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Abstract 
The circular phased antenna array is commonly used for generating waves 
bearing Orbital Angular Momentum (OAM) in the radio frequency band, but 
it achieves a relatively low directivity. To overcome this drawback, we present 
here a method to improve the directivity of an OAM circular phased antenna 
array by embedding it inside a Fabry-Perot cavity. The Fabry-Perot cavity 
contains three main parts: a partially reflecting surface (PRS), an air cavity 
and a ground plane. Simulation data show that the directivity of this new 
OAM antenna achieves an improvement of 8.2 dB over the original array. A 
prototype is realized and characterized. The simulated and measured charac-
teristics are in good agreement. 
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1. Introduction 

Orbital angular momentum (OAM) has been proposed to improve spectral effi-
ciency [1] [2] [3] [4] in radio communications, by creating multiple sub-channels 
of propagation corresponding to the twisting degree of the electromagnetic 
wave. Several applications for object identification [5] and radars [6] [7] have 
also been proposed. 

Whereas the phase of a usual plane wave is constant on the wavefront, the 
phase α of OAM waves undergoes a linear variation along the angular coordi-
nate φ (roll angle): α = lφ, where l is an integer number called the “topological 
charge” or the order of the OAM mode. 
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At radio frequencies, a single patch antenna [8] [9] [10] [11] or a phased array 
of patch antennas [11] [12] [13] is proposed to generate the phase variation of 
waves bearing OAM. However, the poor directivity of the OAM radiation can 
lead to some drawbacks and limitations, especially in terms of link budget [14]. 
On the other hand, a second family of antennas can be found in the literature, 
where the directivity is quite high. As an example, we can mention the reflector 
antenna using an 80 cm twisted parabolic reflector dish to induce a linear phase 
distribution (along the φ angle) at a working frequency of 2.4 GHz [2]. Later, 
spiral phase plates (SPP) [15] [16] and flat drilled phase plates [17] [18] have 
been used to obtain the linear phase variation in the millimeter wave frequency 
band. The OAM dish needs precise deformation of the reflector shape to ensure 
the linear variation of the phase α. However, these deformations create new ab-
errations due to the fact that no focal point can be defined for these reflectors. 
Concerning the structures that use dielectric lenses (SPP or flat drilled ones), the 
plates are heavy and at microwave frequencies they become unpractical. 

In previous work, a simple antenna array has been embedded inside a Fabry- 
Perot cavity to obtain a relatively high directivity at simulation level [19]. Here, 
we make an experimental study of this high directivity OAM antenna. To the 
purpose of realization, we embed an OAM antenna, using four patches and a 
circular phase shifter inside a Fabry-Perot cavity. This antenna generates an 
electromagnetic wave bearing an OAM mode of l = 1 at the frequency of 2.5 
GHz. 

Section 2 and 3 explain the design procedure and the simulation data. Section 
4 presents the experimental prototype and the measured characteristics of the 
antenna. 

2. Model of Fabry-Perot Cavity 

A Fabry-Perot (FP) cavity was originally used as frequency filter in optics. In 
antenna applications, it is often utilized as space filter to improve the antenna 
performances such as directivity [20] [21] [22]. 

As shown in Figure 1, the FP cavity contains three main parts: a ground plane 
which eliminates the back radiation, a primary source (e.g. a patch antenna) and 
a partially reflecting surface (PRS). The internal wave rays emitted by the pri-
mary source travel inside the cavity and reflect for enough times at both the up-
per PRS and the bottom ground plane. Besides, the wave rays partially transmit 
out when they arrive at the PRS each time. 

To maximize the directivity, the transmitted rays need to all be in phase so 
that they can make a constructive interference. According to [17], the thickness 
D of the FP cavity should meet the following requirement: 

( )
0

2 1
4 cos

cD n
f

β π
π θ

= + +                     (1) 

where f0 is the working frequency, β the phase of the reflection coefficient of the 
PRS, c the speed of the light in the air cavity, n an integer number corresponding 
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to the cavity mode, and θ the incidence angle of the rays (see Figure 1). 

3. Antenna Design and Simulation Results 

The geometry of the Fabry-Perot OAM antenna is shown in Figure 2. The ex-
citing OAM source consists of an array of 4 patches and a circular phase shifter, 
working at 2.5 GHz. The array radius is 60 mm and the patch antennas and 
phase shifter are fabricated on a FR4 substrate with a thickness of 1.6 mm and a 
relative permittivity of 4.4. The patch antennas and the phase shifter are con-
nected through probes and the phase shifter is fed by a 50 Ω coaxial cable from  

 

 
Figure 1. Model of the FP cavity with PRS (PRS: Partially reflecting surface). 

 

 
Figure 2. Geometry of the Fabry-Perot OAM antenna. 
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the bottom side of the substrate. To generate radio waves bearing an OAM mode 
of l = 1, the length and width of the microstrip feeding lines are optimized to 
ensure the antenna matching, a uniform amplitude for all the array elements and 
a 90˚ phase shift between two successive elements [13]. 

The directivity of the Fabry-Perot cavity itself depends on the thickness D, the 
reflectivity and the area of the PRS [20]. In our design, the PRS is made of metal-
lic tubes oriented in parallel to the E field of the patch antennas (X axis). To ob-
tain a good directivity of the OAM antenna, the PRS and the cavity parameters 
have been optimized using the HFSS software. The following values are ob-
tained: 
• Diameter of the tubes d: 4 mm; 
• Period of the tubes T: 26 mm; 
• Cavity thickness D: 58 mm; 
• Cavity aperture: 600 mm × 600 mm. 

Furthermore, we use 4 walls to enclose the FP cavity on the sides: 2 PEC (Per-
fect electric conductor) walls in the E plane and 2 PVC (Polyvinyl Chloride) 
walls in the H plane. The PEC walls are used to decrease the side lobe level of the 
radiation pattern in the H plane. The PVC walls support the metallic tubes. Ac-
cording to the simulations, in order to decrease the side lobe level in the E plane, 
the thickness of the PVC wall must be small enough. On the other hand, the 
PVC walls should be allowed to assemble properly with the PEC walls and the 
ground plane, and to support the metallic tubes. To meet these requirements, the 
thickness of the PVC walls is finally set as 6 mm. 

Figure 3 shows the 2D simulated amplitude and phase patterns of the Ex 
component of the generated wave at 2.5 GHz. The patterns are plotted on a 
plane perpendicular to the direction of propagation with an area of 40 cm × 40 
cm, lying 3 cm above the PRS. We can see that the amplitude at the centre is 
much weaker than the surroundings and the phase makes a rotation around the 
centre with a 2π phase shift in one turn. These characteristics evidence the gen-
eration of an OAM bearing wave with l = 1, as expected. 

 

 
Figure 3. Normalized simulated amplitude (left) and phase (right) patterns of Ex component of the FP 
OAM antenna at 2.5 GHz. 
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The simulated 3D radiation patterns of the patch array with and without FP 
cavity, at 2.5 GHz, are presented in Figure 4. The array radius is 60 mm. A null 
can be observed in the centre which is the typical characteristic of waves bearing 
OAM. Besides, the antenna directivity is significantly enhanced with the use of 
the FP cavity. The directivity can be further improved by increasing the radius of 
the patch array. 

In order to exemplify the influence of the FP cavity on the antenna directivity, 
we make a comparison of the E-plane radiation patterns (Figure 5) correspond-
ing to the xOz cuts of the 3D plots of Figure 4. We can see that the directivity of 
the OAM antenna increases in E plane, from 6.7 to 14.9 dB with the use of the 
FP cavity. At the same time, the angle for obtaining the maximum directivity 
decreases from 27˚ to 11˚. 

4. Realization and Experiment 

The realized prototype of the Fabry-Perot OAM antenna is shown in Figure 6. 
The measurements have been performed in an anechoic chamber. 

Figure 7 shows the simulated and measured reflection coefficients of the FP 
 

 
Figure 4. Simulated 3D radiation patterns of the OAM antenna at 2.5GHz (a) without FP 
cavity, (b) with FP cavity. 
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Figure 5. E-plane radiation patterns of the OAM antenna with and without FP cavity 
(array radius equals to 60 mm). 

 

 
Figure 6. Realized prototype of the FP OAM antenna. 

 

 
Figure 7. Simulated and measured reflection coefficients of the FP OAM antenna. 
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OAM antenna. Whereas the antenna is well matched around 2.5 GHz in the si-
mulation, it is slightly shifted by about 40 MHz in the measurement. 

Figure 8 presents the experimental results of the amplitude and phase of the 
generated far-field. We have examined the radiation results for different fre-
quencies and found that the best OAM characteristic is obtained at 2.54 GHz. As 
shown, a null caused by the phase singularity at the centre, is clearly observed in 
the magnitude pattern and the phase has a variation of 2π in one turn which 
corresponds to the first OAM mode (l = 1). 

A comparison is made between the simulated and measured E-plane radiation 
patterns in Figure 9. As shown, the OAM antenna obtains a maximum directiv-
ity of 15.5 dB for the angle of 10˚ in the measurement. Besides, the measured 
and simulated results are in very good agreement. The hole in the centre of the 
radiation pattern seems even deeper in the case of the experimental values than 
for the simulations. 

5. Conclusion 

In this paper, we have proposed a new OAM antenna for the generation of radio  
 

 
Figure 8. Normalized measured far-field magnitude (left) and phase (right) patterns of the FP OAM 
antenna at 2.54 GHz. 

 

 
Figure 9. Measured and simulated radiation patterns of the FP OAM antenna in E-plane. 
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OAM waves with relatively high directivity. This OAM antenna is based on an 
array of 4 patches and is embedded inside a Fabry-Perot cavity. It can generate 
an electromagnetic wave bearing an l = 1 OAM mode at 2.5 GHz. Simulation 
results show that the OAM antenna achieves a directivity of 14.9 dB with an en-
hancement of 8.2 dB in E and H planes. A prototype has been manufactured and 
characterized. Very good agreement is obtained between the simulated and 
measured directivities. The structure of the new OAM antenna is simple, com-
pact and easy to realize. It can be used in many domains such as radio commu-
nications and radar applications. 
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