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Abstract 
The study on designs for the baseline parameterization has aroused atten-
tion in recent years. This paper focuses on two-level regular designs for the 
baseline parameterization. A general result on the relationship between 
K-aberration and word length pattern is developed. 
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1. Introduction 

The regular fractional factorial designs have been extensively studied in the last 
decades. Most of these works are based on the zero-sum constrains on the levels 
of the experiment factors, known as orthogonal parameterization (OP). Howev-
er, in some situations, a quite natural constrain for the levels of factors is the 
baseline constrain, known as the baseline parameterization (BP). In some cases, 
where the experimenter-practitioner does not want to make extensive changes to 
the process and identify one or two important factors, BP is a suitable option. 
The BP keeps most of the factors at their current levels, which can reduce the 
difficulty and cost of experimentation. For example, the cDNA microarray expe-
riments in Yang and Speed (2002) [1], Glonek and Solomon (2004) [2], and Ba-
nerjee and Mukerjee (2008) [3]. For the BP, the factorial effects are defined with 
reference to the baseline level. 

Recently, there has been a few works for the BP. Mukerjee and Tang (2012) 
[4] proposed the K-aberration criterion (will be introduced in Section 2) for 
choosing two-level designs. With a complete search algorithm, Mukerjee and 
Tang (2012) [4] found some optimal 8, 12 and 16-run two-level factorial designs 
with respect to the K-aberration criterion. Li et al. (2014) [5] proposed an effi-
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cient incomplete search algorithm and found the optimal or near optimal 20-run 
two-level factorial designs. Miller and Tang (2016) [6] established a relationship 
between the values of 2 3, , , tK K K  in K-aberration sequence and the word 
length pattern (WLP) which is a concept for the OP. Mukerjee and Tang (2016) 
[7] obtained some certain rank conditions for finding optimal factorial designs. 
By employing approximate theory together with certain discretization proce-
dures, Mukerjee and Huda (2016) [8] tabulated some efficient robust fractional 
factorial designs for inference on the main effects or some interactions. Lin and 
Yang (2018) [9] studied multistratum baseline designs under the generalized 
minimax A-criterion. Karunanayaka and Tang (2017) [10], Chen et al. (2021) 
[11] and Li et al. (2022) [12] considered a class of compromise designs which are 
friendly to situations where some interactions are important. Sun and Tang 
(2022) [13] explored the relationship between the BP and OP which is helpful to 
optimal design constructions. Yan and Zhao (2023) [14] proposed minimum 
aberration criterion for choosing three-level factorial designs and developed an 
algorithm to find them. 

As aforementioned, Miller and Tang (2016) [6] proposed to study two-level 
regular designs for the BP using the WLP (will be introduced in Section 2). Mil-
ler and Tang (2016) [6] established a relationship between the value of K4 and 
the WLP for a special case where 0

3 3A A≠ . The contributions of this work are as 
follows. We further investigate the relationship between the value of K4 and the 
WLP. Exploring this relationship is helpful to find good baseline designs under 
the minimum K-aberration criterion. A general result for K4 to be expressed by 
WLP is proposed. The new proposed result has broader applications than that 
proposed in Miller and Tang (2016) [6], as it releases the constrain 0

3 3A A≠ . To 
demonstrate this point, an illustrative example is provided. 

The rest of the paper is organized as follows. In Section 2, some notation and 
definitions are provided. Section 3 develops the main result. Section 4 gives the 
concluding remarks. 

2. Preliminaries 

Suppose D is an N-run design with m factors each at two levels 0 and 1, where 0 
represents the baseline level and 1 represents the test level. Then D is a design 
for the BP. Let ( )s DΩ  denote the full collection of all the s-column subdesigns 
of D. Without specially stated, in the following, we use sΩ  instead of ( )s DΩ  
for reason of readability. For sW ∈Ω , denote ( )Wα  as the number of rows in 
W which consists of elements 1’s. Mukerjee and Tang (2012) [4] developed the 
following expression (2.1) which quantifies the alias caused by s-factor interac-
tions when estimating the main effects 

( )( )2
1 24 ,sK N sT T= +                     (2.1) 

where ( )( )2
1 sWT Wα

∈Ω
= ∑  and ( ) ( ) ( )( )1 *

2*
2 2s sW W WT W Wα α+∈Ω ∈Ω
= −∑ ∑ . A 

two-level design which sequentially minimizes the sequence 
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( )2 3, , , mK K K  
is called a K-aberration design. 

In this work, the notation 2m p−  is used to denote the two-level regular frac-
tional factorial design which has 2m pN −=  runs and m columns each at two 
levels coded as 0 and 1. In Table 1, a regular 5 22 −  design is shown. The 5 22 −  
design in Table 1 has defining contrast subgroup 81ABD = , 81BCE =  and 

80ACDE = , where 81  and 80  is 8-dimension vector of ones and zeros, respec-
tively. Such a defining contrast subgroup means that ( ) 8mod 2 1A B D+ + = , 
( ) 8mod 2 1B C E+ + =  and ( ) 8mod 2 0A C D E+ + + = . In general, a collection 
of columns from a regular 2m p−  design is called a defining word, if the sum 
(mod 2) of these columns equals to a vector of ones or zeros. Recall the meaning 
of ( )k DΩ , for any ( )kW D∈Ω , denote ( )Wφ  as a vector generated by tak-
ing sum (mod 2) of the columns in W. Denote ( )WΨ  as the sum of the ele-
ments in ( )Wφ . Define 

( ) ( )2 .kJ W W N= Ψ −
 

For the regular 2m p−  designs, there exists ( ) 0kJ W =  or N. The formula 
( ) 0kJ W =  indicates that ( )Wφ  contains half zeros and half ones, and W is of 

strength k. The formula ( )kJ W N=  is due to ( ) 0NWφ =  or 1N , which means 
that W is a defining word. Without causing confusions, hereafter, we use φ  in-
stead of ( )Wφ  for conciseness. Let ( )kk kWA J W

∈Ω
= ∑ , then kA  is the num-

ber of defining words of length k. Under the OP, for a regular 2m p−  design of 
resolution 3t ≥ , the sequence ( )3 4 1, , , mA A A −  is called its word length pattern 
(originally proposed by Fries and Hunter (1980) [15]). 

Clearly, a regular 2m p−  design can be regarded as a design of 2m pN −=  
runs and m columns under the BP. It is worthy of noting that the interaction 
columns under the OP are different from that under the BP. As an illustration, we 
consider the 5 22 −  design in Table 1. Under the OP, the interaction column of the 
main effect columns A and B is generated by taking sum (mod 2) of columns A 
and B, i.e., ( )0,1,1,0,0,1,1,0AB ′= . Under the BP, the interaction column of 

 
Table 1. A regular 5 22 −  design. 

A B C D E 

0 0 0 1 1 

1 0 0 0 1 

0 1 0 0 0 

1 1 0 1 0 

0 0 1 1 0 

1 0 1 0 0 

0 1 1 0 1 

1 1 1 1 1 
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the main effect columns A and B is the element-wise multiplies of columns A 
and B, i.e., ( )0,0,0,1,0,0,0,1AB ′= . 

With the knowledge above, in Section 3, we establish the relationship between 
the value of K4 and Ak’s. 

3. Relationship between the Value of K4 and the WLP 

We first introduce a lemma which explores the number of defining words in a 
collection of 2t +  columns from a regular 2m p−  design D with resolution 

3t = . 
Lemma 1. Suppose D is a regular 2m p−  design with resolution 3t = . Let 

( )2tW D+∈Ω , then W contains at most two independent defining words, where 
5n ≥ . 

Suppose { }1 2 3 4 5, , , ,W g g g g g= , where 1 2 5, , ,g g g  are five columns of D. 
Then, it is easy to cheek that W contains only one defining word or two inde-
pendent defining words. For the later case, the two independent defining words 
can be 1 1 2 3d g g g=  and 2 1 4 5d g g g= , without loss of generality. This com-
pletes the proof. 

Denote 0,0
3A  as the number of pairs of length three defining words which 

have a common column and these defining words have 0Nφ = ; 1,1
3A  as the 

number of pairs of length three defining words which have a common column 
and these defining words have 1Nφ = ; and 0,1

3A  as the number of pairs of 
length three defining words which have a common column, where one of these 
two defining words has 0Nφ =  and the other has 1Nφ = . Define 0

iA  as the 
number of defining words which length i and 0Nφ = , where 3i =  and 4. The 
following theorem establishes the relationship between the value of K4 and the 
WLP for 3t = . 

Theorem 1. For a regular 2m p−  design D of resolution 3t =  we have 

( ) ( )

( ) ( ) ( )

2 0,0 0,1 1,1 0
4 3 3 3 3

1 0 1
3 4 4 5

3
1 8 4 6 2 10 3 4 3

4 2

3
3 12 3 4 1 4 5 5

2

m m
K A A A m A

m
m A m A m A A

  −    
= − − + + − −     

     
 −  

+ + − + − + − +   
    . 

Denote { }1 2 3 4, , ,W g g g g= , there are five scenarios for the columns in W, 
(a1) W contains a defining word of length three and its 0Nφ = ; 
(a2) W contains a defining word of length three and its 1Nφ = ; 
(a3) W contains a defining word of length four and its 0Nφ = ; 
(a4) W contains a defining word of length four and its 1Nφ = ; 
(a5) W contains four independent columns. 
For (a1), it is impossible for W to have a row of ( )1,1,1,1 . Thus, ( ) 0Wα = . 

There are ( ) 0
33m A−  such W’s. For (a2), suppose ( )1 2 3 mod 2 1Ng g g+ + =  

without loss of generality. The four-tuple combinations ( )1,1,1,1  appears N/8 
times in the rows of { }1 2 3 4, , ,g g g g . There are ( ) 1

33m A−  such W’s. For (a3), 
( ) 8W Nα =  and there are 0

4A  such W’s. For (a4), we have ( ) 0Wα =  and 
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there are 1
4A  such W’s. For (a5), we have ( ) 16W Nα =  and there are  

( )( )0 1 0 1
4 4 3 33

4
m

A A m A A 
− − − − + 

 
 such W’s. Recalling the definition of T1 be-

low the formula (1), we obtain 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

2 20 1 0 1 1 0
1 4 4 3 3 3 4

20 1 0 1
4 4 3 3

16 3 8 3
4

3 3 3 3 16 .
4

m
T N A A m A A N m A A

m
A A m A m A N

   
= − − − − + + − +       
  

= + − − − + −  
    

Suppose { }1 2 3 4 5, , , ,W g g g g g= , there are the following possibilities for the 
columns in W: 

(b1) W contains two independent defining words of length three and their 
0Nφ = ; 

(b2) W contains two independent defining words of length three and their 
1Nφ = ; 

(b3) W contains two defining words of length three and they have 0Nφ =  
and 1Nφ =  respectively; 

(b4) W contains only one defining word of length three and its 0Nφ = ; 
(b5) W contains only one defining word of length three and its 1Nφ = ; 
(b6) W contains only one defining word and, its length is four and its φ  is 

0N ; 
(b7) W contains only one defining word and its length is four and its φ  is 

1N ; 
(b8) W contains a defining word of length five and its 0Nφ = ; 
(b9) W contains a defining word of length five and its 1Nφ = ; 
(b10) W contains five independent columns. 
Where the possibilities (b1), (b2) and (b3) are due to the following reasons. 

According to the proof of Lemma 1, there are three possibilities for W which 
contains a defining word of length four and its 0Nφ = : 

(c1) W contains two length three defining words of 0Nφ =  which have a 
common column. These two length three defining words create a length four 
word of 0Nφ = ; 

(c2) W contains two length three defining words of 1Nφ =  which have a 
common column. These two length three defining words create a length four 
word with its 0Nφ = ; 

(c3) W contains only one defining word and its length is four with 0Nφ = . 
Similarly, there are two possibilities for W which contains a defining word of 

length four and its 1Nφ = : 
(c4) W contains two length three defining words with a common column. 

One of these two defining words has 0Nφ =  and the other has 1Nφ = . These 
two length three defining words create a length four defining word with its 

1Nφ = . 
(c5) W contains only one defining word and its length is four with 1Nφ = . 
We now proceed to investigate the number of W in each of the cases 
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(b1)-(b10), and the contributions of each W in (b1)-(b10) to T2. Hereafter, we 
denote *W  as subset of W, where *W  has one less column than W. 

For (b1), the number of W is 0,0
3A . Since each W in this case contains a 

length four defining word of 0Nφ = , then the number of five-tuple combina-
tion ( )1,1,1,1,1  for each W is zero. Therefore, ( ) 0Wα = . Among the five 

*W ’s, four of them contain at least one length three defining word of 0Nφ =  
and thus ( )* 0Wα =  for these four *W ’s. One of the five *W ’s contains no 
length three defining word but only one length four defining word of 0Nφ = , 
and this *W  has ( )* 8W Nα = . 

For (b2), the number of W is 1,1
3A . With a similar argument of (b1), we ob-

tain that ( ) 8W Nα =  and ( )* 8W Nα =  for all of the five *W ’s. 
For (b3), the number of W is 0,1

3A . For each W in this case, we have 
( ) 0Wα = . There are three *W ’s with ( )* 0Wα =  and two with  

( )* 8W Nα = . 

For (b4), the number of W is 0 0,0 0,1
3 3 3

3
2

2
m

A A A
− 

− − 
 

, where the 0,0
32A−  is 

due to that any pair of length three defining words of 0Nφ =  contributes twice 

to 0
3

3
2

m
A

− 
 
 

. For example, we suppose 1 2 3 0Ng g g =  and 1 4 5 0Ng g g = . Then, 

any two columns from { }4 5, , , mg g g  and the columns 1 2 3, ,g g g  comprise a 

W. There are total 
3

2
m − 
 
 

 such W’s including { }1 2 3 4 5, , , ,g g g g g  which be-

longs to case (b2). Any two columns from { }2 3 6, , , , mg g g g  and the columns 

1 4 5, ,g g g  comprise a W. There are total 
3

2
m − 
 
 

 such W’s including  

{ }1 2 3 4 5, , , ,g g g g g  which belongs to case (b2). Clearly, the { }1 2 3 4 5, , , ,g g g g g  is 

counted twice. With a similar argument to (b1), we have ( ) 0Wα = , 

( )* 0Wα =  for two *W ’s and ( )* 16W Nα =  for three *W ’s. 

For (b5), the number of W is 1 1,1 0,1
3 3 3

3
2

2
m

A A A
− 

− − 
 

. Each W in this case has 

( ) 16W Nα = , and ( )* 8W Nα =  for two *W ’s and ( )* 16W Nα =  for three 
*W ’s. 
For (b6), the number of W is ( ) 0 0,0 1,1

4 3 34m A A A− − − . Each W in this case has 
( ) 16W Nα = , and ( )* 8W Nα =  for one *W  and ( )* 16W Nα =  for four 
*W ’s. 
For (b7), the number of W is ( ) 1 1,0

4 34m A A− − . Each W in this case has 
( ) 0Wα = , and ( )* 0Wα =  for one *W  and ( )* 16W Nα =  for four *W ’s. 
For (b8), the number of W is 0

5A . Each W in this case has ( ) 0Wα =  and 

( )* 16W Nα =  for all of the five *W ’s. 
For (b9), the number of W is 1

5A . Each W in this case has ( ) 2 16W Nα =  
and ( )* 16W Nα =  for all of the five *W ’s. 

For (b10), there exists ( ) ( )*2 0W Wα α− = . 
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The discussions above are summarized in Table 2 below. 
From Table 2, recalling the definition of T2 below formula (1), with a careful 

calculation we obtain that 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2 20,0 1,1 0,1 0 0,0 0,1
2 3 3 3 3 3 3

2 21 1,1 0,1 0 0,0 1,1
3 3 3 4 3 3

2 2 21 0,1 0 1
4 3 5 5

2 20,0 0,1
3 3

3
8 5 8 2 8 3 16 2

2

3
3 16 2 4 16 4 2

2

4 16 4 5 16 5 16

6 16 2 16

m
T N A N A N A N A A A

m
N A A A N m A A A

N m A A N A N A

N A N A

 −  
= + + + − −  

  
 −    + − − + − − −      

 + − − + + 

= − − + ( ) ( )

( ) ( )( ) ( )( ) ( )

2 21,1 0
3 3

2 2 2 21 0 1
3 4 4 5

3
10 16 3 16

2

3
3 16 4 4 16 4 4 16 5 16 .

2

m
N A N A

m
N A m N A m N A N A

− 
+  

 
− 

+ + − + − + 
   
Therefore, 

( )

( ) ( ) ( ) ( )

0,0 0,1 1,1 0
1 2 3 3 3 3

21 0 1
3 4 4 5

3
4 4 6 2 10 3 4 3

4 2

3
3 12 3 4 1 4 5 5 16 .

2

m m
T T A A A m A

m
m A m A m A A N

  −    
+ = − − + + − −     

     
 −  

+ + − + − + − +   
     

This completes the proof. 
For the regular 2m p−  designs with reslotion 3t = , Miller and Tang (2016)  

 
Table 2. ( )Wα , ( )*Wα  and Wf  for Theorem 1. 

 ( )Wα
 ( )*Wα

 Wf  

(b1) 0 N/8 [×1] and 0 [×4] 0,0
3A  

(b2) N/8 N/8 [×5] 1,1
3A  

(b3) 0 N/8 [×2] and 0 [×3] 0,1
3A  

(b4) 0 N/16 [×3] and 0 [×2] 0 0,0 0,1
3 3 3

3
2

2
m

A A A
− 

− − 
   

(b5) N/16 N/16 [×3] and N/8 [×2] 1 1,1 0,1
3 3 3

3
2

2
m

A A A
− 

− − 
   

(b6) N/16 N/16 [×3] and N/8 [×2] ( ) 0 0,0 1,1
4 3 34m A A A− − −

 

(b7) 0 N/16 [×4] and 0 [×1] ( ) 1 0,1
4 34m A A− −

 

(b8) 0 N/16 [×5] 0
5A  

(b9) N/16 N/16 [×5] 1
5A  

(b10) N/32 N/16 [×5] 
  

Wf  denotes the number of W’s in (b1)-(b10),   means that the W’s in (b10) do not 
contribute to T2. 
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[6] established a relationship between K4 and the WLP, which works only for the 
case where 0

3 3A A= . Theorem 1 provides a more general relationship between 
K4 and the WLP, which works for both cases where 0

3 3A A=  and 0
3 3A A≠ . 

With Theorem 1, one can easily obtain the value of K4 for a regular 2m p−  de-
sign of resolution 3t =  based via its word length pattern. This point is demon-
strated in the example below. 

Example 1. Consider the value of K4 of the regular 6 32 −  design with defining 
contract subgroup 1 2 4 0NA A A = , 1 3 5 1NA A A = , 1 2 3 6 0NA A A A = , 2 3 4 5 1NA A A A = , 

3 4 6 0NA A A = , 2 5 6 1NA A A =  and 1 4 5 6 1NA A A A = . This design has 3 4A =  and 
0
3 2A = . Clearly, 0

3 3A A≠ , and thus the result in Miller and Tang (2016) [6] is 
not applicable here. Using Theorem 1, we can obtain that 4 2.625K =  noting 
that 1,1

3 1A =  and 0,1
3 4A = . 

4. Concluding Remarks 

Recently, the studies on the designs for the BP have arisen wide attention. For 
the regular 2m p−  designs with resolution 3t = , Miller and Tang (2016) [6] es-
tablished the relationship between K4 and the WLP for a special case where 

0
3 3A A=  for the regular 2m p−  designs with resolution 3t = . Theorem 1 pro-

vides a more general result on the relationship between K4 and the WLP, which 
work for both cases where 0

3 3A A=  and 0
3 3A A≠ . Such a point is demonstrated 

in Example 1. 
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