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Abstract 
Aiming at the problem that the positioning accuracy of WiFi indoor posi-
tioning technology based on location fingerprint has not reached the re-
quirements of practical application, a WiFi indoor positioning and tracking 
algorithm combining adaptive affine propagation (AAPC), compressed sens-
ing (CS) and Kalman filter is proposed. In the off-line phase, AAPC algo-
rithm is used to generate clustering fingerprints with optimal clustering effect 
performance; In the online phase, CS and nearest neighbor algorithm are 
used for position estimation; Finally, the Kalman filter and physical con-
straints are combined to perform positioning and tracking. By collecting a 
large number of real experimental data, it is proved that the developed algo-
rithm has higher positioning accuracy and more accurate trajectory tracking 
effect. 
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1. Introduction 

With the rapid development of Internet technology and the large-scale popula-
rization and application of WiFi technology, people’s demand for the accuracy, 
efficiency and ease of use of indoor positioning technology is increasing, so there 
are more and more indoor positioning methods [1] [2]. Among them, WiFi in-
door positioning technology based on location fingerprint has been widely con-
cerned and applied due to its low cost and universality [3]. 
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The WiFi indoor positioning system based on location fingerprint is divided 
into two stages: offline and online. The main task of offline phase is data acquisi-
tion and preprocessing. In order to shorten the positioning time, clustering 
processing is usually required after the database is constructed. Common clus-
tering algorithms include K-means [4], Affinity Propagation Clustering (APC) 
[5]. The main task of the online phase is to process the real-time received signal 
data through the positioning algorithm to estimate the target position. At present, 
location fingerprint matching algorithms are mainly divided into deterministic 
methods [6] [7], probabilistic methods [8] [9], machine learning methods [10] 
[11] and Compressed Sensing (CS) [12] [13]. Compared with other methods, the 
deterministic method is more lightweight and consumes less time while ensuring 
the positioning accuracy. The deterministic method is based on the K-nearest 
Neighbor algorithm (KNN) [6]. In the online positioning phase, the algorithm 
matches the currently received signal strength value with the k points with the 
highest similarity in the offline database. The final positioning result is deter-
mined by the center of these points. On the basis of this method, a Weighted 
K-nearest Neighbor algorithm (WKNN) [7] is proposed by giving the weight to 
k points, which further improves the positioning accuracy. In order to solve the 
problem of fixed k value, the Self-adaptive Weight K-nearest Neighbor 
(SAWKNN) [14] method was proposed, which can adaptively select k value ac-
cording to the specific situation. According to the user’s motion state Restricted 
Weight K-nearest Neighbors (RWKNN) [15] are proposed. Although determi-
nistic methods have been widely studied and discussed in previous studies, they 
still face the following problems: 1) How to reduce positioning time consump-
tion; 2) How to ensure both positioning speed and accuracy; 3) How to track 
continuous motion states in indoor positioning. The Adaptive Affine Propaga-
tion Clustering (AAPC) algorithm was introduced to reduce time consumption. 
To improve positioning accuracy, a method combining CS with online posi-
tioning algorithms was used. After positioning, the Sage-Husa adaptive Kalman 
filter algorithm [16] was used to track user trajectories. Numerous experimental 
results have shown that this method significantly improves the localization per-
formance of indoor positioning algorithms. 

2. System Model 
2.1. Location System Framework Based on Location Fingerprint 

As shown in Figure 1, in the offline process, the terminal device will collect fin-
gerprint data at the preset sampling point and preprocess it, and then use AAPC 
algorithm to divide the obtained fingerprint into different fingerprint members 
and corresponding fingerprint database. The online phase will also be divided 
into two processes—“positioning” and “tracking”. The positioning stage is di-
vided into two stages: coarse positioning and fine positioning. In the coarse posi-
tioning stage, when the mobile terminal sends a positioning query request, the po-
sitioning engine will determine which feature set its data belongs to by calculating  
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Figure 1. System block diagram. 

 
the similarity between the location data corresponding to the request and the re-
lated signals in the reference database. In the process of fine positioning, “CS + 
positioning algorithm” is used to obtain the position estimation. Finally, in the 
tracking phase, a method combining Kalman filter and physical constraints is 
used to track the trajectory. 

2.2. Positioning Related Mathematical Expression 

In order to ensure the accuracy and reliability of the experimental data, when the 
mobile terminal reaches the reference point, it needs to collect several data of an 
AP in four directions, East, West, North and South (40 in the article), and 
process the data obtained in each direction to obtain the average value of the 
signal strength of an AP in each direction corresponding to the mobile terminal 
at this point, using ,

d
i jrss . Where d represents the direction of the mobile ter-

minal, i represents the AP number corresponding to the data, and j represents 
the location of the reference point where the mobile terminal is located. Then 
the mathematical expression of the average signal strength of all APS corres-
ponding to this point is shown in formula (1), and l represents the number of 
APS that can be detected by the mobile terminal at this reference point. 

https://doi.org/10.4236/ojapps.2024.142026


Y. J. Sun et al. 
 

 

DOI: 10.4236/ojapps.2024.142026 382 Open Journal of Applied Sciences 
 

 1, 2, , ,, , , , ,d d d d
j j i j L jrss rss rss rss =  

d
jrss    (1) 

So the data of multiple APS detected at the r-th test point can be expressed as: 

 1, 2, , ,, , , , ,r r i r L rrss rss rss rss =  rrss    (2) 

Then in the coarse positioning process, the similarity between the calculated 
signal strength and the class representation can be expressed as: 

 1
,r csim = −r crss ch  (3) 

where the number of clusters is C, Chc represents the class representation. 
In the process of fine positioning, we calculate rssr and the final positioning 

result obtained by matching the similarity between each member in the class. 

3. Proposed Algorithm 
3.1. AAPC Clustering Algorithm 

Using compressive sensing algorithm to process signals first requires clustering 
processing of the signals [17]. Here, we use AAPC clustering algorithm [18], af-
ter the location fingerprint is collected, AAPC clustering algorithm is used to 
generate different fingerprint categories. 

 

( )1

,
,
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e n n t

s n n t

n e s

p p C C
p p C C
p p p+

= >


= < 
= ⋅ + 

 (4) 

Formula (4) shows that AAPC uses dichotomy to dynamically change the bias 
parameter p to get the clustering result, and the clustering number is [2, N ]. 
pe and ps represents the starting and ending values of the dichotomy respectively. 
N is the number of iterations, Ct is the number of clusters generated. When Ci = 
Ct, the clustering result Chc is obtained, N is the total number of reference 
points. 

3.2. Compressed Sensing Location 

Because the location of the mobile terminal at a certain time in the positioning 
area is unique with the corresponding best reference point, the current user’s lo-
cation can be expressed as a 1 sparse vector, so the problem of indoor position-
ing can be transformed into how to recover the sparse vector. Sparse vector 𝒂𝒂 is 
shown in formula (5): 

 [ ]0, ,0,1,0, ,0= ⋅⋅⋅ ⋅ ⋅ ⋅a   (5) 

According to the principle of compressed sensing rssr can be expressed as: 

 = ⋅ +r cnrss c a ε  (6) 

In formula (6), ccn epresents the best matching class generated by AAPC clus-
tering algorithm using formula (3), and ε represents the environmental noise in 
practical applications. Multiply both sides of the equation by the perception ma-
trix P, where P is the AP selection matrix: 
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 = ⋅ = ⋅ ⋅ +r cnY P rss P c a ε  (7) 

Due to the certain spatial correlation between P and ccn epresents the best 
matching class generated by AAPC clustering algorithm using for the non cor-
relation condition of the sensing matrix is not satisfied. Therefore, the percep-
tion matrix P and ccn are orthogonalized. Let Z = MY, and matrix A be an or-
thogonalized matrix. Therefore, the problem is solved by minimizing the l1 norm 
in formula (8). 

 1
ˆ arg min , s. t.= = +⋅ ⋅a a Z a MA ε  (8) 

 is the norm of vector l1 ,formula (9) represents the set of values in a that 
are greater than the threshold value, denoted by D. 

 ( ){ } D n n λ= >a  (9) 

The final position estimate is: 

 ( ) ( )( )
( )

,
, n nn D
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= ∑
∑

a
a

 (10) 

3.3. WKNN Positioning 

The WKNN positioning method ensures the positioning accuracy of the algo-
rithm to a certain extent when the external conditions of the experiment meet 
the requirements, and due to its simplicity, it has become a relatively classic and 
commonly used algorithm in indoor positioning. The principle is as follows: 
first, select the K best matched candidate reference point positions, and then use 
these K positions to weighted sum up to obtain the final position estimation as 
shown in formula (11): 

 ( ) 1

1

( , )
,

K

l l
l

K

l
l

LOC x y
LOC x y

ω

=

=

=
∑

∑
 (11) 

3.4. Principle of Joint Positioning Method 

Let 𝒂𝒂 solve for non-zero positions as a , In an ideal environment, when there is 
little or no environmental noise, a  can be obtained. However, in practical ap-
plication environments, the impact of environmental noise is inevitable, result-
ing in a value of a , not being 1, and the degree of deviation is positively corre-
lated with the size of environmental noise. Based on this conclusion, the accura-
cy of the localization results obtained by the CS algorithm can be determined. 
Take threshold δ = 0.1, determine the size relationship between a  and thre-
shold. When a  is less than the threshold, it can be considered that the devia-
tion from 1 is small, that is, the CS algorithm is less affected by environmental 
noise; on the contrary, when a  is greater than the threshold, the environmental 
impact is greater. Therefore, the joint localization method proposed in the article 
adopts the CS algorithm results when the environmental noise impact is small, 
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because the signal reconstruction effect of CS is better at this time; When sub-
jected to significant environmental noise, the results of online positioning algo-
rithms are more accurate. So the final position estimation is shown in formula 
(12): 

 ( )
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3.5. Sage-Husa Adaptive Kalman Filter 

The traditional Kalman filter [19] includes two parts: the prediction process and 
the correction process. Based on the minimum mean square error, the optimal 
state of the current time state of the system is estimated through the observation 
data and the previous time state of the system. But in the process of indoor posi-
tioning, the noise in the environment is uncontrollable, and the noise matrix qk 
and rk is usually not zero, which will affect the accuracy of traditional Kalman 
filter prediction results. Aiming at the disadvantage of traditional Kalman filter, 
this paper uses sage Husa adaptive Kalman filter algorithm to realize the user’s 
trajectory tracking. Sage Husa adaptive Kalman filter is a filtering method with 
the function of restraining filter divergence. It adds the idea of dynamic statistic-
al estimation in the process of Kalman filter prediction and correction. On the 
one hand, it uses the observation value to constantly correct the prediction val-
ue, and on the other hand, it estimates and corrects the unknown system model 
parameters and noise statistical parameters. The formula is shown in (13)-(22). 
P is the variance of state estimation error and K is the gain matrix. 

 1 1ˆ ˆk k kq− −
− ++x Fx=  (13) 

 1 1k k k
−

− −= +P FP F Q  (14) 

 ( ) 1

k k k k

−− −= +K P H HP H R   (15) 

 1ˆk k k kr
−

−= − −e Z Hx  (16) 

 ˆ ˆk k k k
−= +x x K e  (17) 

 ( )k k k
−= −P I K H P  (18) 

Add a forgetting factor to adaptively adjust the noise matrix: 

 ( ) ( )1 1ˆ ˆ1k k k k k kq d q d −
− −= − + −x Fx  (19) 

 ( ) ( )T T T
1 11k k k k k k k k k kd d− −= − + + −Q Q K e e K P FP F  (20) 

 ( ) ( )1 ˆ1k k k k k kr d r d −
−= − + −Z Hx  (21) 

 ( ) ( )T T
11k k k k k k kd d −
−= − + −R R e e HP H  (22) 
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In the formula ( )( )11 1 k
kd b b += − − , b is the forgetting factor, with a value 

range of (0, 1). 

4. Experimental Results and Analysis 
4.1. Experimental Environment 

The experimental environment used in this paper is shown in Figure 2. There 
are 538 reference points (RPS) marked by red dots. The experimental environ-
ment covers an area of 50 * 18 square meters, and the number of available APS is 
339. During the experiment, when an AP signal cannot be detected, the default 
value is −100 dbm. The parameters of the experimental equipment are shown in 
Table 1. 

4.2. Experimental Results of CS Algorithm 

In this paper, the box chart is used to display the error distribution of position-
ing results. Each box chart contains six values: the upper edge (1.5 times), the 
upper quartile (75%), the mean value (represented by a small square in the fig-
ure), the median value, the lower quartile (25%), and the lower edge (1.5 times). 
In the box graph, we can clearly see the average and edge distribution of the po-
sitioning error of the algorithm. As shown in Figure 3, this paper compares the 
positioning accuracy of WKNN, SAWKNN and RWKNN algorithms before and 
after CS processing, and it can be seen that the positioning accuracy of the posi-
tioning algorithm processed by CS algorithm has been improved to a certain ex-
tent. The upper quartile of the three algorithms has decreased from 1.45 M,  

 

 
Figure 2. Location area plan. 

 
Table 1. Equipment parameters. 

Equipment model WLAN CPU Memory 

Lenovo Legion R7000 
P2021 

Realtek RTL8852AE  
WiFi 6 

AMD Ryzen5  
5600H 

16 GB 

https://doi.org/10.4236/ojapps.2024.142026


Y. J. Sun et al. 
 

 

DOI: 10.4236/ojapps.2024.142026 386 Open Journal of Applied Sciences 
 

 
Figure 3. Comparison of accuracy of various algorithms after CS processing. 

 
1.39 M and 1.45 M to 1.17 M, 1.14 M and 1.18 M respectively, while the lower 
quartile is 0, which means that the overall larger error points of the algorithm 
are decreasing and the smaller error points are increasing, The positioning ac-
curacy is improved by 23%, 10% and 22% respectively. 

4.3. Sage-Husa Adaptive Kalman Filtering. 

Combined with the static positioning results of the user, the current position in-
formation of the user is used as the prediction value of the adaptive Kalman fil-
ter, and the observation value is the result of the algorithm proposed in this pa-
per, that is, ( ),r rLOC x y′  is used as the input of the filtering system, in which 
the forgetting factor B is 0.5, and kx , ky , kx , ky  is used to represent the dis-
placement and velocity on the X and Y axes respectively. In the ideal state, the 
motion state is uniform linear motion, so there is the state equation (23), which 
shows the state transition matrix F, The observation vector is shown in formula 
(24), where Zk1 and Zk2 represent the observation values in the x-axis and y-axis 
respectively. Equation (24) gives the expression of the observation equation, 
which shows that the observation matrix H, the positioning interval T in the ex-
periment is 1s, qk and rk initial value of is 0. Formulas (25) and (26) are the ini-
tial values of ,k kQ R  respectively. 
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Figures 4-6 show the trajectory comparison of three algorithms, WKKN, 
SAWKNN, and RWKNN, processed by Sage-Husa adaptive Kalman filtering. 
The red line represents the actual trajectory, and the black line represents the 
trajectory tracking trajectory. The error in trajectory optimization can be divided 
into two categories: normal error and abnormal error. For normal errors, adap-
tive Kalman filtering can be directly applied for optimization, as it follows the 
laws of physical motion. For abnormal errors, physical constraints need to be 
added first to ensure that the positioning point does not collide with obstacles, 
while limiting the maximum speed to avoid excessive displacement. After  

 

 
Figure 4. WKNN algorithm Sage-Husa adaptive Kalman filter trajectory tracking. 

 

 
Figure 5. SAWKNN algorithm Sage-Husa adaptive Kalman filter trajectory tracking. 

 

 
Figure 6. RWKNN algorithm Sage-Husa adaptive Kalman filter trajectory tracking. 
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Figure 7. Comparison of accuracy of various algorithms after CS processing 

 
experiments, the ideal trajectory tracking effect was ultimately achieved. 

Figure 7 shows the distribution of positioning errors of WKNN, SAWKNN, 
and RWKNN algorithms after Sage Husa adaptive Kalman filtering. The average 
positioning errors are 0.65 m, 0.49 m, and 0.61 m, respectively, further improving 
the positioning accuracy. 

5. Conclusion 

The indoor positioning algorithm in the article has been processed by the CS al-
gorithm, and it has been found that the positioning accuracy has been signifi-
cantly improved. The average positioning accuracy of the WKNN, SAWKK, and 
RWKNN algorithms has increased by 23%, 10%, and 22%, respectively. Kalman 
filtering is a classic algorithm for trajectory tracking, and incorporating Kalman 
filtering in indoor positioning applications is of great significance. In order to 
meet the noise problem in real environments, a method combining indoor posi-
tioning algorithms with Sage Husa adaptive Kalman filtering is proposed. The 
experiment confirms that this method can effectively solve the problem of dy-
namic trajectory positioning and significantly improve the positioning accuracy. 
Future work will further study the compressed sensing algorithm to improve the 
sparse signal recovery method to improve the anti-interference ability and posi-
tioning accuracy under different environmental noise, especially when the signal 
conditions change greatly or the environment is complex. Combined with other 
sensor data, a multimodal fusion localization algorithm is designed to further 
improve the overall positioning effect and reliability through complementary 
advantages. 
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