:  

g
g

z℘
℘
∆

=
∆

                            (2) 

Integration of (2) we get 
zqg℘=                               (3) 

The deviation from the randomness is connected to the self-similarity of the 
living objects [59] [60], and the fractal geometry may describe the assembly of 
the biological structures [61]. The self-similarity of the fractal geometry is con-
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nected to the scaling behavior. A large category of living systems and processes 
may be described with scaling laws [62]; even the metabolic power and its fluc-
tuation behave universal scaling [63]. The living organism has to grow in collec-
tive harmony, and the relative growth of parts must be proportional [64], so the 
basic scaling (2) is well applicable to growth processes. The scaling allometry 
focuses on the ideal nutrient supply and homogeneous resting state in stationary 
equilibrium where the metabolism of the unit mass becomes optimal. With the 
growing number of “individuals,” nutrition starts to be limited. When the nu-
trients are scarce, like, in many cases of cancer development, the scaling power 
differs. In this stage, some cooperation features at least perish the weak or inter-
nal members of the “colony”, appear, and the suboptimal alimentations develop 
increased demand for intensive transports.  

The bio-signals have self-similarity and correlate with their earlier value at 
time-lag τ . Autocorrelation is how the signal correlates with its earlier values. 
The τ  characteristic of temporal self-similarity originates from the repeated 
regulatory signals in the organism. The autocorrelation carries information 
about the dynamism of the microstates, showing the preferences of possible va-
riants of the molecular reactions [65]. The homeostatic balance defines autocor-
relation of the set of signals of biological changes [66] [67]. The induced collec-
tive noise of homeostasis has particular noise when the noise power and the fre-
quency have a reciprocal relation (1/f noise) [68] [69]. The self-similar signal is 
one of the hallmarks of collectivity, well described in fractal physiology [70], 
[71], it is a time-fractal in the living organism [72]. The time fractal makes orga-
nized “chaos” in physiological signals [5], which is a stochastic phenomenon, 
and knowing its origin, it is entirely manageable [73]. The 1/f noise is like a 
“song” in the dynamic system [74], and it can be corrected when the cancer de-
viates its “tune” [75]. The song’s harmony also describes the biosystems in pop-
ular literature [76]. The cancer genetic sequencing generations have a 1/f pow-
er-law distribution of mutant frequencies [77] [78], showing a self-organized 
adapting behavior of gene organization. This 1/f “noise” has a high complexity 
with the highest information content and best memory (autocorrelation) [79] 
Figure 4. 

2.2. “Democracy” and “Autocracy” in the Living Complexity 

The self-similar self-organizing process is collective [80] and relates to the scal-
ing [81]. Terminals of a circulatory system that supply an organ adjacent to the 
cells are equivalent and supply the cells with the same functions equally. Collec-
tivity subordinates the individual needs to the groups and optimizes the energy 
distribution for the best survival with the lowest energy consumption. This 
energy-sharing works like a kind of democracy [82]. This “democracy” is regu-
lated by general biophysical rules, governed by the competition for resources in 
micro and macro phenomena. The various species fit the evolutional develop-
ment when the given living object adopts the different environmental conditions,  
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(a)                                                        (b) 

Figure 4. The autocorrelation function is related to the self-similarity parameter of an integrated time series. (a) The complexity is 
maximal in 1/f noise. Complexity gradually vanishes at lower or higher autocorrelation values. (b) The autocorrelation vs. 
time-lag. 

 

develops a multicellular structure with individually characteristic “democratic” 
distribution of the available sources, and forms species-character of the ho-
meostatic regulation. The unified principle of developing the homeostatic con-
trol and the unified dynamic internal “democracy” found the interspecies allo-
metric scaling of metabolic rates versus mammalian body size [83]. This general 
complex phenomenon also justifies the validity of the comparative study of can-
cer in the species [84] [85] [86], giving a tool to study comparative oncology 
[87]. The “democratic” idea looks more general than the energy supply. The 
“democratic” distribution characterizes the information distribution, too [88].  

The cells use different amounts of energy depending on their function, so the 
“democratic” distribution of energy between all cells equally obviously does not 
work. However, another kind of “democracy” works: the cells have well-controlled 
and balanced energy part depending on their function in the collective. The 
structure of the entire system optimizes the energy distribution. The energy bal-
ance realizes a variation of the transport network supplying the demand varia-
tions. This directly involves the fractal structure of transport not being unified as 
a structure in the system but formed by homeostatic demands. The balancing of 
autocracy and democracy characterizes the evolution when the “selfish gene” 
[89] tries to dominate all processes, but the environment-dependent self-organi- 
zation requests democratic decisions. Otherwise, the process blocks the com-
plexity of the system. The competition with two actions to cooperate or defect 
well approaches the biological interactions [90]. Such alternating action strate-
gies are sometimes more relevant than synchronous processes [91]. 

The balancing of autocracy and democracy characterizes the evolution when 
the “selfish gene” [89] tries to dominate all processes, but the environment-de- 
pendent self-organization requests democratic decisions; otherwise, the process 
blocks the system’s complexity. Complex homeostatic control shows the balance 
of feedback mechanisms. The negative feedback interactions are tuned to keep 
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the actual state comparative accurate value, determined by the self-organizing 
system. Nevertheless, the system is energetically open, which is the mandatory 
condition for life, so the positive feedback mechanisms compulsively push some 
reactions, determining the metabolic processes in both directions (catabolism 
and anabolism). These obligatory constraints indeed derive an autocratic line 
when the probability of responses drives the defined direction of the processes. 
Such necessary autocratic strategies can be beneficial for exerting control over 
asymmetric interactions [92]. The regulatory networks have many commonali-
ties from microbes to humans [93]. The regulation of collaboration and coope-
rativity massively boosts the democratic character with overall genomic com-
plexity. The complex regulatory effects tend to a partnership supporting the 
democratic structure, whereas others regulate primarily in isolation, in a more 
autocratic fashion [94]. The degree of collaboration forming autocracy in oppo-
sition to democratic behavior is a particular characteristic of the complexity of 
the open living systems.  

The meaning of living efficacy had changed drastically due to a shortage of 
resources and other existing inequalities. These turn mass-production strategy 
into survival preferences, and later, more complexly, not only individual survival 
but the inheritance of successful capabilities to the next generation, transferring 
the appropriate genetic code. Due to its energetical openness, the individual liv-
ing object needs internal operative distribution of the incoming energy. Its parts’ 
survival determines the object’s overall survival, so optimizing energy distribu-
tion is crucial. The “democracy” of distribution is based on a strict competition 
for the species’ survival, making evolutionary selection. The selection mechan-
isms are strict “autocrats” [95], eliminating the non-optimal creatures; only the 
best, the most adaptive to the environment, could survive. In this way, an overall 
driving force appears in the background. The general systems theory [96] was 
one of the early efforts to show the complexity of open living systems, focusing 
on the deep embedment of its processes in environmental interactions. Due to 
the environmental actions, the physical laws work well to explain the evolutio-
nary processes [97]. Life is a collective phenomenon together with its environ-
mental conditions. The energetically open living system intensively interacts 
with its environment, exchanging molecules and various thermodynamic and 
electromagnetic parameters. Simply put, our focus differs from living motility to 
energy transfer. Instead of the monkey’s migration through the forest, we con-
centrate on how the forest migrates (flows) through the monkey, like the envi-
ronmental energy source.  

The environmental determinant is flexible. The developing living organization 
could counteract and balance the ecosystem in a dynamic interaction, so the sit-
uation manifests the complexity again: the environmentally determined evolu-
tion drives the self-organization, which in feedback guides the evolution [98]. 

2.3. Morphogenesis 

The mutual interactions of malignant cells with their host tissue form a frame of 
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cancerous development. The generation of the developed forms (morphogene-
sis) sculpts a single cell into the intricate and diverse shapes of living organisms, 
independent of their size and lifestyle, equally applicable to such extreme masses 
as drosophila and whales. Morphogenesis is one of the fundamental pillars of 
developmental biology. Morphogenesis drives the development of forms in bi-
ology [99] with an activator and inhibitor generating repetitive patterns from 
differential diffusivities and nonlinear reaction terms. Morphogenesis intricately 
balances genetic instructions and environmental influences. Genes provide the 
blueprint, but external factors like nutrients, light, and mechanical conditions 
can influence an organism’s shape. The morphogenetic interactions and its act-
ing “field” and “waves” were first proposed as early as 1904 [100]. The morpho-
genetic field is a group of cells responding commonly to discrete, localized bio-
chemical signals. Shared interactions can develop morphological structures. 
morphogenesis became one of the focuses of developmental biology. The fractal 
description of the spatial irregularities of living objects allows for objectively 
comparing complex morphogenetic differences [101]. The morphogenesis may 
reprogram the cells, like malignant cells transforming to normal when trans-
planted to a healthy environment [102] [103], and vice versa. The specific me-
chanisms of morphogenesis vary greatly depending on the organism and the or-
gan or tissue being formed. Morphogenesis is essential for the proper function-
ing of organisms.  

The complexity of cancer has structural and dynamic components that de-
stroy the healthy homeostatic spatiotemporal arrangement of the host tissue. 
The developing microenvironment of malignant cells forms a “morphogenetic 
field,” which evolves the structure described by fractals [104]. Generally, scale- 
invariant, and statistically self-similar structures form fractals. The irregular, 
non-self-similar structures could be affine fractals when they can be characte-
rized with a power function or are not fractals, mostly with exponential charac-
ter [105]. 

Morphogenetic models with diffusion-like and cellularly inductive methods 
[106] showed that the frequency of the activated avalanches vs. the number of 
activated genes in the random gene model has a power-law of 1.25 power, so the 
high frequency of the avalanches is paired with a low number of activated genes. 
The development of a small number of spatial patterns was observed to be linked 
to the minimal genetic networks. The reaction-diffusion system (activator-inhi- 
bitor balancing Figure 5) depends on the concept of a chemical prepattern de-
veloping before cell fate decision and emphasizes the ability to induce pattern 
formation. It works like a promoter-suppressor from an allegedly homogeneous 
initial state. The reaction-diffusion model in morphogenesis [107] could be ex-
tended with electrodiffusion in cancer development [108]. Analysis of morpho-
genesis needs self-organization principles and network analysis of biological 
structures. 

The morphogenetic field can show a significant loss of the intercellular con-
nections with redistribution of the E-cadherin/𝛽𝛽-catenin complexes. Still, the  
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Figure 5. The activator-inhibitor balance is usually 
modified with diffusion and electric field. These ef-
fects are intensively interacting. 

 
shape modification could force a transition of the metabolic pathway and rear-
range the healthy oxidative signals [104]. This reversing reconnection of the 
nonconnected malignant cells could be observed in experiments [109] [110], 
where the electro-diffusion was used in the reaction system. 

2.4. Networking in Living Objects 

The complex network may be interpreted where each element is a node, and re-
lationships (connections) between them are represented with links. A graph may 
represent the network, where nodes are vertexes connected with edges. There are 
different concepts to build up a network, and these characterize various actual 
structures.  

Erdos-Renyi’s evolution of random networks [111] [112] is widely used as a 
starting reference for network development. Here, each pair of nodes is con-
nected with p probability. It randomly makes approximately ( )1pN N −  num-
ber of links. The Erdos-Renyi (ER) network graph is a discrete distribution func-
tion with binomial character [113], which is well approximated by the Poisson 
distribution. The nodes have an average degree k , which exponentially de-
creases at high k , showing that the significant deviation from the average is 
rare. Here, the clustering coefficient is constant, and the network size ( N , the 
number of nodes) is a power function of the mean path length ( ): dN ∝  , so 

( )~ ln N . ER follows a power-law which is characteristic for all self-organized 
and self-similar structures (like many biological phenomena) [114]. 

The links between the network nodes have the primary role in the interac-
tions, information exchange, and transport. A milestone model was elaborated 
by Watts and Strogatz [115], showing possible extra connections (shortcuts of 
the links) in the complex social network, which forms “cliques” where the links 
describe relations between the nodes. The Watts-Strogatz model (WS) [115] 
starts with a regular lattice, where each node is connected to its nearest neigh-
bors. The network development rewrites the connections randomly, breaks “old” 
links, and creates new ones. Increasing the rewiring probability ℘  from zero, 
the developing network begins to have a characteristic value of random long- 
range connections ( ), creating a small-world (SW) network, with shortcuts 
lowering the access path between nodes. The SW networks have local clustering, 
which is more likely to be connected to other nodes in their near vicinity and 
have high global connectivity also because of the high probability of being con-
nected to nodes that are further away. SW structure has high local clustering yet 
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a short average path length between any two nodes, supporting direct informa-
tion transfer in the entire network. The SW feature transition is a crossover, not 
a phase transition. It depends on the network size N  and the degree of disord-
er ℘ . The earlier calculation showed the size of the crossover is * 2 3~N −℘
[116], which is later corrected to 1* ~N −℘  [117] [118]. The existence of the SW 
was experimentally proven [119] [120] and later, its first theoretical examination 
gives a hint of how it forms the “small world” in society. 

The increasing rewriting connections of the regular network construct regu-
latory subnetworks. In this way, both the local and global properties of the sub-
networks depend on ℘ . Small-world networks exhibit a property where the 
characteristic path length between nodes remains relatively small. In low clus-
tered ( 1℘≈ ), nearly entirely random SWs, the path length is typically logarith-
mic of the size: ( )~ ln N ), and so 0~N e   where 0  is a characteristic 
length. The exponential dependence of N  from   does not follow the power 
law, so the small world is not self-similar. The critical insight from the WS mod-
el [115] is that it demonstrates how random rewiring of a regular lattice can lead 
to networks with small-world features, where the path length between nodes is 
short on average, even in large networks. When the radius of the graph ( ) is 
defined by the average distance   between the highest degree node (central 
node, hub) and other nodes, then define the size of the graph as it has d diame-
ter, when 2d≤ ≤   [121]. In the partially random networks like the SW, we 
have ( )~lnd N , which slow increase of d by even large N  justifies the small- 
world behavior. The small-world nature is crucial in understanding various 
real-world networks, like such complex systems as social networks and the in-
ternet, neural networks, power grid, computational power, epidemic disease 
spreading, synchronicity, cellular automata, genetic algorithms, and complex bi-
ological processes, etc. where local and long-range connections exist, allowing 
for efficient communication between distant nodes. The small-world concept 
[115] is well-proven in the epidemiology of infectious diseases [122] [123] [124]. 
It has a role in the human genome, too [125]. Small-world networks strike a 
balance between local redundancy and global reach. High clustering promotes 
information sharing within tightly knit communities, while short path lengths 
enable efficient signal transmission across the entire network. This combination 
can reduce transmission costs compared to regular lattices or random networks. 
Information propagates quickly through localized clusters, minimizing the need 
for long-distance transmissions and associated energy expenditure. Entropy 
production could be minimized through small-world features. It may reduce the 
signal transmission overhead. Efficient information flow reduces energy con-
sumption for transmitting signals and maintaining network connectivity. This 
translates to minimizing entropy production associated with signal transmission 
processes. SW enhances the robustness of the network. The redundancy of clus-
tered connections provides fault tolerance. Damage to individual nodes or links 
is less likely to disrupt global signal transmission than less-redundant networks. 
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This resilience minimizes entropy production by preventing cascading failures 
and the need for extensive repair processes. Small-world networks often exhibit 
dynamic rewiring capabilities, helping adaptive optimization. Links can be 
formed or removed based on usage patterns, allowing the network to adapt to 
changing conditions and optimize its efficiency over time. This dynamic opti-
mization can further minimize entropy production by eliminating unnecessary 
connections and streamlining information flow. However, the relationship be-
tween small-world networks and minimal entropy production is context-de- 
pendent. The specific network dynamics and operating conditions can influence 
how small-world properties minimize entropy production. Besides small-world 
characteristics, other network features can also contribute to minimizing entro-
py production. Factors like modularity, feedback loops, and node heterogeneity 
can all play a role. 

Another network-developing concept was established: the Barabasi-Albert 
(BA) model, [126]). This network chooses the nodes by their high degree [114], 
which are more likely to be attractive than other nodes. The driving force of this 
process is the Matthew effect of accumulated advantage [127]. The attractive 
motifs are the high degree are more likely to be valuable to other nodes; they 
may have access to information or resources that other nodes need; they are 
more likely to be trusted by other nodes. The distribution of the degree of ver-
tices essentially deviates from the Poisson distribution. It has a scale-free, self- 
similar power-law degree distribution. The probability ( )p k  that a node has k 
links is: 

( )p k c k γ−≈ ⋅                             (4) 

where c is a normalizing parameter and α  is the degree of the exponent. The 
probability of a highly connected node in BA is statistically more significant than 
in ER graph. A relatively small number of highly connected nodes (hubs) often 
determine the BA networks. The BA model is scale-free, characterized by the 
degree exponent 3γ = . The power law is scale-free because of the change of 
scale of k in (4) by g scale factor; the power function does not change: 
( ) ( )gp k c gk c g k c kγ γ γ γ− − − −′≈ ⋅ = ⋅ ⋅⋅ = . The BA network has no inherent mod-

ularity, so its clustering coefficient is also constant. The complex systems inten-
sively use scale-free behavior in their networks’ large category of spatiotemporal 
arrangements [128]. The power-law probability theorem has some problems in 
its evaluation, namely by the value of the exponent α  in (4). In the case when 
2 3γ< < , the distribution has a finite mean value and infinite variance, but 
when 1 2γ< ≤ , both its characteristic values are infinite [129]. Most biological 
networks have a power degree 2 3γ< < , for example, 2.2γ =  for Escherichia 
coli. The BA [130] describes many real-world networks well, even complex ones 
like the World Wide Web and social media. It is a valuable tool for the genera-
tion of real biological networks having a few fundamental biological processes 
[131] [132] [133] [134]. The 3γ >  range shows the ( )~ ln N  similar to the 
random networks. When 3γ =  (and the lower cut-off the distribution is larger  

https://doi.org/10.4236/ojbiphy.2024.142009


A. Szasz, G. P. Szigeti 
 

 

DOI: 10.4236/ojbiphy.2024.142009 171 Open Journal of Biophysics 
 

than 2), then 
( )
( )( )

ln
~

ln ln
N

d
N

, when ( )( )ln ln 1N   [135]. (Note, in case the  

lower cut-off distribution is 1, the ( )~ lnd N  [136].) A new kind of network 
development was also introduced for ultrasmall-worlds [137], where 1γ = , 
named “Mandala network”. This deterministic development uses shells of the 
network. The nodes belonging to a given shell have intra-shell and inter-shell 
links, with the nodes with the highest degree in the center. The network devel-
opment is realized by a recurrently expanded addition of a new shell. The mean 
shortest path in this network is below 3, and remains constant when ( )ln N  
became higher than 104 ( ( )( )ln ln 5N ≈ ). 

Various scale-free features of the spatiotemporal structure of living systems 
appear, like the neural network of the nematode worm C. elegans [138] [139], 
protein interactions [140] and robust genetic stability [141] of yeast, organizing 
of the metabolic networks in various species [142], and its connection to the 
survival certainty [143]. Most proteins interact with few partners, forming a sig-
nificant proportion of proteins serving as ‘hubs’, which attract interaction with 
many collaborator proteins [144]. The degree of separation of the small-world in 
yeast proteins could be calculated by knowing 1379 proteins in 3.6 average de-
grees [144]. Hence the d degree of separation gives the small-world 3.9d = 1379, 
so 5.95d ≅ . The random protein removal from the scale-free networks does not 
change its stability, but the network is susceptible to the targeted removal of hub 
proteins. For example, removing a hub-encoding yeast gene causes significantly 
higher lethality than removing a non-hub [145] [146]. These observations turn 
our focus from molecular biology to complex, network-based molecular net-
works.  

These mainly molecular subnetworks could overlap in biosystems, and study 
them by various complex network grouping like metabolic, transcriptional, and 
protein interactions [134], or according to other aspects. The system is com-
pleted with other systemic subnetworks governed by homeostasis. These sys-
temic regulatory action subnetworks (systemic circles like the cardiovascular, 
respiratory, nervous, lymphatic, endocrine, etc.) regulations, together with the 
immune surveillance, and many other systemic actions (like renin-angiotensin- 
aldosterone system, kallikrein-quinine system, hypothalamic-pituitary-adrenal 
axis, etc.) or the subsystem of different organs., all are interconnected and 
representing enormous complexity of the human body. Small-world formation 
is a common rule in these networks [115]. The small world involves a logarith-
mically growing diameter [147]. The formation of the giant component of the 
random network characterizes the percolation transition, which is close to the 
random graph [148] (Note that the infinite cluster below the percolation thre-
shold is a fractal, but it behaves as a normal d-dimensional object above this lev-
el). A real space renormalization of a network produces smaller groups unifying 
the next-neighboring connections as a domain, using as a node of the renorma-
lized network, similarly made like in the renormalization of the spin-lattice (like 
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Ising model) systems [118], forming a small-world network. 
The scale-free scaling rule is applicable in medicine, founding a new scientific 

approach, the “network medicine” [149]. Network medicine helps to identify, 
prevent, and treat diseases. This field uses network topology and dynamics to 
categorize diseases and develop medical drugs. A concept of disease network 
(diseasome) was introduced [150], focusing on the connection of diseases 
through shared genes, having common genetic roots, and linking the o of illness 
comorbidity to molecular networks [151], recognizing that the genes associated 
with the same disease are located in the same network neighborhood [152]. The 
method is a practical combination of extensive data mining [153], using as ge-
nomic database [154], and synergizing network medicine with biomedical data 
to optimize the clinical impact.  

The hubs have a central role in the connections of BA networks, but when it is 
damaged and cannot perform their connective functions, the network could col-
lapse. The strong hub-connected networks have low resilience against malicious 
attacks. The weak links stabilize the system and reduce its vulnerability [155]. 
The weak ties can act as “bridge nodes” linking different network parts. They 
play a crucial role in shortening the paths of connection between the nodes that 
might not have direct connections. When a hub links in networks, it expresses 
relations between the nodes, which we call strong when it is an equivalence rela-
tion. The equivalence relation means that if A is mutually linked to B, and B is 
linked to C, then A also linked to C. The links within the network are weak if the 
link does not realize an equivalence relation. The equivalence relation classifies 
the elements in sets. The pivotal role of weak links in the strength of the network 
means that when the information spreads only among links that interact strong-
ly with each other (belonging to the same equivalence subnetwork), it does not 
get out of the given equivalence class. The transfer may occur through fewer 
than six connections if the set has a single equivalence class. The weak links 
make the information spread broadly and transfer quickly, which was first rec-
ognized in the societies [156]. The weak links stabilize the network, which, 
without them, is easily broken into independent subnetworks and loses the 
broad information exchange. The equivalence class (strong links) is an impor-
tant center, but weak links are necessary to stabilize the complete network [155]. 
The perturbations and information may spread effectively in the week-link sta-
bilized complex network, which can tolerate more disturbance by perturbations 
in the system. The importance of the weak links in biological systems is well 
recognized [157]. The weak links connect hubs and may uncouple these modules 
when the overall homeostatic equilibrium regulates it to keep the balance [158]. 
The weak links are pivotal in such complex molecular processes as protein fold-
ing [159]. The multilevel connections effectively reduce the information path-
ways in the networks, including the biological complexity, promoting the forma-
tion of small-worlds. 

Many SW networks have robust hub-centered construction without power 
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function in its size, forming exponential dependence from the path lengths 
( 0~N e  )). Figure 6(a). These structures are not organized in fractals. They 
have strong hub-hub links. These attractive interactions determine the network. 
In another construction, the hubs are connected through non-hub nodes, form-
ing weak links, which makes the system less compact. The hub-hub interaction 
is repulsive in these networks. These arrangements have fractal structure 

( )( )0~ dN   . Such networks are self-similar. Many real networks form such 
arrangements (metabolic and genetic networks, long-range correlated structures, 
etc.) Figure 6(b). The weak-link networks have real fractal descriptions with 
solid repulsion of the highest degree nodes (hubs), arranging them dispersed 
[160]. The fractal architecture makes the system less vulnerable to malignant 
disturbances. These robust functional modules indicate evolutionary changes in 
their construction [160]. The deterministic scale-free networks are also self-similar 
and represent fractal properties [161]. Interestingly, the hardware systems are 
usually hub-oriented, and the software operation on this hardware has a weak- 
link structure, like the internet/web pair. 

The biological cellular networks may contain various intracellular interaction 
networks [162]. The basic networks are (1) gene transcription networks [163], 
(2) protein-protein interaction networks (interactomes) [164] [143], (3) signal-
ing networks [165], and (4) metabolic networks [142] [166]. Additional net-
works help to better understand intracellular complexity, like cytoskeletal net-
works, cellular organelle networks, and chromatin networks. The characteristic 
networks differ in their collectivity from random “democracy” through the 
hub-driven “rich-get-richer” to the weak-linked, which is self-similarly glued, 
realizing a “globality” Figure 7. 

The position of nodes from the view of possible information transfer (possible 
paths through them) defines the betweenness, which measures the number of 
paths through a node [167]. The betweenness centrality measures the relative 

 

  
(a)                                   (b) 

Figure 6. Two basic categories of networks. (a) Compact strong link connections, a 
hub-driven assortative system with strong hub-hub attraction. (b) Disortative weak-link 
connections, hubs are not directly connected, strong hub-hub repulsion. 
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Figure 7. The main categories of the networks could be present in biology. (The crystal-
line structure is not biological. It is shown only for comparison.) 

 
number of shortest paths through the nodes [168]. The betweenness and node 
degree do not necessarily correlate. Connecting to the network with low-degree 
weak links may form central betweenness Figure 8. The weak links could streng- 
then the network with the betweenness parameters. Network disintegration is a 
phase transition of complex percolated networking, which strongly depends on 
the breaking of betweenness of some nodes. 

The biological systems may realize different network constructions, re-pre- 
sented by graphs: 

1) The random graph model, like the WS SW network [115], chooses links 
randomly and to any nodes Figure 9. The natural evolution processes may be 
described with random networks. The new connections are accidentally devel-
oped and remain when they help the system adapt to external challenges and op-
timize the internal structures. The genetic pool development has frequent small- 
world networking [169] [170] and transcriptional networks where the nodes are 
the genes and the links arrange the up- or downregulation influence [125] [171]. 
The genome organization has naturally stochastic transcription described by the 
complex small-world regulatory networks [125]. 

2) The scale-free arrangement (BA network) [172] clearly shows the dominant 
content of the high interconnectivity of the molecular interactions in the com-
plex living system Figure 10. The network in this model is hub-directed [126], 
where the links are not randomly chosen. To choose a partner, you need to know 
how many connections it has with other partners. The choice is optimal when 
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(a)                                    (b) 

Figure 8. The central betweenness of the red nodes is shown in two different situations. 
(a) Central betweenness due to hub position with high-degree node. (b) Central bet-
weenness of a low-degree node in weak-link position (The dashed line shows two inde-
pendent network parts connected with only the weak link). 

 

 
(a)                      (b)                    (c) 

Figure 9. In a stage of a developing ER network, the nodes are randomly linked. (a) The 
network in a stage. (b) The shortest path (red links) between the two nodes. Such 
link-connection differs by chosen nodes. (c) The largest domain in the network (blue 
links.) 

 
this number is significant. (The process when the rich get richer.) This hub con-
cept is a general rule in many biological structures and processes, such as in 
protein-protein interactions, [173] [174]. The networks of biological functions 
could be functionally separated, having subnetworks (modules) describing the 
different slightly connected functions, introducing modular cell biology [175]. 
The modules may have a hierarchy by their functional connections forming hi-
erarchical modularity [176]. 

3) Copying network model (growing network with redirection) [177] uses a 
copying mechanism by repeatedly duplicating and mutating existing nodes of 
the network Figure 11. Copying network models is used to model biological 
networks, such as protein interaction networks and genetic regulatory networks. 
Genes containing information about how a node in a network should interact  
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(a)                                   (b) 

Figure 10. Dominant hub. (a) dominant hub in a complex network. (b) The initial stage 
of a developing hierarchic network. 

 

 
Figure 11. Copying network. The same networking structure appears (copied) in various 
regions of the network. Copies are the same, but their neighboring area is different, so 
their role could be different in the developing network. 

 
with others tend to duplicate in evolution, thus duplicating the edges in the 
network. Also, preferential attachment networks can not model biological net-
works well, both because they are not plausible and because several biological  

networks have power-law degree distribution with exponent 2 2
1

θα
θ
−

= <
−

 

which such preferential network models do not produce where 𝜃𝜃 is the ratio of 
the number of the randomly added edges to the number of copied edges [178]. 
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Duplication sometimes is a strategy of resilience. The copying may duplicate 
mechanisms, functions, structures, and actions [179]. The network’s copying is 
frequently applied in the evolution of species where the developed new genera-
tion subsequently inherits the well-adapting structures and mechanisms. The 
genetic networks contain many gene-sequence copies in various positions of 
DNA, but these coding differently because their position differs in the DNA. 

4) The intrinsic fitness model develops links between nodes over time de-
pending on the fitness of nodes [180]. Fitness is the nodes’ intrinsic ability to at-
tract links in the network, and it varies by node. The most efficient (or “fit”) at-
tracts more edges at the expense of others. In that sense, not all nodes are iden-
tical to each other. The node fits in this meaning when it ensures optimal condi-
tions to survive the next developmental steps, and in this meaning, it is like the 
Darwinian selection. In simple cases, fitness optimizes the physical or chemical 
bonds or the bondphilic-bondphobic conditions (characteristically hydrophilic 
or hydrophobic, van der Waals ability, etc.) “likable” mechanisms when the 
nodes are molecules. Fitness is a new parameter for the competition for collect-
ing links in the BA network. In simple cases, the Matthew effect prefers the ear-
lier joined nodes to the network because these have a higher probability of being 
linked than the newcomer nodes in evolution. But the reality differs [180]. Some 
newcomers have better positions than others and may quickly collect more links 
in the developing network. These nodes are fitter than the others. The competi-
tion for links makes a difference from the simple hub preference; it creates a 
multiscaling situation where the fitness may modify the scaling behavior of the 
network. The Mathew effect, the “rich get richer,” can be modified in this scale 
as “fitter get richer” Figure 12. 

The Matthew rule and the minimal entropy production have similarities and 
potential connections. Both concepts involve positive feedback loops where ad-
vantages tend to snowball. The Matthew effect posits that those with resources 
or opportunities attract more, further solidifying their lead. Similarly, systems 

 

 

Figure 12. The newly coming node (denoted by arrow) links two independent subnet-
works in one energetically preferred step during the network’s evolution or two acciden-
tal lucky steps when links are created. This node has higher fitness, making it an attractive 
site to connect to stabilize the system with this starting weak link. These new links have 
high central betweenness (like Figure 8(b)) forming their fitness in further development.  
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that minimize entropy production often become more efficient over time, fur-
ther reducing their entropy generation. Both emphasize the optimization of 
processes. The Matthew effect implies that systems where advantages accumu-
late become increasingly efficient at acquiring further benefits. Minimizing en-
tropy production is inherently about optimizing a system’s energy usage and 
reducing waste. Systems that minimize entropy production might be more effi-
cient at allocating resources, leading to situations where they acquire more re-
sources faster than others, aligning with the Matthew effect. The value of a re-
source or opportunity increases with the number of users in various networks. 
Minimizing entropy production could lead to more efficient network formation 
and growth, further amplifying the Matthew effect. Systems that minimize en-
tropy production might be more resilient and sustainable in the long run. This 
could give them an advantage over competitors in the long term, potentially 
reinforcing the Matthew effect.  

However, the Matthew effect and minimal entropy production have signifi-
cant differences, too. The Matthew effect primarily focuses on the distribution of 
advantages, while minimal entropy production focuses on a system’s internal ef-
ficiency. The Matthew effect can manifest relatively quickly, while the benefits of 
minimizing entropy production might accrue over longer timescales. The Mat-
thew effect often describes non-equilibrium situations where advantages keep 
accumulating, while minimal entropy production often refers to reaching a 
steady state with minimal dissipation. 

The connection of interacting network parts fits into a dynamical equilibrium. 
The biological network development differs by its processing time, too. In the 
matured biosystems, the network is relatively stable by size; the development is 
internal, dynamically forming various nodular connections according to the 
energy, material, and information exchange with the internal and external envi-
ronments of the system. Most of the network research focuses on the develop-
ment of networks, studying how the construction of the final giant, dynamically 
stable network emerges and evolves in time. A network is developing if the 
probability of the nodes connecting links (vertex connection edges in graph re-
presentation) depends on time. Some studies are devoted to this time depen-
dence using random or deterministic models [181]. Network development is 
time-dependent with the subsequent addition of connected nodes. The BA has 
no change in the network degree distribution over time. Small changes in fitness 
parameters could modify the degree distribution [182]. This variant of the BA 
model uses a simple modification of the “rich get richer” attractiveness, consi-
dering the second neighbors of the nodes. The influence of the second neighbors 
on the realized new link is one fitness parameter, increasing the attractiveness 
and making a link. However, the interactions with the second neighborhood de-
velopment of the network deviate from BA [183] when the randomly formed BA 
network is unchanged underneath. At the same time, the new node builds up the 
second neighbor connections, rearranging the degree of nodes and modifying 
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the network degree distribution in the region Figure 13. 
The new node in the second neighbor attraction makes the time-step with 

new edges to its first and second neighbors. The probability of the choice is 
proportional to the availability of the first and second links [181]. This second 
neighbor principle appears in social networks as the connection attraction of the 
friends-of-friends [184]. The network’s local structure with the second neigh-
bors’ connections became time dependent. The BA model does not consider the 
internode mechanisms, so the second neighbors of the target do not influence 
the newly attached node. This changes with the new model [181], when one 
more connection is realized than the targeted hub originally had (see Figure 
13(b)). While the targeted hub has a large number of connections, the degree of 
the newcomer is nearly the same as the hub. The newcomer, in this way, has 
high fitness. The second neighbor links make a “gelation-like phenomenon” to 
the network surrounding the hub, which modifies the linearity of BA and de-
velops time-dependence at a higher number of the degrees of the network [181]. 

Some small-world networking has a surprising feature in large complex sys-
tems like societies: the “six degrees of separation” principle. It is a concept sug-
gesting that a chain of acquaintances can connect any two people in the world 
with no more than six intermediate connections [185], [186] forming an ultras-
mall-world (uSW). Regular small-world networks exhibit high clustering and 
short path lengths. uSWs take this efficiency a step further. They possess incred-
ibly high clustering coefficients, often approaching the theoretical maximum 
while maintaining surprisingly short average path lengths. This extreme cluster-
ing creates tightly knit communities where information exchange is highly loca-
lized and redundant. It coexists with efficient global signal transmission thanks 
to “shortcuts” or long-range connections that bridge distant clusters. It was 
shown that the scale-free networks are uSW in large N, where ( )( )ln lnl N∝ , so 
l is de facto independent from the network size [121]. 

 

 
(a)                       (b)                       (c) 

Figure 13. The modification of the BA network. (a) T arriving node to the target node in 
the ready network chooses the central hub. The network with the first neighbor effect 
where the driving force is the hub connection. (b) Considering the second neighbors 
(thin blue lines), make multiple links. It rearranges the degree of the second neighbor 
nodes. (c) Ultimately, the network may have degrees in addition to the first neighbor 
links. 
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The six degrees of separation highlight the amazing interconnectedness of 
elements within complex networks. It has recently been theoretically proven in 
social networks [187], which apply to all highly complex network systems. The 
six degrees of separation idea has been used to characterize the well-connectedness 
of elements in a complex network. It has many practical applications, ranging 
from social science to computer science to psychology, physiology, and market-
ing. The ultrasmall-world network is stable and tolerates any hostile or acciden-
tal attacks. The uSW needs a high degree of complexity, different types of con-
nections, and extensive network size, and, of course, it needs percolated net-
works with no isolated subnetworks. The existing non-percolated subunits are 
independent, with no link between them to use the six-step connections; howev-
er, by development, they could be connected by new links.  

The multilevel complexity and the interconnectedness of these levels ensure 
small-world networking but not uSW. The uSW is not general. It needs special 
conditions and high complexity with a large-size network. In some cases, the 
uSW with six degrees of separation appears for living networks, too [188], but 
usually d > 6. For the metabolic network, the observed SW diameter 8.78d ≈  
[188], which in extended network consideration shows uSW diameter [166]. The 
calculated average degree of nodes of the substrate graph is 4.76k =  in 

275N =  nodes and the activity reaction graph 9.27k =  with 311N = , when 
the most active molecule pairs (ATP-ADP, NAD-NADP, NADH-NADHP) are 
not included. From here the degree of separation 3.6sd ≅  and 2.6rd ≅  for 
substrate and reactions, respectively. When the active molecule pairs are in-
cluded, the values are: 2.8sd ≅  and 1.7rd ≅ . The obtained data show that the 
active molecules and the reactions decrease the degree of separation. The pro-
tein-protein interaction network 𝑑𝑑 has a variation of the network diameter 

1 8d ≈ − , with the maximum of uSW at 3 [188]. Studies suggest that the organi-
zation of regulatory elements within genomes might resemble uSWs. Genes as-
sociated with similar functions often cluster together, forming tightly-knit 
communities. These clusters are then connected through long-range regulatory 
interactions, enabling coordinated gene expression across the entire genome. In 
the process of transferring genetic materials between species (horizontal gene 
transfer) uSW [189]. A study showed that the gene network that impacts brain 
wiring has a scale-free small-world topology [190], in which two features may 
form uSW [121]. The uSW-like architecture could potentially contribute to ge-
netic stability. The redundancy and localized information sharing within clusters 
might facilitate efficient error detection and correction mechanisms. If a muta-
tion occurs in a gene, its neighbors with similar functions can potentially signal 
the error and trigger repair processes. The long-range connections between 
clusters could be involved in propagating epigenetic modifications across the 
genome, ensuring consistent gene expression patterns and preventing unwanted 
transcriptional fluctuations. The long-range connections between clusters could 
be involved in propagating epigenetic modifications across the genome, ensuring 
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consistent gene expression patterns and preventing unwanted transcriptional 
fluctuations. The modularity and redundancy inherent in uSWs might make 
genomes more resilient to environmental stresses or mutations. Damage to one 
cluster might be isolated and contained, preventing it from cascading into 
broader genomic instability. 

Hierarchical levels of biological networks have the same massive complexity 
as society. The various network levels work in tight cooperation and synchrony 
in a healthy system based on communication and exchange, like direct contact, 
chemical signaling, and electrical signaling. The primary network levels are in 
Figure 14. 
• Molecular and genetic level (the ground on what life starts): Regulate the 

 

 
Figure 14. The interconnected networks in the developed living objects.  
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• Cellular processes with DNA as a blueprint for the above cellular level activi-
ties, defined as the transcription and translation processes. Gene products 
regulate gene expression, as proteins produced by genes can also act as tran-
scription factors, regulating the expression of other genes. This creates feed-
back loops that fine-tune cellular processes and ensure appropriate responses 
to environmental cues. While protein-coding genes are crucial, non-coding 
DNA also plays a significant role in regulating gene expression, can bind to 
regulatory proteins, and influence the accessibility of genes to RNA polyme-
rase. These regions can bind to regulatory proteins and affect the accessibility 
of genes to RNA polymerase, further shaping cellular networks. Proteins 
produced by genes can also act as transcription factors, regulating the expres-
sion of other genes. This creates feedback loops that fine-tune cellular processes 
and ensure appropriate responses to environmental cues. The scale-free net-
works and genetic robustness are connected [191]. The SW properties of ge-
netic networks can vary depending on the specific network examined and the 
methodology used. 

• Cellular level (the basic living unit): At the most fundamental level, living 
organisms are composed of cells, which are complex networks of organelles 
and macromolecules. These internal networks interact through various me-
chanisms like protein-protein interactions, metabolic pathways, and signal 
transduction. Different cell types have specific structures and functions tai-
lored to their roles within the organ or tissue. Cells communicate with each 
other through a variety of mechanisms, including chemical signaling (e.g., 
hormones, neurotransmitters, other signaling molecules) and electrical sig-
naling to rapidly transmit signals over long distances (e.g., electrical impulses 
of nerve cells); direct cell-to-cell contacts (e.g., gap junctions, cadherins, me-
chanical connections). Cellular networks can adjust their activities in re-
sponse to internal and external stimuli. Feedback loops within cellular net-
works ensure homeostasis and the maintenance of a stable internal environ-
ment. At the next level, the organs function effectively due to the coordinated 
activities of various cell types. 

• Organ level (the special functions): Groups of cells with specific functions 
form organs, and organ networks exchange nutrients, hormones, and elec-
trical signals, enabling coordinated organ function. For example, the circula-
tory system networks with the lungs for gas exchange and the digestive sys-
tem for nutrient absorption. The interaction between the cellular and organ 
levels in humans is a beautiful dance of microscopic machinery working in 
perfect harmony to achieve complex functions. Different organs are com-
posed of specialized cell types, each with unique structures and functions tai-
lored to the organ’s overall role. Cells within an organ and between different 
organs communicate through a sophisticated network of chemical messen-
gers. Endocrine glands like the thyroid or pancreas release hormones through 
the bloodstream to target cells in distant organs, regulating their activities. 
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Cells can also release signaling molecules like neurotransmitters and cyto-
kines to influence their immediate neighbors or cells in other organs. In the 
nervous system, cell communication happens through electrical signals car-
ried by neurons. Nerve impulses travel along axons, triggering the release of 
neurotransmitters at synapses, which relay the signal to other neurons or 
target cells in muscles or glands, coordinating rapid responses throughout 
the body. The circulatory system, primarily the bloodstream, acts as a high-
way for essential nutrients like oxygen and glucose to reach individual cells 
from organs like the lungs and intestines. Conversely, waste products like 
carbon dioxide and metabolic byproducts are transported by the blood to 
organs like the lungs and kidneys for excretion. Ultimately, the interactions 
between cells at the cellular level orchestrate the proper functioning of organs 
at the organ level. The correlation of the organ’s activity can be measured 
with various electric signals of diverse physiological organ systems [192], 
well-coordinated by the brain. The organ network has fractal properties, and 
the scaling index could be regarded as a sensor of the healthy operation of the 
living system [193]. 

• Organism level (the system): Individual organisms interact with their envi-
ronment through various networks. Nervous systems facilitate communica-
tion within the organism, while sensory organs and muscles connect the or-
ganism to the external world. Additionally, interactions with other organisms 
form ecological networks, like food webs and symbiotic relationships. Organs 
constantly communicate with each other, sharing vital information through a 
complex web of messengers. Like the orchestra’s conductor, hormones travel 
through the bloodstream, influencing the activity of distant organs. Addi-
tionally, nerves act as communication cables, sending electrical signals to 
coordinate rapid responses. No organ operates in isolation. The digestive 
system breaks down food, fueling the muscles and energy for the brain. The 
lungs deliver oxygen to every cell, while the kidneys filter waste products 
from the blood. This intricate dance of give-and-take ensures the organism’s 
overall well-being. Maintaining a stable internal environment is crucial for 
survival. Organ networks work together to achieve homeostasis, regulating 
factors like body temperature, blood sugar levels, pH balance, etc. The hu-
man body is remarkably adaptable, and organ networks play a crucial role in 
responding to internal and external stimuli. When exercising, the heart 
pumps faster, lungs increase respiration, and muscles demand more oxygen, 
all orchestrated by the organ network to meet the organism’s needs. Com-
munication between organs isn’t one-directional. Feedback loops ensure 
fine-tuning and adjustments. For example, rising blood sugar levels trigger 
the pancreas to release insulin, which signals cells to absorb glucose, bringing 
blood sugar back down. 

The living complexity projects different networks into each other, forming a 
“network of networks” [194], and builds up the complex system with the inte-
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ractions of these: tells are the building blocks, tissues are “communities,” and 
organs are collaborative teams. In addition to the complexly interacting net-
works, the overall physiologic regulation and immune surveillance ensure the 
dynamic balance that characterizes a healthy organism. The projections of these 
to each other are not a one-way street; they are heavily modifying each other to 
build the final homeostatic system equilibrium. The genetic network, consisting 
of gene interactions, is a blueprint for cellular function. This blueprint is “read” 
and translated into action through gene expression. The genetic structure shows 
a well-organized fractal in the chaos-game representation [195]. However, the 
blueprint is not rigid. The nurture with random processes may modify it with 
mutations. 

Each cell within a tissue or organism can express a unique subset of genes, 
forming a distinct cell type with specific functions. This diversity in gene expres-
sion patterns creates a network of cells. Therefore, the genetic network projects 
onto the network of cells through the selective activation and repression of genes 
in different cell types. Specific regulatory mechanisms, like transcription factors 
and signaling pathways, interpret the genetic blueprint and dictate which genes 
are “turned on” in each cell. Cellular signals and environmental factors can feed 
back and influence gene expression, impacting the overall network dynamics. 
Additionally, epigenetic modifications and non-coding RNAs can further fine- 
tune gene expression within specific cell types, adding another layer of complex-
ity to the projection process. Each cell type’s unique gene expression patterns 
define its function, impacting the overall operation of the tissue it belongs to. 
Different tissues within an organ work in concert through direct cell-to-cell in-
teractions and secreted signaling molecules. This coordinated activity ensures 
the organ’s specific function. Organs interact through various channels, like the 
circulatory and nervous systems. This communication allows them to coordinate 
their activities and maintain organismal homeostasis, the delicate balance of our 
internal environment. These projections are not static. Cells within tissues can 
adapt their gene expression in response to local signals and environmental 
changes, fine-tuning their functions and influencing organ behavior. The blue-
print within the cell network guides the development of organs from embryonic 
tissues and even contributes to tissue regeneration throughout life. When cell 
functions or communication within the networks are disrupted, it can lead to 
malfunctions in tissues and organs, contributing to various diseases. The various 
organs interplay to maintain the stability of the human organism. Organs con-
stantly monitor and adjust their activities with negative feedback based on the 
needs of the entire organism. Many vital functions have redundant and backup 
systems. Organs communicate nerve impulses and signaling molecules, main-
taining the physiologic regulation of the system. Many organs can adjust their 
operations to meet changing demands.  

2.5. The Game—Fight for Resources 

Resources for life are rarely unlimited. The participating organisms individually 
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fight for resources, but in starving conditions, they cooperate to survive [34]. 
Both competitive and cooperative games offer valuable training grounds for in-
dividuals and groups, shaping the evolution of traits and behaviors that contri-
bute to survival and success. The competitive games select the advantageous 
traits. The competition pits individuals against each other, favoring those with 
features that give them an edge. Over time, natural selection makes these advan-
tageous traits more common in the population. The constant pressure to outdo 
competitors drives development. The skills used in play can be applied in real 
life, increasing survival and reproductive success. The cooperative game is a typ-
ical strength in numbers; achieving the goals in the group would be impossible 
alone. Cooperative behaviors that benefit the group increase the chances of sur-
vival for all participating units, indirectly promoting genes associated with those 
behaviors. Cooperation requires effective communication, coordination, and 
regulation. Some cooperative games involve sacrificing individual benefits for 
the good of the group. A strategic “cost” must have a bigger payoff over time. 
This can select genes associated with collective behavior, leading to the evolution 
of more cohesive and supportive organisms. 

Game theory is often used to describe both competing and cooperating activi-
ties. The game theory deals with strategic exchanges, a mathematical analysis of 
decision-making counting the cost-benefit balance. It looks like a perfect calcu-
lation tool for the problems of competition and cooperation when the costs and 
payoffs are essential. The involved agents (players) try to maximize their payoff 
with minimal cost in a non-cooperative interaction, but the opposition’s goal is 
contradictory due to the same strategic plan. The solution is a win-win optimi-
zation. This balancing “game” of the opposite processes may be described by the 
decision-making game theory, where both parties can achieve the optimum of 
their desired outcome without giving up their original purpose. The game 
evolves to reach the Nash equilibrium. It is the state in which all systems can 
maintain their equilibrium without disrupting the equilibrium of the other sys-
tems. In the Nash equilibrium, no further significant actions to modify the equi-
librium state would produce more benefit than cost. In a Nash equilibrium, no 
player can improve their payoff by unilaterally changing their strategy. 

They reach a Nash equilibrium, in which both parties’ strategy considers the 
opposition’s decisions and optimizes their own. Every party gets the outcome 
they want, so both of them win. The regulative driving force of each side seeks to 
assert its influence, but it is limited by the opposition, which has its desire. The 
negative feedback mechanisms of the complex homeostatic regulation govern 
the complete process [196]. Each factor wants to change the body’s equilibrium 
in its favor, but the characteristics are also interdependent. The Nash equili-
brium is when the cost of change forces one part of the process to balance the 
benefit that could be reached; no further actions would produce more benefit 
than cost [197]. The Nash equilibrium of this game is the state in which the 
body’s equilibrium is maintained despite the changes made by the different fac-
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tors. A theoretical model describes the game with multiple “players” forming a 
balance with Nash equilibrium [198], which may be used for the description of 
homeostasis. The evolution of the network seeks Nash equilibrium, while the bi-
ological evolution fulfills the Darwinian selection. However, the Darwinian se-
lection and Nash equilibrium differ considerably. Darwinian selection operates 
at the level of populations, while Nash equilibrium operates at the level of indi-
vidual players. In Darwinian selection, no conscious players are making strategic 
choices. Instead, it is the blind forces of nature that select certain traits based on 
their survival and reproductive advantage. In Nash equilibrium, players are as-
sumed to be rational and know the game’s rules. However, organisms in natural 
selection do not act rationally or strategically. They have traits that either help 
them survive and reproduce or do not. In Nash equilibrium, players have a fixed 
set of strategies. However, in Darwinian selection, the “strategies” (i.e., traits) 
constantly change and evolve through mutation and natural selection.  

The Matthew effect (“rich get richer”) is centered on the situations, resources, 
or opportunities that tend to flow toward those who already have them and form 
“hubs” in this way in network models. This positive feedback loop can be mod-
eled as a game where players invest in assets that offer the highest returns, fur-
ther increasing the value of those assets and creating a self-reinforcing cycle. In 
this scenario, the “rich get richer” outcome could be a Nash equilibrium where 
no player has an incentive to deviate, as their best choices depend on others 
doing the same. The “rich” hub has strong network effects. The value of fitness 
increases with the number of neighboring nodes connected to the same hub. 
This can create a winner-takes-all dynamic where the early leader gains a signif-
icant advantage and attracts even more users, solidifying their dominant posi-
tion. This outcome could also be seen as a Nash equilibrium where competing 
firms have no profitable alternative to following the leader’s strategy. However, 
this Nash equilibrium involving the central hub is vulnerable to external factors 
disrupting the game’s dynamics.  

Darwinian selection and the Matthew effect are generally considered compat-
ible, though their relationship is nuanced and not without some potential con-
tradictions. Both concepts involve positive feedback loops where advantages 
tend to snowball. In Darwinian selection, individuals with advantageous traits 
have higher survival and reproduction, making those traits more common in the 
population. Similarly, the Matthew effect posits that those with resources or op-
portunities attract more, further solidifying their lead. Both principles emphasize 
that individuals or entities with specific characteristics achieve greater success 
than others. Darwinian selection is about survival and reproduction; in the 
Matthew effect, it’s about accumulating resources or advantages. Both offer ex-
planations for observed patterns in nature and society. Darwinian selection helps 
explain how species evolve and adapt, while the Matthew effect sheds light on 
phenomena like wealth inequality and the dominance of certain players in vari-
ous fields. Darwinian selection and the Matthew effect are compatible in ex-
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plaining how advantages can snowball and lead to differential success. Their re-
lationship is not without complications. Darwinian selection typically operates 
on long time scales, while the Matthew effect can manifest more quickly. This 
disparity can lead to situations where short-term advantages gained through the 
Matthew effect might not necessarily translate into long-term evolutionary suc-
cess. Darwinian selection focuses on individual traits and their impact on sur-
vival and reproduction within a population. The Matthew effect, however, often 
plays out at the level of groups or entities, potentially creating situations where 
some groups benefit at the expense of others, even if their members might not all 
be “fitter” in the Darwinian sense. Both concepts acknowledge the role of chance 
in shaping outcomes. However, the emphasis on randomness might differ. Dar-
winian selection often highlights the importance of random mutations and en-
vironmental fluctuations, while the Matthew effect might focus more on initial 
advantages leading to self-reinforcing cycles.  

The idea of life networks evolving to a Nash equilibrium intersects game 
theory and evolutionary biology. Living network formation as a game includes 
strategic processes about forming connections with others based on the rela-
tionship between potential benefits and costs. The benefits could be different 
aspects of the living organism, like resource sharing, mutual defense, or infor-
mation exchange. The resulting network structure can be seen as an outcome of 
this strategic game, where each node (organism) chooses its connections (strate-
gies) to maximize its fitness. 

The network development includes strategic decision-making by the nodes, 
trying to maximize their payoffs Figure 15. Each intending to connect nodes is 
in a frustrated position between the different driving forces, which offer various 
benefits and costs for the link. The final joint link will be realized by the balance 
between the “payoff” and the “cost” of the action. The opposing driving forces 
are the actual (short-range in spatiotemporal arrangement) and the strategic 
(long-range risks) condition. Each new node in the development of the network 
has the same frustration upon joining. This way, the network structure evolves 
until it converges to the Nash equilibrium. For example, a link to a robust and 
high-degree hub is energetically beneficial. Still, the network’s resilience with a 
central hub appears to be a risk in strategic network building of living systems. 
The cost of risk is realized by Darwinian selection. Adapting to the actual chal-
lenges could cause a fall, and the network with vulnerability is not viable in the 
strategic line when the central hub is damaged, and the network falls apart.  

The evolution of the network by adaptation to the environment is a complex 
Nash equilibrium to maximize its payoff: the individual node strives to enforce 
its multilayered interest, which combines self-interest and local possibilities with 
group interests [50], harmonizing the short-range and long-range interactions in 
the network. 

The biological network develops to ensure the energetic balance. The ener-
getic conditions decide whether the given cell remains individual or joins the  
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Figure 15. The network evolution game. The node (green arrow above) that intends to 
join the network. The just arriving node (noted by arrow) has various possibilities to link. 
(1) link to a vital hub. It is positive because the hub is “reach”, but negative. After all, it is 
a vulnerable position. (2)-(3) Link to one of the independent subnetworks. It depends on 
which gives a higher energy payoff. Connecting (3) to the network is an energetically 
shallow connection, less advantageous than the option on the left, but the protection of 
this network is better; if any central hub (red) becomes inoperable, the network remains 
connected. (4) Link the two independent subsystems and connect them. The chosen posi-
tion is the weak link, which stabilizes the systems. This position has high betweenness and 
again has a strategic role in decreasing the vulnerability of the whole structure. 

 
network. The energy balance determines that the energy difference invested and 
received by the cell is positive, i.e., the advantages outweigh the disadvantages, 
and the cost is smaller than the payoffs. Cell networks, explicitly applying the 
concept of Nash equilibrium, have some potential scenarios. Imagine genes act-
ing as players in a game, vying for limited resources like transcription factors to 
express themselves. Each gene’s “strategy” could involve regulating its expres-
sion or manipulating the environment to favor its expression. Through natural 
selection, gene networks might evolve towards a state where no gene can signifi-
cantly increase fitness by changing its strategy—a Nash equilibrium. Different 
metabolic pathways within a cell could compete for resources like substrates and 
enzymes. Their “strategies” might involve up- or down-regulating enzymes or 
altering substrate utilization. Over time, the network might stabilize at a stage 
where no pathway gains a significant advantage by deviating from its current 
expression levels, reaching a Nash equilibrium-like state. Signaling pathways in-
volve complex interactions between proteins. Each protein’s “strategy” could 
involve activating or inhibiting downstream targets. The network might evolve 
towards a state where no protein can significantly alter its activity for increased 
fitness, resembling a Nash equilibrium. 

However, there are challenges to reaching equilibrium in cellular networks. 
Assigning fitness values to genes, metabolic pathways, or proteins within a cell 
network is challenging. It depends on the specific context and desired outcome 
(e.g., cell survival, proliferation, differentiation). Cell networks are dynamic sys-
tems with constant fluctuations and feedback loops. Predicting how natural se-
lection will drive the network towards a specific Nash equilibrium is often tricky. 
Depending on the initial conditions and environmental factors, the network 
might reach different Nash equilibria. Identifying the relevant equilibrium for a 
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particular biological context adds complexity. It’s important to consider that cell 
networks might not always be in a steady-state Nash equilibrium. They might 
exhibit dynamic equilibria or nonequilibrium behavior in response to changing 
environments or internal perturbations. 

The resulting network structure can be seen as an outcome of a strategic 
game, where each node chooses its connections (strategies) to maximize its fit-
ness. Evolution drives selection towards equilibrium with strategies that lead to 
more advantageous network positions (higher fitness), which are more likely to 
survive and reproduce, passing on their genes and network preferences versus 
time. The network can evolve through natural selection towards a state where no 
individual node is incentivized to change its connections because deviating 
would lead to lower fitness. This state resembles a Nash equilibrium. Overall, the 
idea of life networks evolving toward Nash equilibria highlights the potential for 
game theory to explain the emergence of cooperative and efficient structures in 
biological systems. While challenges remain in modeling and verifying this con-
cept, it continues to be an active area of research with fascinating implications 
for understanding the interplay between evolution and collective behavior in 
living organisms. 

The game with two actions to cooperate or defect well approaches the biolog-
ical interactions [90]. The relevance of such alternating games’ strategies is 
sometimes more appropriate than synchronous games. [91]. The networking 
process in biosystems depends not only on the global degree distribution; the 
dynamic internal development is the primary driving force. While homeostasis 
macro-drives the general operations, a compensation between the cost of main-
taining a connection and the obtained benefit by the chosen links explains the 
evolution of the biological network. Typical physiological and molecular bal-
ances have been studied by Nash equilibrium, including the regulation of the 
immune system and the regulation of metabolism [199]. 

A particular game theory (the hawk-dove game [200], chicken game [201], or 
snow drift [202]) is a valuable tool for understanding the complex interplay be-
tween conflict and cooperation in various biological settings. It describes the in-
teraction between two players competing for a shared resource. Two basic strat-
egies are conflicted: the aggressive (hawk) and the peaceful (dove) strategies. A 
hawk chooses to fight over the actual resource, even if it risks injury, while the 
dove decides to share the resource or back down to avoid conflict. The payoffs 
depend on the strategies in various conflict realization: 
• In a hawk vs. hawk conflict, both may get injured and receive a low payoff 

regarding the cost of fighting. 
• In a hawk vs. dove conflict, the hawk wins the entire resource and receives a 

high payoff, while the dove gets nothing. 
• In a dove vs. dove conflict, both share the resource and receive a moderate 

payoff. 
The critical point of the hawk-dove game is that no single best strategy exists. 
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While a hawk can always do better than a dove by exploiting its peaceful nature, 
two hawks always do worse than two doves because of the cost of fighting. This 
creates tension between individual gain and mutual benefit. It helps explain how 
cooperation can evolve and persist even when individuals might benefit from 
exploiting others. The hawk-dove game could be applied for physiologic res-
ponses to stress [203]; the hawk-dove game could be used for genetic develop-
ment. In genetic development, we could imagine two “strategies” competing 
within an organism: the “hawk genes” promote rapid growth, resource acquisi-
tion, and potentially harm neighboring cells or tissues to gain an advantage, 
while the “dove genes” prioritize cooperation, cell-to-cell communication, and 
tissue development for the benefit of the whole organism. The hawk-hawk con-
flict in genes leads to uncontrolled growth, competition, and potentially organ 
dysfunction or developmental defects (low payoff); in hawk-dove conflict, the 
hawk genes might initially outcompete but later harm the overall development 
due to tissue damage (mixed payoff); and in dove-dove competition, a balanced 
growth, coordinated action, and healthy organ formation could be achieved 
(high payoff). This later payoff differed from the original game when the 
dove-dove conflict had given only a moderate payoff. In biological applications, 
the cooperative attitude has the highest benefit. The games usually need mixed 
strategies for stability. The opposition can easily recognize the fixed strategy and 
open a way for contraction and win. In biology, the random mutations at the 
genetic level ensure a mixed game for all, while homeostasis controls the bal-
ance. All models might be oversimplified, including the game theory and apply-
ing the hawk-dove game directly to genetic development. However, the core 
concept of competing strategies and the importance of cooperation offer valua-
ble perspectives for understanding the complex interplay of genes and cellular 
interactions that orchestrate the development of a healthy organism. 

The biological networks evolve from cell generation to cell generation inside 
the organism, forming an intrinsic self-time [3] while following the Darwinian 
selection rules on a large timescale. All changes in the biological networks tend 
to create local and global Nash equilibrium. The node in the network with 𝑁𝑁 
nodes has to be evaluated by its positional condition, which means its links and 
environmental specifications (degree, betweenness, centrality, hub behavior, 
etc.). The network benefits from a node with a high degree of centrality. On the 
other hand, the growing importance of the position also means resilience, which 
could be lethal for the network integrity. Under the opposite driving forces, the 
node will try to maximize its benefits and minimize its costs, but its environ-
mental nodes have the same strategy, opposing the node’s tendencies. The end 
will be a win-win position when the further cost to reach additional benefit is 
higher than the payoff of this action. In this state, the system is in dynamic equi-
librium.  

The network joining could also be studied from the system’s point of view. A 
benefit of the network is if the newly joined node occupies a strategic position of 
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the central betweenness [204], which measures how often a node in a network is 
on the shortest path between two other nodes. This state has a primary transport 
role. However, (as a strategic game again), this position is critical for resilience 
because its removal can significantly impact the network’s connectivity. The le-
thality correlates with removing the central protein in S. cerevisiae [205]. A tar-
geted attack on the high centrality nodes’ lethality due to the damage of the hub 
positions was studied [206] [207]. The most common centrality metrics are de-
gree [206] and betweenness [208] [209]. It is possible to rank the nodes (gene 
regulatory positions) by centrality metrics [210], which were experimentally stu-
died in protein arrangements, testing the robustness of a network [143]. Differ-
ent centrality metrics were proposed to describe the resilience of the living net-
works better [211] [212]. All the above considerations show the importance of 
the betweenness positions, which could be a risk to the lethality if that has a cen-
tral betweenness position. Still, the newly joined node has a low probability of 
developing such a state. 

The game theory is applicable for network development instead of conven-
tional network parameters like the distributions and scaling of the distances. The 
ultrasmall-worlds networks can be formed by the dynamic evolution driven by a 
simple compensation rule. In the game approach, the nodes seek to improve 
their positions (connections) to maximize their payoffs in the promoter-sup- 
pressor opposition. When the invested effort exceeds the resulting advantages, a 
balance is formed, a win-win situation of the promoter-suppressor “fights”. So, 
this Nash equilibrium is reached when nodes in a network consider their target 
to improve their centrality against the costs associated with forming and main-
taining connections. The network’s diameter does not depend on the network 
size and seeks to be six in Nash equilibrium [187]. The networks, independent of 
their initial structure, evolve into an ultrasmall world when nodes increase their 
centrality by forming connections only if the cost is smaller than the obtained 
benefit. Despite that, the participating individual nodes have limited information 
about the network structure. They form small worlds [187]. The low degrees of 
separation in the networks enter a new view of the complexity, considering the 
importance of the participating units’ local and systemic connectivity and inter-
dependence. The living objects are ultra complex, having various subnetworks 
on the different spatiotemporal structures, different bases of the interaction 
links, and very different ranges from the short (like molecular networks) to the 
medium (like tissues) to the large systemic (like physiological networks), but 
most of these networks may be renormalized. The renormalized network de-
scribes the links between the networks, which are treated as unit nodes, and their 
links form a new complex network in a self-organized, self-similar manner. This 
renormalization allows the medical approaches to use the subnetworks as inde-
pendent units and so specialize the medicine on molecular specific (pathology, 
immunology, etc.), organ-specific (like nephrology, pneumology, etc.), phy-
sio-specific (like neurology, orthopedics, gynecology, etc.) or person-specific 
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(like dietology, psychology, etc.) or even group specific (like sociology, ecology, 
etc.). Naturally, these subjects are deeply interconnected, forming the higher re-
normalization grouping of the investigation (like gastroenterology, cardiovascu-
lar phenomena, etc.), and the network of these significant subnetworks compos-
es the complete system governed by a particular complex and dynamical equili-
brium, the homeostasis in living objects, and the balanced society of their groups. 

3. The Cancer 

Cancer is one of the most feared diseases of humans [213]. Its prevalence rapidly 
grows with age. Life and death are connected and assume each other. An irrepa-
rable malfunction of living processes leads to death, having the statistically ex-
pected lifetime. Cancer is one such situation when the living processes are in-
compatible with the energy and space requirements of developing malignant 
tissue. Paradoxically, cancer cells have immortality as long as their energy supply 
is ensured. 

Various theories and hypotheses exist about the cause and origin of cancer, 
from ancient medicine to a long line of new explanations. The advanced search 
for an answer was started more than a century ago with virus concept [214] 
[215]; the genetic clues were later favored [216] [217], and the mutation con-
cepts became popular [218] [219]. Recently, the immune dependences [220] and 
connections with wound repair have been intensively researched [221] [222], 
[223] [224] [225]. Despite the enormous efforts, the cause of cancer remains 
open [226], with groups trying “fishing” for the clue [227]. Despite even partic-
ular quantum-physical explanations [228], the recent studies do not give a final 
solution [229] [230]. More contemplations turn to the environmental, diet, and 
habit origins of malignant diseases [231] [232] [233]. 

Most widely, cancer is believed to be an abnormal tissue triggered by a gene 
mutation. However, the proto-oncogene and the oncogene appear not only in 
cancerous cases [234] but with pregnancy [235], with embryogenesis [236] [237], 
with the healing of wounds [238], and with the synthesis of growth factors [239]. 
Oncogenes show a great variety of anti-apoptotic functions, with the cells par-
ticipating in wound healing. 

Cancer is a part of the evolutionary process. It is a self-organized structure 
[240]. A longer time scale could cause a refreshing of the genetic pool, develop-
ing a mechanism of opposing selection of mutant alleles [11] and eliminating the 
genome instability. Healthy homeostasis makes great efforts to avoid cancer. The 
first few attempts to block the proliferation start intracellularly by controlling 
the DNA replication. DNA replication is, of course, crucial for continuing the 
standard cellular replacements of the individual. The natural challenge is the ex-
act copy of the complex DNA. The process has errors (mutations) that deviate 
from the standard cellular structure of the individual. The primary task of ho-
meostasis in the first steps is to control the DNA replication and intracellular 
processes. The control may fail for several reasons, including primary genetic 
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aberration [241], mitochondrial dysfunction [242], or other intracellular hall-
marks of cancer [243]. An additional challenge is the extracellular factors such as 
permanent uncontrolled stress (chemical, mechanical, etc.) [244], unhealed 
wounds [245], inflammation [246], and the extracellular hallmarks of malig-
nancy [247]. The permanent proliferation could be stopped by natural apoptosis, 
but this mechanism is missing, too [248]. 

3.1. Cancer Morphogenesis 

Cancer disrupts the healthy morphogenesis [249]. The disruption appears in a 
drastic change of tissue architecture, the aberrant signal pathways, and activating 
embryonic signaling pathways to realize atavism. Malignant cells develop 
through massive structural and functional developments when environmental 
conditions make it possible. Subtle cellular and tissue behavior modifications 
could be an early warning sign for malignant development. Morphogenesis 
principles can be used to construct network models to simulate how cancer cells 
interact and organize. The morphogenetic variation differs in the bulk tumor 
and its boundary. The development of a plane lattice considered that there are 
structural variations governed by changes in boundary conditions [250]. In this 
way hypothesized, that the early stage mostly tries to drive toward normal 
progress, and the late stage shows a volume-minimizing fractal growth with 
characteristic dimensions, optimizing the maintenance of the volume constant 
while increasing the edge length, which allows more reactive sites for further 
developing [105].  

The tumor development controls morphogenesis, so the ATP is the energizing 
factor and the regulator of morphogenetic development [251]. The construction 
of tumors and the malignant invasion could be regarded as losing morphogen 
gradient control. While morphogenesis increases the complexity of the structure, 
cancer could be considered as “reverse morphogenesis” when the topological 
complexity decreases [252]. However, the reverse effect turns again into direct 
morphogenesis; when the tumor is more extensive, its mechanical pressure is 
higher than the host’s on average, and it has structural changes depending on the 
part of the tumor. 

In morphogenetic perspective cancer is a geometrical flaw, a disease of the 
geometry [253], a defect pattern of a group of cells, which spatiotemporally dif-
fers from the healthy host [254]. Equivalently, cancer is a network disease, which 
deviates from normal networking, which is connected to the morphogenic ar-
rangement. 

Due to the self-organized self-similarity of living structures, the fractal geo-
metry is an appropriate tool to study the geometrical [255] [256] (or temporal 
[72]) arrangement of the cells. The fractal geometry differs in healthy and can-
cerous tissues [257] [258], and even its change characterizes the tumor grade 
[259] and specific structures of the cancer locations [260]. Fractal dimension 
could also be a prognostic factor [261] and could indicate the therapeutic re-
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sponse [262] of a tumor, as well as be used for early diagnosis of malignant devi-
ations [263]. The subcellular fractal dimensions appear in chromosomal abnor-
malities [264], cytoskeleton [265], and microtubules [266]. Fractals may be used 
to detect the vascular architecture of the tumor [267] [268]. The trend of fractal 
evolution could be the opposite in the tissue and individual cells. The cancer 
tissue emerges more and more segmented structure (sometimes like “cauliflow-
er” shape [243]) and the fractal dimension grows [269] the cancer cells are 
structurally simplified developing a decreasing fractal dimension [270].  

3.2. Cancer Networks 

Network modeling could help to understand and attack the abnormal molecular 
and cellular processes associated with cancer [271]. The analysis of the network 
models yields information to describe cancer and follow their adaptation 
processes [272] [273] [274]. The malignancy distorts the healthy cellular net-
work. The rules of the multicellular organization are broken in all tumorous 
cancers independent of their locations in the body. Disorganizing the multicel-
lular structure is the modified genetic activity at the active boundary between 
unicellular and multicellular areas, promoting primitive transcriptional pro-
grams [275]. In this sense, cancer is an organizing (networking) disease, where 
the cells unleashed from their networks abandon the living advantages of collec-
tivism and individualism prevailing [86]. The change, however, is not free from 
new organizing processes because this unicellular autonomy brings its require-
ments regarding environmental conditions for survival [276]; the cancer is af-
forded a friendly environment by the host, which tries to “heal” the abnormality, 
strengthening with angiogenesis, injury current, and numerous other supports. 
The breaking of healthy cellular networks forming its own is a general behavior 
of all tumorous cancers independent of their locations in the living system, so 
the study of tumorous networking applies to all tumors. Contrary to the ge-
nome-wide association studies [277] [278], instead of hundreds of involved po-
sitions, the gene regulatory networks are relatively simple; a few critical tran-
scription features can change the cellular state, as a genetic polymer model 
shows [125]. The model system showed [125] that the binding of the transcrip-
tion factor to the transcription unit is reversible, having a role in reverse muta-
tion. The transcription factor is a weak link that switches between the active 
binding site to the inactive, actually nonbinding state by a rate parameter. 

We may categorize the cellular networks from rigid to plastic state [279]. Ri-
gid networks have hub-driven hierarchy and low network entropy, usually de-
scribed by the BA scale-free model. Rigid networks have only a few dominant 
attractors to where the network converges. It is characteristic of late-stage tu-
mors. These networks are vulnerable to hub-distortion, so their therapy needs 
“network influence drug design strategy” targeting their hubs and nodes in cen-
tral betweenness position [280]. Weak links dominate plastic networks, have 
overlapping modules with regulation loops, many attractors and high network 
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entropy. It is characteristic of early-stage tumors. 
The gene regulatory networks are relatively simple. The computer simulation 

of the chromosome polymer model shows the growing space correlation, allow-
ing stochastic transcriptions and forming complex small-world networks, where 
one transcription affects many genes in the region [125]. Increasing transcrip-
tion units in sub-saturating levels significantly simplifies the network to a small 
world. Small-world networks have been found to play a role in cancer develop-
ment and progression [281]. Studies have shown that small-world networks exist 
in the tumor microenvironment and the environment surrounding a tumor tis-
sue. The tumor microenvironment (TME) comprises a variety of cells, including 
cancer cells, immune cells, and stromal cells. This network structure allowed for 
efficient communication and coordination between the different types of cells in 
the TME [282]. The TME has highly correlated cellular interactions [283] and is 
organized as a small-world network [284], a common feature of the TME in 
various cancers, suggesting that small-world networks may play an essential role 
in cancer development and progression. The small-world network structure of 
the TME allows for efficient communication and coordination between the dif-
ferent types of cells, which can promote tumor growth and invasion. Cancer cells 
can use small-world networks in the lymphatic and circulatory systems to travel 
to other body parts and form new tumors forming metastases [285]. Cancer cells 
can develop resistance to cancer drugs by communicating with each other 
through small-world networks, making it challenging to complete the provided 
oncotherapy. The robustness of the cancer signaling network is also supported 
by small-world construction [286]. A broad spectrum of fundamental network 
characteristics in embedded networks exists in biological systems [287], such as 
transitions between scale-free to exponential degree distributions and large- 
world to semi-ultrasmall-world [288] [289]. Cancer changes self-organizing and 
develops its rules, structure, and transport system. Cancer is a disease of the 
whole cellular network that supports the “renegade” conditions and allows the 
metastatic processes [284]. Cellular “individualism” wins and replaces collectiv-
ism, while collective healthy acceptance supports it. The cancerous part of the 
system parasitizes its healthy environment, using its sources for local individual 
survival, contradicting the systemic demands. 

Molecular networks dynamically respond to inner and outer influences and 
tend to adapt to them. Six categories of networks based on the impacts from in-
ternal and external environments could be distinguished in Figure 16. 

1) Genetic networks (as basic hardware at birth) are the basis of behavior, 
which may significantly differ between individuals and may change by mutation, 
which could develop cancer. 

2) The genetic network primarily determines cellular network structures, but 
morphogenesis and other developments connect these networks to the next, the 
tissues. The cellular network drastically changes when cancer develops. Cells are 
metabolically reprogrammed with cancer, and it changes their network, too. 
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Figure 16. The various levels of networks are embedded to each other and together their 
crosstalk they are intensively interacting with the environment, which at the end of the 
day may modify the complete structure. 

 
3) Tissue networks where the collective dynamic processes determine the links 

and nodes. This network is essential to understanding cancer tissue development 
and its support with resources by healthy tissues. 

4) The organ network makes mostly physiologic interactions and regulates the 
internal conditions for all networks below. The physiologic transports and regu-
lation signals are reprogrammed when cancer develops. 

5) The organism’s network regulates and controls the system’s homeostasis. In 
a cancer situation, the homeostatic network is damaged and not able to perform 
its standard regulation role. The complete support for cancer with available re-
sources dominates the processes. 

6) External effects and signals provide nutrients and chemicals, forming gen-
eral environmental conditions for the organism. 

The first three (genetic, cell, and tissue) networks are mainly affected by out-
side resources. From the point of view of cancer, network modeling could be 
reduced to four network categories to follow the cancerous processes [290] and 
use the organ and organism networks as a stable frame of the malignant devel-
opment. Even the four network categories could be reduced to three by self-or- 
ganizing, regarding cancer as a disease of cell and tissue networks [291]. The 
complexity of the topic is well mirrored in the different models that study cancer 
development. Models may be centered on genetic start, on the inherited genome 
instabilities, on some non-genotoxic effects, or may use evolutionary biological 
considerations [292]. The angiogenetic network model for cancer tries to de-
scribe the cancerous process with the network of organism-regulated blood 
support [293], which could also be formulated by tissue-driven electric interac-
tions [294]. 
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The regulatory networks have many commonalities from microbes to humans 
[93]. The regulation of collaboration and cooperativity massively boosts the 
democratic character with overall genomic complexity. The complex regulatory 
effects tend to a partnership supporting the democratic structure, whereas others 
regulate primarily in isolation, in a more autocratic fashion [94]. The degree of 
collaboration forming autocracy in opposition to democratic behavior is a cha-
racteristic of the complexity of living systems. The game with two actions to 
cooperate or defect well approaches the biological interactions [90]. The relev-
ance of the strategies of such alternating games is sometimes more appropriate 
than synchronous games [91]. 

Mutated single genes rarely cause disease (including cancer). The perturba-
tions triggering disease affect the complex intra- and extracellular networks. 
Network medicine may identify the disease modules and pathways, considering 
molecular relationships between apparently separate phenotypes and systemi-
cally exploring the molecular network complexity of a particular disease [151]. 
The lethal genes are coupled to five-fold higher connectivity proteins than 
non-lethal ones. The results emphasize the importance of the hub-focused at-
tack, which can disrupt 50% of the protein network integrity [295]. 

Various cancerous diseases have their molecular signaling network, which 
may statistically correlate with the survival variation of different cancer types. In 
the case of lung adenocarcinoma, the scale-free network is a case-specific small- 
world [296]. The small-world maps describe the disordered topology of cancer 
in different stages of its development. The forming small-world structures are 
resilient to external attacks, which limits the effectiveness of pharmaceutical 
therapeutic interventions for lung adenocarcinoma [280]. 

3.3. The Aging 

Aging is a normal process of living objects. The self-organizing models for aging 
could follow the essential functions and the crosstalk between aging and cancers 
[297]. The methylation is a crucial addition to aging in the self-organization 
model. The dysfunction of regulative and order parameters, including the im-
mune system, is identified during aging in the self-organized model, together 
with the relation of aging and aging-related diseases like cancer [281]. Aging 
modulates the cancer progression with angiogenesis and metabolic support 
[298]. The transforming growth factor beta (TGFβ) is a potent inhibitor of cell 
proliferation and acts as a tumor suppressor; however, the aging downregulates 
it in the host, allowing the malignant development. The idea that cancer results 
from a single cell’s renegade behavior [299] must be corrected. When the cell 
grows individually without support from the healthy environment, no prolifera-
tion and no metastasis can occur. Cancer is a collective disease of the whole cel-
lular network, breaking the multicellular coordination and intending to form a 
monocellular structure with the intensive support of the healthy host and allow-
ing the metastatic processes [300]. The cellular “individualism” replaces collec-
tivism, restructuring the communication network between the cells. These ob-
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servations prove that the malignant processes are age-dependent, and according 
to the epidemiological data, they are also environment-determined [301]. 

A very extended study of data mining of aging and DNA methylation 
(DNAm) shows that DNAm can be used as an epigenetic clock, has no strong 
correlation with aging, but nonlinearly changes by age: it is accelerated in young 
ages until adulthood, and remains approximately constant later. In contrast, 
cancer tissues have severe age acceleration again [302]. It is essential to add that 
the homeostatic capacity (regulation and control) decreases with aging [303]. 
However, this phenomenon is also not linear; the degree and pattern of popula-
tion heterogeneity may deliver new information that the statistical variance 
(ANOVA) evaluation does not indicate. The growth of a tumor depends on the 
supply of nutrients by blood flow via a vascular network. Interestingly, the new 
angiogenetic vessels in cancer and the healthy network do not increase the flow 
efficacy [285]. The seeming contradiction is similar to the traffic networks of 
roads described by the Braess paradox [304], describing that adding one or more 
routes to a road network can slow overall traffic flow. The traffic of the complete 
network with the added road(s) will reduce overall performance to reach the 
Nash equilibrium. Having linear latency, the added new edge to the transport 
network worsens the transport time ≤4/3 [305]. The same conditions happen 
when the angiogenesis adds a new blood-transport route by angiogenesis to the 
healthy network. However, at the same time, aging reduces the weak links [306], 
which means that, in the case of the vascular networks, some weak link routes 
disappear, working against the angiogenetic vessel addition. The weak links are 
gradually decreased by aging and cancer in a cellular network, too, where their 
disappearance increases the vulnerability of the cellular networks.  

The tumor morphology changes by the random decrease of adhesion between 
the cancer cells [307], as it was experimentally observed in the E-cadherin/ 
β-catenin complexes [109] [110]. Supposing that the adhesion distribution of the 
tumor cells is Gaussian with a σ standard deviation The growth exponent and 
the surface roughness fractal dimension grow by σ having ~1.2 and ~2 satura-
tion value, respectively [307], well corresponding to the relationship between the  

fractal dimension (D) and power law index (α) [308], showing a slope 5
2

s α−
≈ .  

This indicates that the cellular adhesion is one of the critical factors of transition 
to cancer cell.  

3.4. Does the Tumor Have Atavistic Features,  
Or Is It a New Organ? 

The growth of tissues is a usual process in living objects. Allometric considera-
tions can distinguish between healthy and cancerous growth [255]. Healthy ho-
meostasis struggles to control the malignancy. The natural apoptosis that could 
stop permanent proliferation is missing [248]. In this aspect, the cancerous pro-
liferations and the growth of the bacterial colony have a lot in common [309]. At 
the start of developing tumors, the cancer cells gradually become autonomic, 
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break the connections, and individually fight for survival and energy for rapid 
proliferation. The malignant development commonly avoids healthy homeostat-
ic regulation, “defrauding” the controls for their intensive, unhealthy prolifera-
tion. The cancerous lesions develop the strength to proliferate as intensively as 
possible, ignoring the host tissue’s healthy regulations and collectivity. Cancer 
attacks the multicellularity, and seemingly steps back to the unicellular devel-
opment, producing atavism.  

Cancer development is seemingly like atavism [310] [311], but the support for 
its development differs. In the beginning, when the intercellular bonds weaken, 
the network starts to fall apart, and the quasi-independent cells try to adapt to 
the new condition. The uncontrolled growth of cancer has a unique behavior at 
the beginning, the malignant cells individually develop and refuse the healthy 
network connections. This denial of multicellular collectivity is like the unicellu-
lar development in the earlier development stages of life. This stage of cancer 
development is atavistic [310] and has a lot in common with bacteria and with 
the wide range of unicellular developments [309]; having self-ruled cellular be-
havior denies cooperativity. All malignant cells individually fight for energy in 
this stage. The unicellular individualism develops enormous potential for 
adaptability to environmental changes and makes these cells more vigorous than 
those in the multicellular network. However, the difference from bacterial ata-
vism is noticeable. The bacteria, the atavistic unicellular system, has passive dif-
fusional and mechanical availability of resources from the environment, while 
the starting cancer cells enjoy the available blood transport system. The funda-
mental similarity to atavism is its first strictly unicellular steps, where the malig-
nant cells independently fight for their survival, the sense that the malignant 
cells act like self-ruled unicellular organisms. Soon, the cancer development 
builds up a new strategy. 

The atavism-like process at the beginning of tumor growth in general, with 
the loss of cellular connections and the alteration of intracellular genetic struc-
tures. The unicellular individualism develops the excellent potential for adapta-
bility to environmental changes and makes these cells more vigorously viable 
than those in the multicellular network. Disorganizing the multicellular struc-
ture is the modified genetic activity at the active boundary between unicellular 
and multicellular areas, promoting primitive transcriptional programs [275]. 
The healthy host supports cancer development [310], while the growth of cancer 
dismantles the multicellularity [312], and the cellular collectivity gradually dis-
appears [313]. The malignancy in this general meaning is a distortion of the 
healthy cellular network, the multicellular organization is broken. The atavistic 
model could be used as a starting point, but this model does not consider all the 
crucial details (hallmarks) that keep the single-celled units of cancer develop-
ment alive [314]. In this sense, cancer is an organizing (networking) disease, 
where the cells unleashed from their networks abandon the living advantages of 
collectivism and individualism prevailing. [86]. 
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Cancer development is supported actively by from the surrounding host tis-
sue. It builds up new structures in themselves [255]. Cancer cells self-organize 
various networks in their different development stages to survive collectively, 
evading homeostatic control. The rearranged cancer networks have cooperative 
links at first bilaterally and later generally with the host cells (reverse Warburg 
effect [315] [316]). The development evolves a form of new organizing because 
the unicellular autonomy brings its requirements regarding environmental con-
ditions for survival [276], which needs multicellular cooperation. The cancer is 
afforded a friendly environment by the host, which tries to “heal the wound”, 
strengthening the tumor with angiogenesis, injury current, and numerous other 
supports.  

The newly developed tumor growth is angiogenesis-dependent [317] [318]. 
The growing tumor, within its subsequent evolution and adaptation to the 
changed conditions, starts to behave as an organ, having peculiar functions (the 
growth intensively supported by the entire body, including the cellular, the or-
gans, and the physiologic networks. The cancer behaves as a regular organ [319] 
with substantial energy consumption and low efficacy. It has a unique feature 
that no other organ has: the metastases delivered by the lymph and blood trans-
port, like hormones, immune cells, and other essential parts involved in circula-
tion. The metastatic behavior is also organ-like [320], keeping the original 
structure of the cancer in other metastatic tissue conditions [240]. 

Due to the complexity of cancer, the tumor growth dynamics can have a spa-
tio-temporal 3D computational model of the development of a cancerous tumor 
together with its environment [321]. The model describes the tumor as an organ 
having intensive and coordinated interactions with the environment of tissues 
and through physiologic control with other organs. A solid tumor is not a set of 
clones of a “renegade” cell, but it is an abnormal organ, having heterogenous 
cellular composition and extracellular matrix like other organs [322]. The mod-
eling of this is not simple. Some cancer development characteristics look like a 
developing organ, while others are realizing tissue remodeling. Some microen-
vironments, particularly those associated with tissue injury, favor the progres-
sion of mutant cells, while others restrict it. Cancer cells can also instruct sur-
rounding tissues to undergo changes that promote malignancy. Understanding 
the complex ways cancer cells interact with their surroundings, both locally in 
the tumor organ and systemically in the body, has implications for effective 
cancer prevention and therapy. 

The increased size of the cluster of cooperating cancer cells increases the 
complexity of the structure, proliferates more effectively, and can share re-
sources. Cancer cells may affect the hormone system by cancer-derived media-
tors (biogenic amines, neurotransmitters, neurohormones, cytokines, immune 
mediators, etc.), and with these can stimulate the neuroendocrine centers reset-
ting the homeostasis [323], setting the body to favor the cancer proliferation. 
Numerous changes create a new homeostasis (accepting the tumor as an ener-
gy-demanding organ), which helps the tumor grow Figure 17. 
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Figure 17. The physiologic changes reshape homeostatic control. The charge (injury cur-
rent), liquid (blood and lymph) transport, and immune inhibition set a condition to reset 
homeostasis. The consequences are the dissemination of the malignant cells, a particular 
hormone production, increased diffusional possibilities, and lowered pH. Note that the 
retuning of the body equilibrium supports the tumor-organs hypothesis and does not fit 
the atavistic explanations.  

 
The changes in the cellular system in the process of tumor growth have mor-

phological differences which have crosstalk with many fundamental processes of 
living matter [324] Figure 18. The healthy networking is a complex multicellular 
network with numerous negative feedback regulations having intensive intercel-
lular interactions in long-range order. The standard cellular network does not 
allow cellular migration except for those cells that are involved in immune sur-
veillance. The transport delivers enough energy for standard dynamic equili-
brium, which has high energy efficacy to use it. In the first phase of tumor de-
velopment, the multicellular network falls apart in the cancer location, and the 
cells compete for new cell production. Here, there is no feedback regulation (ex-
cept the available nutrients), no complexity, and no intercellular connections 
disordered, and it is easy for cells to migrate. The developed cancer has highly 
complex interconnected networks and extreme genetic [325] and tumor [326] 
cell network heterogeneity. Genetic and tumor heterogeneities are the principal 
reasons for the therapeutic failures and even the growing likelihood of resistance 
to subsequent therapies. The diverse genetic and cell populations do not equally 
react to the applied treatments; those may select the resistive cells on the toxic 
stress. So, the applied therapy selects the resistive tumor cells and blocks the 
possibility of successful therapies. These resistive cells have more facility to avoid 
apoptosis in otherwise collected random mutational states, and due to their 
“trained” adaptation, they form more effective distant metastases in different 
tissues. This critical phenomenon could be bypassed with such therapies to 
which all diverse cells are sensitive. For this, the synergy of thermal and non-
thermal effects of the nonionizing radiation appears as an optimal candidate 
[327]. 
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Figure 18. The differences between (a) unicellular living clusters, (b) healthy organized 
clusters, and (c) malignant clusters of cells. Clearly, the atavistic approach is only formal; 
the interactions and the organizing of the systems are different. 

3.5. Cancer Prevalence 

A power function of cancer incidence by the duration of exposure to the car-
cinogen was observed first in vivo in rodents [57]. The observed power value 
was 4 6− , independently of the body size of mice. Human epidemiological sta-
tistics support this power law [328] [329] [330], which determines the cancer 
prevalence by ages: 

( ) ( )prevalence age ϑ∝                          (5) 

where 6 7ϑ ≈ − , depending on the tumor location and the environmental con-
ditions, and looks valid between the ages of 25 and 74]. This power law means 
that 6 7ϑ ≈ −  subsequent independent mutations must be collected to the 
clinically diagnosed cancer [331] [332]. The starting malignant cell goes through 
many stages with independent triggering to produce clinical observations [333]. 
A single “renegade” cell, as the starting point of cancer, has to be modified. 
Cancer development has essential complexity [334] that harmonizes with the 
multistep subsequent series of changes, which, in the end, manifests as a malig-
nant tumor. Six subsequent mutations give the sixth power of age in the cancer 
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observation. Another explanation was developed earlier [335]; oppositely to the 
unicellular mutations, a collection of six genetically altered cells would be a clus-
ter, which results in a stable tumor. This clustering supposes exchange of some 
kind of networking information between the clustered cells, which is not the case 
at the beginning of cancer development; the cells follow unicellular life without a 
collective driving force. Even oppositely, these cells fight with each other for the 
available energy. The individualism and separation of the cells in starting malig-
nancy points to the cumulative mutations that finally develop cancer, which 
must be intracellular at the beginning of the malignant process. The competitive 
evolution of the cell structure drives another possible mechanism causing the 
power law. The most viable cell wins. It is transformed and adapted completely 
to break the multicellular networking and develop individually malignantly 
[336]. 

The observed epidemiologic power function (5) practically means that a per-
son collects a definite number of mutations for having cancer symptoms. The 
explanation of this observation may use network research. The complexity of 
biosystems is significantly more multifaceted than other networks because the 
connections depend on local (like molecular, electric, structural, etc.) and global 
(physiologic regulation, including the material and information transports, ad-
justment to the permanently changing environmental conditions. All connec-
tions evaluate the interaction balance governed by the negative feedback signals. 

The primary consideration for the power function of the cancer prevalence by 
age is the multistage cancer induction [337], where the distinct changes are he-
ritable to the next stage, and their cumulative effect alters the normal cell to ma-
lignant. The bad luck in a single cell develops a proliferative malignant clone. 
The development of the subsequent steps to proliferate malignancy depends on 
multiple factors, including the dose of a carcinogenic load and the early history 
of the mutations, like ex-smokers predisposition to lung cancer [338]. Genetic 
instability, the single base change, or chromosomal instability may accelerate the 
malignant processes [339]. 

Note that the cancer observation, registered in the epidemiology statistics, 
gives information only about the diagnosed and registered tumors. This means 
that the last stage of the sixth degree of prevalence is the appearance of the can-
cer symptoms. Cancer symptoms occur in a significant portion of ( )~ 40%  of 
the lifetime of total human [340]. Still nonsymptomatic malignancy is observed 
in autopsies [341], and in ages 50+ probably everybody has some malignant 
neoplasms [342]. Mutations and genetic instability can already be present at 
birth [343], so cancer is a natural consequence of aging [344]. The power func-
tion may be modified in older ages when the dynamism of the cancer fission is 
limited. In human colorectal cancer, the power function is replaced by a linear 
function from the age of 60 - 65 [345], which predicts a lower incidence power. 
However, a single mutation could also be enough to trigger the malignancy. 

A statistical model describes the power law with two independent (nonlocal) 
time parameters as the first manifestation of the malignant cell and the growth 
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time of the detectable tumor, supposing their normal distribution [346]. The 
model described the power-law function well until the age of ~70, from where 
the hazard function decreases, corresponding to slower cellular development 
and the average human lifespan. The stochastic complexity challenges the de-
terministic statistical description of this model. The complexity of the dynamic 
interaction represents a feedback regulation of the system at every level of its 
structure. The complex system is not a sum of its distinct parts. The whole is 
more than the sum of the elements; the interactions are primarily non-linear; the 
system is energetically open and has adaptive exchanges with its environment. 
The approach to describing it must be analytic and not synthetic. Considerations 
regarding the complexity create considerable challenges in making the calcula-
tions. The attempted solution typically synthesizes the parts that could be calcu-
lated. However, this calculation strategy needs to be revised. The analysis must 
consider the complexity. Various models were elaborated for the human life-
span, and no one could be chosen as better than others to describe reality [347]. 
Many of these have no distinction between the development of malignant and 
benign tumors and do not consider the possibility of cell repair and the action of 
the immune system [348]. The stochastic processes in an individual and the dif-
ferences between the individuals have to be considered for accurate description. 

The observations prove that the malignant processes are general, and their 
symptom appearance is age and environment-dependent [301]. Consequently, 
the cancer prevalence in epidemiologic data is not equivalent to the cancer de-
velopment. The collected number of steps to develop cancer differs from the ep-
idemiologic morbidity data. The earlier statistics investigated mortality data. 
Studying the age-specific mortality rates of different types of cancer [349] ob-
served a better fit to the power-law function when the carcinogenic influences do 
not change during a human lifetime, while the variation of the strength of car-
cinogenic exposures may cause the deviation of the mortality rates from the ex-
pected function. By the time most cancers are medically manageable with vari-
ous successes, modifying the mortality differing from the incidence (morbidity) 
of malignancy. Due to the trend variation between mortality and morbidity, the 
researchers narrowed their investigation scope to examine the cancer incidence 
rate. The six steps to cancer prevalence include the manifestation of clinical 
symptoms. Indeed, the transformation of the network forms and the connected 
interactions is a process that develops the symptoms and the clinically diagnosed 
form of the cancer step-by-step. The cancer development has subsequent steps 
that cause a power function of survival vs. age.  

The biochemistry of cancer research focuses on the molecular processes of the 
internal driving force of cancer development [350], showing the random occur-
rence of malignant processes. The question appears to be whether environmen-
tal (circumstances, inherited features, aptitudes) or random (“bad luck”) 
processes have a pivotal role in malignancy. A significant occurrence of cancer 
(~70%) is a consequence of random errors throughout DNA replication of 
healthy stem cells, which is an unpreventable “bad luck” developing malignancy 
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[351]. The internal processes are strongly correlated with external influence. The 
living systems are energetically inseparable from their environment, so the syn-
ergy of the extrinsic and intrinsic factors is considered in cancer causes [352]. 
The inherent risk factors contribute to cancer development moderately (less 
than ~10% - 30% of lifetime risk), so extrinsic, environmental influences heavily 
affect the familiarly inherent effects [353]. According to our current knowledge, 
there can be many reasons for developing a malignant tumor, which in conse-
quence changes multiple processes in the body Figure 19. These can be initially 
inherited by birth, can be environmental, aptitudes, or can be preventable causes 
by person, which are primarily connected to the lifestyle of the individual. 

The standard, healthy cells are under the control of others (“social” signaling 
[354], a collective action). The cancer cells are different: they grow without con-
trol, their energy and material exchange are limited only by availability, and they 
are not affected by any regular control. Cancer has its growth factor and is not 
sensitive to growth inhibitors; it could avoid apoptosis and has unlimited repli-
cation potential with enhanced angiogenetic and dissemination (invasive) po-
tential, too. They are autonomic instead of collective [completing structure]; 
they have a competitive driving force to survive among the shrinking sources of 

 

 

Figure 19. Some cancer-causing occurrences for humans. These are possibilities. All have a nonzero probability of cancer 
but are not sure to develop a malignancy. Having multiple factors rapidly increases the likelihood of cancerous diseases. 
The consequences modify the homeostatic control and introduce particular, only spite typical “hallmarks,” which interact 
with the tumor and each other. The clinical symptoms of comorbidities, which can be a causing factor for cancer, are ma-
nageable, without cancerous symptoms. 
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the diminishing availability of survival. The cancer develops through five inte-
racting stages until became the epidemiologically observed 6th symptomatic Fig-
ure 20 [355] [356]. 

3.6. The Cancer Game 

Cancer is an evolutionary disease. Cells unicellularly adapt to the tissue envi-
ronment; they thrive and individually fight for survival at the start of the tumor 
development. The Darwinian game with random mutations may describe the 
development of cancer. 

There is a view that cancer in each population has the same role as apoptosis 
in the cellular structure. The part of both proceeds an altruistic suicide. Cells de-
stroy themselves at the cellular level when damaged or pose a hazard to the net-
work. Cancer is also a self-destruction of the individuals who carry dangerous 
mutations and so shows a threat to the genetic instability of the population 
[357]. This hypothesis argues that apoptosis is not a protection against neop-
lasms but a part of self-defense against genome instability. This attractive logic 
based on Darwinian natural selection has an evolutional contradiction. Cancer 
(the body’s self-defensive action) massively appears in the population who are 
over the age, a replication of the dangerous genetic instability to the next genera-
tion. Another problem is that asymptomatic cancer development appears in 
most individuals during their lives, but despite its genetic instability, it does not 
present danger to their lives. 

 

 

Figure 20. The steps developing cancer. All stages are interconnected 
with all others, the processes are driven in one direction, but they are 
not one directional. 
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The biochemical adaptation depends on the topology of the structure and the 
crosstalk of the nodes of the chemical reaction network. The mathematical mod-
els of evolutionary game theory could describe development and adaptation, 
considering non-linear interactions and newly appear traits in a population 
[358]. The genotypical and phenotypical extreme heterogeneity and the tumor in 
its elevated form significantly vary the type of cancer cell types. The interactions 
between the tumor cells and between the tumor and stoma cells may vary in 
competitive and cooperative game strategies. Tumour cells have different capa-
bilities to cooperate, so a single cell does not have all the hallmarks of malignan-
cy. The observed hallmarks are represented by an interacting group of cells 
[275], which could be used in the calculated cost of glycolysis [359] or described 
as predator-prey dynamics of fitness [360] generation. 

The evolutional game theory (eGT) fits better for the dynamic complexity of 
cancer development than the classical version (c cap G cap T). G cap T centered 
on strategies instead of the game’s players dynamically producing the payoff. 
While the cGT concentrates on winners in diverse conditions, static population, 
eGT is less varied, and the survivors with dynamic population are in the centre. 
The eGT examines such interactions where one’s fitness depends on not only 
one’s traits, but also the traits of others [361]. The hawk-dove game fits most to 
the intratumoral heterogeneity of cancer and its development, forming an evolu-
tionarily stable strategy, a symmetric Nash equilibrium [362]. 

When tumors outgrow their available resources by transport from the healthy 
host, they reprogram their metabolic activity using energetically less efficient 
glycolysis (Warburg effect). The glycolysis may increase the fitness of the cancer 
cells due to the advantage of their development, with quick and large ATP pro-
duction and producing an acidic environment that is toxic for healthy hosts 
[363]. The situation is a typical classical model game called prisoner’s dilemma 
[364], highlighting the tension betweenindividual rationalityandcollective bene-
fit. Themetabolic payoffs would be higher for cells to cooperate. Still, neither the 
tumor nor the healthy cells prepared for unilateral change, so their metabolic 
strategy leads the cell population to commit evolutionary suicide. A complete 
understanding of cooperation among the cells of a tumor requires methods and 
concepts from evolutionary game theory [365]. Cancer development has distin-
guishable stages, which use various games by highly adaptable cancer cells for 
survival [356] Figure 21. All stages have the origin of Darwinian selection. In 
evolutionary game theory, payoff corresponds to Darwinian fitness. The players 
of the game, the cancer cells or stromal cells have strategies appearing in the 
phenotypes. Natural selection optimizes the game, which has a mixed gaming 
strategy over time by random mutations seeking to the highest fitness.  

Random genetic mutations are unavoidable facts of cancer biology. They are 
mostly unfavorable because there are considerably more ways to damage than 
improve the genome. Within a neoplasm, a mosaic of mutant cells competes for 
space and resources and evades predation by the immune system. The presence  
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Figure 21. The five steps until the clinical appearance the sixth collected deviations. The six step to the symptomatic stage could 
be shorter (like the gatekeeper gene is mutated first) or longer (when the actual mutation is negligible). 
 

of clonal competition highlights the fundamental problems of neoplastic pro-
gression and problems of evolutionary biology [366]. 

The standard model of carcinogenesis usually applies a linear configuration of 
the development. The Darwinian selection model needs to consider non-linear 
dynamics, which studies the cellular genetic instability in the frame of the com-
petition of genetic strategies [301]. We know that some mutations are inherited 
and indicate a risk of cancer connected to the mutated genes [367]. Some muta-
tions develop de novo and are inherited in the next cellular generation. The tu-
mor develops genetically in subsequent cell populations, not in a single cell. The 
cellular division replicates some epigenetic information with DNA methylation 
[368]. The cancer cells also have epigenetic mutations [369]. Inheritance has a 
crucial role in cancer development between the newborn generations and be-
tween the cells by division in a system. 

The promoter-suppressor balancing effects appear in cancer development, 
too, having two balancing genes, the caretakers, which control the integrity of 
the genome, and gatekeeper genes, which regulate the functional growth rate, 
balancing between the proto-oncogenes, and tumor suppressor genes [370]. The 
mutations in caretaker genes can mutate gatekeeper genes, and the process fol-
lows the Darwinian selection [371] [372]. The environmental stress and complex 
interactions induce point mutations, which are believed to be adaptive, and am-
plification promotes genetic changes to enhance survival [373]. This interpreta-
tion does not describe the complete situation [374]. The challenge is that the 
random mutations can be disadvantageous with high probability and adaptively 
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advantageous only with low likelihood. Statistically, a random mutation is an 
unfavorable bet. Contrary to their genetic instability, the cancer cells have a fast-
er replication rate than the healthy cells. With simple logic, genetic instability 
causes a high growth rate. Nevertheless, genetic instability should be expected 
not only to be dangerous but also to be a part of evolution [375] [376]. 

Occasionally, a random mutation may modify a gatekeeper, which increases 
the growth rate. However, more mutations in the same cell induce cellular 
breakdown with a high probability. The replication of DNA is not perfect, mod-
ifying some sequences in the genome. Due to the compensatory dynamics (re-
version), all stresses develop their reverse reactions, and even cancer therapies 
induce cancer by the reversing mechanisms [377]. Compensatory mutations 
benefit fitness when a deleterious mutation is present, but it does not block the 
vital processes. The selection pressure may favor mutants resistant to the exter-
nal cytotoxic effects [378]. 

Genes synthesize their sequences autocatalytically, individually (“selfish” way 
[89]), and the cells containing them compete for resources. The cell’s selection is 
based on its mutated gene. 

The cancer cells have extended adaptability to external conditions. They are 
not protected against environmental mutagenic attacks. Resisting and correcting 
errors takes time and energy, while ignoring those attacks, which are not lethal, 
has no cost. Consequently, errors (mutations) may be collected; the process de-
pends on the frequency of the attacks, so the development is time-dependent 
[301]. The accumulating mutagenic defects need increasing energy to repair, so 
ignoring those has an advantage when they do not affect the cell’s vitality [379]. 
The genetic instability in mutagenic environments develops because DNA repair 
requests too much energy [374]. Behindhand DNA repair in normal, nonmuta-
genic conditions also has an unbalanced payoff-cost game. The cost of DNA re-
pair is primarily independent of the genetic location, but the cost of ignoring the 
error depends on its sensitivity; a slight change in the nucleotide chain has a 
wide range of minor to severe consequences [374]. The balance of cost/payoff 
preserving genetic stability is asymmetric and depends on the errors’ type, oc-
currence frequency, and replication rate [301]. The chromosomal instability in-
itiates the carcinogenesis [380]. In this way, carcinogenesis is based on molecular 
evolution in the Darwinian non-linear way. It unites the genetic and environ-
mental influences in cancer development [379]. Carcinogenesis is based on DNA 
mutations. The selection of the already present mutated cells in the population 
of the multicellular organisms may be interpreted on the similar evolution at the 
population level of species, driven by the Darwinian law. The prevention of the 
development of mutated cells (cancer) is more complex than averting exposure 
to mutagens from the environment throughout the organism’s lifetime. The al-
ready present mutations in the cellular population of the healthy organism can 
be selected by time during life when these cells have a survival advantage in the 
actual environmental circumstances. This interaction is non-linear, and the sim-
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ple statistical variance concept does not describe the process well.  

3.7. Cancer Treatment Considering Complexity 

The overall surveillance of the conditions for homeostatic balance and equili-
brium is the immune system. Interpreting immune activity within the frame-
work of a predator-prey game offers a compelling and insightful perspective. 
The immune system acts as a predator by detecting and attacking pathogens or 
parasites that invade the host organism. However, the immune system and pa-
thogens may undergo reciprocal adaptations like the coevolutionary arms race 
between traditional predators and prey. Pathogens evolve mechanisms to evade 
immune detection, while the immune system evolves to recognize and eliminate 
them. The immune system’s actions help regulate the population of pathogens 
within the host. An effective immune response can control and limit the growth 
of pathogens, preventing them from overwhelming the host. Like the preda-
tor-prey balance in ecological systems, a well-regulated immune response con-
tributes to the homeostasis of the host organism. Then, the fine-tuned balance of 
the immune system is a part of homeostasis: the overly aggressive immune re-
sponse can lead to autoimmune diseases, while a weak response may allow pa-
thogens to proliferate. A diverse immune system capable of recognizing a variety 
of pathogens contributes to the overall biodiversity of the host organism. The 
interaction between the immune system and pathogens imposes selective pres-
sures on both parties. This process can lead to the evolution of more robust im-
mune systems and more sophisticated evasion mechanisms in pathogens. How-
ever, investing resources in strong immunity is costly and creates a trade-off: 
stronger immunity might improve survival against predators but decrease re-
sources for other life processes, impacting population dynamics. 

The malignant cells may hide their behavior from immune surveillance. The 
malignant cells develop robust adaptability even to aggressive environmental 
conditions and the attack of natural immune actions. In the case of a developed 
malignancy, even robust natural immune procedures alone are ineffectual. The 
definite difficulty is that the malignant character of the tumor cells is hidden, 
and the immune cells cannot recognize these cells as a “disease”; the innate im-
mune attack and the adaptive immune reaction are absent. The tumor disrupts 
the standard immune surveillance feedback at all points of its activity Figure 22. 

Together with the tumor as organ concept another similar model of cancer 
states was developed: the tumor is a wound that has never healed [221], turning 
into a chronic injury [381]. The immune system does not affect the tumor as an 
organ (like it does not impact other healthy ones) and does not affect the wound; 
instead, it helps both. After an extended period, the inflammatory wound theory 
is emerging again [382]. The malignant tumor mimics a wound, stimulating the 
host tissue to support its “healing” [383], avoiding this “trick” attack by the 
host’s Contrary the inflammatory immune cells in tumor, no immune attack de-
stroys the developing tumor [384] because the cancer cell adapts to evade im-
mune surveillance immune surveillance [385]. 
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Figure 22. Malignancy evades immune surveillance. The standard immune control is di-
verted in all its steps, causing tumor evasion. 
 

The malignant cells may hide their behavior from immune surveillance. The 
malignant cells develop robust adaptability even to aggressive environmental 
conditions and the attack of natural immune actions. In the case of a developed 
malignancy, even robust natural immune procedures alone are ineffectual. The 
definite difficulty is that the malignant character of the tumor cells is hidden, 
and the immune cells cannot recognize these cells as a “disease”; the innate im-
mune attack and the adaptive immune reaction are absent. The supporting be-
havior of the host, which keeps cancer alive, forms a newer form of networking. 

Cancer has a strong side: its proliferation takes energy away from healthy host 
tissue, and the entire body will later suffer from insufficient energy. The strength 
of malignancy is the proliferation, and all malignant features are subordinated to 
this process. However, cancer has a weakness, which could be the point of attack: 
the cancer cells are individual (selfish). In the beginning, it destroys the healthy 
network around it, and in later stages, cancer also develops a network that differs 
from the healthy structures. The network of the malignant cells is out of system-
ic control; their collectivity is the common summary of the individual demands 
to use energy as much as possible for the cellular division, irrespective of the ef-
ficacy of the utilization. The cellular networks in cancer are deregulated; we 
must attack the weak side of cancer [386]; the missing or the changed network-
ing may give crucial weaponry to the fight against it. The fight must support the 
natural homeostatic balance Figure 23. The fight has to consider the intercon-
nected networks [271] and the non-linear behavior of the processes [387]. The 
hybrid models that combine different modeling approaches could be the way 
forward in the fight against cancer. 
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(a)                                     (b) 

Figure 23. Treatments of clinically symptomatic tumors. (a) The therapy affects not only 
the tumor cells but also interacts with homeostasis, which works against the therapy and 
selects resistant cells to survive. (b) The efficient treatment must strengthen the natural 
homeostatic loops supporting the standard clearance of the malignant cells. 

 
Based on the weakness of tumorous growth, a selective targeting of cancer 

cells with immuno-effective consequences could be applied. It is performed with 
a synergy of thermal and nonthermal effects, which are not ionizing and not 
chemical in origin, so it can bypass the complications associated with tumor-cell 
adaptation. The targeted tissue’s natural electric and thermal heterogeneity is 
used to find the cancer cells selectively. The 13.56 MHz nonionizing electric field 
selects the tumor [388]. The applied 1/f modulation [389] [390] realizes a mixed 
game strategy with randomly appeared frequency in the distribution of the 1/f 
noise. Adapting this situation is possible only when the malignant structure con-
strained to have healthy interactions which has the same 1/f signal. Under the 
modulation compulsion the cellular connections could be restored [109] [110] 
forcing the malignant structure to follow the healthy networking strategy. The 
homeostatic self-similarity [59] and the dynamism with the self-time [3] re-
paired. The 1/f signal fluctuation characterizes the healthy homeostatic signal 
distribution. The deviation from it, could be a sign of unhealthy processes [193]. 

The amplitude-modulated radiofrequency by 1/f frequency distribution is 
dominantly absorbed by the transmembrane proteins of the malignant cells 
[391]. Exciting the TRAIL-FAS-FADD complex, the targeted cells are destroyed 
by immunogenic cell death [392], producing extracellular damage-associated 
molecular pattern (DAMP) (HSP70, HMGB1, ATP, and calreticulin). The libe-
rated molecules help the antitumor antigen presentation and priming killer and 
helper T-cells, which actively attack the cancer cells in the entire body (abscopal 
effect) Figure 24. The synergy of the thermal and nonthermal effects strengthens 
the immune surveillance against the malignant cells in all over the body [393]. 

Preclinical studies proved the selection in vitro [388] and in vivo [394] and 
verified the development of DAMP [395], immunogenic [396], and abscopal ef-
fect [397]. Clinical studies validate the method [327]. A Phase III study showed a  
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Figure 24. The applied synergy of thermal and nonthermal effects with possible (but not necessary) complementary treatments 
develops tumor-specific immune reactions and can kill the tumor and its metastases delivered by the systemic transport in the 
entire body. 

 
significant elongation of the survival time of patients with advanced cervix can-
cer [398], with improved quality of life [399] [400], and abscopal effect [401]. 
Numerous Phase II clinical trials show the same significant improvements for 
pancreas, glioblastoma, and lung cancer [402]. Other studies and case reports 
support the success of complementary applications with immune checkpoint in-
hibitors [403] and supportive therapy [324] [404] and were investigated in 
stand-alone therapy in a palliative setting [405]. 

4. Conclusions 

Biological regulation is realized by a system of homeostasis, which regulates and 
controls the balance of the various processes. The system’s complexity appears in 
its energetics, which tries the most efficient use of the available energies; for that, 
it organizes various well-connected networks. All processes are interconnected 
in networks, having decisional influence by the environmental conditions and 
the nurture. Homeostasis may be described as a Nash equilibrium, which en-
sures the distribution of the energy in a “democratic” way regarding the func-
tions of the parts in the complete system. The game seeks to Nash equilibrium. 
The strategy of the game merges the self-interest (own payoff), collective interest 
(group payoff), and local rivalry of interest (payoff variations). 

Cancer radically changes the network system in the organism, making it a 
network disease. Network changes appear at every level, from genetic (molecu-
lar) to cells, tissues, organs, and organisms. Aging increases the likelihood of 
cancer. Epidemiologic statistics show that multiple steps (collected mutations) 
are necessary for the prevalence of cancer. These steps could be modeled with 
games and network changes. 

The fight against cancer must attack the weakest point of the malignant de-
velopment: their missing or loose networking. Reestablishing normal homeosta-
sis and immune surveillance appears as a reliable way to attack the weak point. 
One of the possibilities is to apply a synergy of thermal and nonthermal elec-
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tromagnetic effects, which may modify the system but could cause minimal re-
sistance or adaptation of the malignancy. The malignant processes can be blocked 
and corrected by developing a tumor-specific immune reaction; when the regu-
lar immune surveillance works again, cancer cannot evade this control.  
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