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Abstract 
Mixed-variable problems are inevitable in engineering. However, few researches 
pay attention to discrete variables. This paper proposed a mixed-variable expe-
rimental design method (ODCD): first, the design variables were divided into 
discrete variables and continuous variables; then, the DVD method was em-
ployed for handling discrete variables, the LHD method was applied for con-
tinuous variables, and finally, a Columnwise-Pairwise Algorithm was used for 
the overall optimization of the design matrix. Experimental results demon-
strated that the ODCD method outperforms in terms of the sample space 
coverage performance. 
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1. Introduction 

With the advancement of computer technology, high-precision finite element 
simulation has become a pivotal method for addressing engineering challenges. 
While the accuracy of finite element simulation has gained wide acceptance in 
the industrial domain, its intensive computational time significantly hampers 
optimization efficiency. Consequently, surrogate models have garnered attention 
in the optimization domain due to their lower computational time costs [1]. 
Presently, they find extensive application in structural optimization design [2] 
[3], aerodynamic optimization design [4] [5], multidisciplinary optimization [6], 
among other areas. Experimental design methods represent a crucial phase in 
surrogate model optimization. Efficient experimental design enables the acquisi-
tion of maximal information within limited experimental runs, thereby eluci-
dating the impact of various experimental factors on outcomes while conserving 
computational resources [7]. 

 

 

*Corresponding author. 
 

How to cite this paper: Wan, Z.L. and 
Wang, Q. (2024) A Mixed-Variable Expe-
rimental Design Method. Open Journal of 
Applied Sciences, 14, 343-352. 
https://doi.org/10.4236/ojapps.2024.142023 
 
Received: January 11, 2024 
Accepted: February 18, 2024 
Published: February 21, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2024.142023
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2024.142023
http://creativecommons.org/licenses/by/4.0/


Z. L. Wan, Q. Wang 
 

 

DOI: 10.4236/ojapps.2024.142023 344 Open Journal of Applied Sciences 
 

The concept behind experimental design is to select the minimum number of 
sample points to maximize the information obtained about the unknown space 
[8]. Common experimental design methods include full factorial design [9], 
central composite design [10], Box-Behnken design [11], uniform design [12], 
orthogonal design [13], and Latin Hypercube sampling design [14]. In order to 
reduce experimental resource usage while fully revealing the impact of each ex-
perimental factor on the experimental results, researchers have introduced op-
timization criteria to optimize experimental samples, leading to the development 
of optimized experimental design methods. Morris and Mitchell targeted the φp 
criterion, utilizing a simulated annealing algorithm to optimize the design ma-
trix [15]. Li proposed the use of the CP algorithm, with φp and maximum entro-
py as objectives, employing a column element exchange method to optimize the 
design matrix [16]. Saab introduced the SE algorithm, utilizing a threshold-based 
approach to determine the acceptance of a new solution [17]. Jin improved the SE 
algorithm and presented the ESE algorithm, which achieves self-adjustment 
through a complex combination of heating and cooling plans to adapt to differ-
ent experimental design problems of varying categories, optimization criteria, 
and design scales [18]. XL Liu and Bo Zheng, using orthogonal measurement 
criteria and uniformity measurement criteria as optimization objectives, pro-
posed a multi-objective optimization experimental design method based on the 
improved ESE algorithm [19]. Ye combined the continuous local enumeration 
method and the translation propagation algorithm to propose a rapid optimiza-
tion Latin Hypercube experimental design method that significantly improves 
efficiency while ensuring accuracy [20]. 

However, existing experimental design methods can only address continuous 
variable problems, and there are very few methods capable of handling mixed 
variables (involving both continuous and discrete variables). Currently, when 
encountering discrete variable issues, the typical approach involves sampling 
within the continuous domain and then rounding the obtained results to the 
nearest discrete points, rather than directly generating sample points within the 
mixed domain [21]. Due to the specific nature of discrete variables, this method 
results in poor spatial uniformity of samples. This paper proposes an Optimized 
Discrete and Continuous variable sampling Design (ODCD) method specifically 
tailored for mixed variables. This method can ensure stronger spatial uniformity. 

2. General Methods for Handling Mixed Variables 

Mixed variables encompass both continuous and discrete variables. While exist-
ing experimental design methods are applicable to continuous variables, the 
predominant approach for discrete variables involves sampling within the conti-
nuous domain and then rounding to the nearest discrete points [21]. However, 
this method often lacks in guaranteeing robust experimental design performance. 

To illustrate this method with an example, let’s consider an example, y, which 
is a discrete variable taking values within the interval [w1, w2], containing three 
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discrete values: a, b, and c. Using a continuous variable experimental design 
method, n sample points x1, x2, ..., xn are selected within the range [w1, w2]. These 
sample points are then compared to the three discrete values, evaluating the dis-
tances Lia, Lib, and Lic between each sample point xi and the three discrete values. 
If Lic is the smallest, xi is assigned as c, and similarly for other cases. 

For ease of description, this paper refers to the method of using the Latin 
Hypercube Design (LHD) for continuous variables and LHD sampling followed 
by rounding to the nearest discrete value for discrete variables to obtain the de-
sign matrix for mixed variables as Mixed variable Latin Hypercube sampling 
Design (MLHD). 

3. The ODCD Method 

In mixed variables, there are both discrete and continuous variables. Due to the 
unique nature of discrete variables, it’s imperative to sample discrete and conti-
nuous variables separately. The optimization experimental design method for 
handling continuous variables has become quite mature. Essentially, the design 
matrix for mixed variables is akin to that of continuous variables, as they both 
involve combinations of numbers. The ODCD method proposed in this paper 
segregates design variables into two parts, handling them separately using the 
Discrete Variable Design method (DVD) and the Latin Hypercube Design me-
thod. This is done with spatial coverage performance as a metric, leveraging ran-
dom optimization techniques for holistic optimization. The process is outlined as 
follows: 

1) Segregate design variables into discrete and continuous components. 
2) Apply the DVD method to discrete variables to obtain the design matrix. 
3) Employ the LHD method for continuous variables to derive the design matrix. 
4) Combine the design matrices for discrete and continuous variables into a 

mixed variable design matrix. 
5) Utilize Columnwise-Pairwise Algorithms to optimize the design matrix for 

mixed variables. 

3.1. DVD 

The challenge in mixed-variable experimental design lies in the presence of both 
discrete and continuous variables. Discrete variables have a finite number of 
possible values, and their distribution may be either uniform or non-uniform. 
Existing methods for discrete variable sampling typically involve selecting values 
in the continuous domain and rounding them to the nearest discrete points. 
This approach inevitably results in some values being excluded or duplicated, 
thereby compromising the uniformity of the samples. Therefore, a new experi-
mental design method for discrete variables, referred to as Discrete Variable 
Sampling Design (DVD), needs to be developed based on the nature of discrete 
variables. 

The implementation process of the DVD method is as follows: 
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Form a set K containing all combinations of discrete variables, with the total 
number of combinations denoted as m, and the desired number of design sam-
ples as N. 

1) Calculate the quotient a by rounding down N/m, and determine the re-
mainder b. 

2) Duplicate the set K times to obtain the design sample set X1. 
3) Randomly select b points from the set K to form the design sample set X2. 
4) Combine X1 and X2 to create the complete design matrix. 
To illustrate the DVD method more intuitively, consider a simple example 

with discrete variables x1 and x2, each having five and six discrete values, respec-
tively. The goal is to generate 64 sample points in a two-dimensional space. Fol-
lowing the outlined steps, the total number of combinations m for x1 and x2 is 
30, with set K comprising these 30 combinations. When N/m is rounded down, a 
is determined to be 2, and the remainder b is 4. Consequently, X1 is created by 
duplicating K two times, and X2 is formed by randomly selecting 4 points from 
K. Finally, X1 and X2 are combined to produce a design matrix containing 64 
sample points. 

3.2. Latin Hypercube Design 

Latin Hypercube Design (LHD) is a representative method in the field of “space- 
filling” experimental design, renowned for its excellent uniformity and low-di- 
mensional projection performance. It has become one of the most popular sam-
pling methods in computer experiments [22]. In this paper, we employ this me-
thod to address continuous variables. For a trial design problem of size N × d, 
where N is the number of samples, and d is the dimensionality of the samples, 
the process of the LHD method is outlined as follows: 

Divide each dimension into N subsets, each subset having a length of 1/N. Se-
lect one point from each subset, resulting in N points for each dimension within 
the design space. Randomly permute the N values for each dimension, yielding 
an initial design matrix denoted as A. 

11 12 1

21 22 2

1 2

d

d

N N Nd

x x x
x x x

A

x x x

 
 
 =
 
 
 





   

  

3.3. Composition of Mixed-Variable Design Matrix 

A mixed-variable set comprises d continuous variables, x1, x2, ..., xd, and e dis-
crete variables, y1, y2, ..., ye, with a total of N generated samples. The LHD expe-
rimental design method is employed to handle the continuous variable x1, re-
sulting in a set {x11, x21, ..., xN1}, which is incorporated as the first column of ma-
trix X. Similarly, other continuous variables are processed until xd, yielding a set 
{x1d, x2d, ..., xNd}, which forms the dth column of X. 

The DVD experimental design method is then applied to handle the discrete 
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variable y1, obtaining a set {y11, y21, ..., yN1}, which is included as the (d + 1)th 
column of X. This process is repeated for other discrete variables until ye, result-
ing in a set (y1e, y2e, ..., yNe), which is added as the (d + e)th column of X. At this 
point, the complete design matrix X is obtained. 

11 1 11 1

21 2 21 2

1 1

d e

d e

N Nd N Ne

x x y y
x x y y

X

x x y y

 
 
 =  
 
  

 

 

     

   

3.4. Columnwise-Pairwise Algorithms 

Li proposed the Columnwise-Pairwise Algorithms (CP) with the objective of 
maximizing entropy, aiming to optimize the design matrix. CP algorithms are 
effective in handling permutation optimization problems. The method is partic-
ularly easier to keep the structure properties of a design in relation to columns, 
such as the balance and orthogonality properties. This article will utilize the Co-
lumnwise-Pairwise Algorithms to optimize the design matrix X. In contrast to 
Li’s proposed Columnwise-Pairwise Algorithms, this paper adopts a different set 
of convergence criteria. Specifically, the criteria employed here include the 
maximum and minimum distance criterion, the φp criterion, and the minimum 
potential energy criterion. 

The algorithm for searching optimal CP is summarized as follows: 
1) Start with the X. 
2) Each iteration has L steps. At the ith step, the best two simultaneous ex-

changes within column i are found. The design matrix is updated accordingly. 
3) If the resulting design is better with respect to the criterion, repeat Step 2. 

Otherwise, it is considered to be an “optimal design”, and the search is terminated. 

4. Comparison and Result Analysis of Experimental Sample 
Uniformity 

To validate the effectiveness of the ODCD method, this study conducts an anal-
ysis using experimental design examples and compares the results with the LHD 
method. 

4.1. Qualitative Comparison of Sample Uniformity 

With a sample size of 20 and two dimensions, where in x1 is a continuous varia-
ble and x2 is a discrete variable encompassing 5 discrete values, both processed 
using the ODCD and MLHD methods. The resulting sample distributions are 
illustrated in Figure 1 and Figure 2. It is evident that the sample uniformity ob-
tained by the ODCD method is superior to the MLHD method. 

4.2. Quantitative Comparison of Sample Uniformity 

To quantitatively characterize the spatial uniformity of the samples, this study 
employed three criteria: the Maximum and minimum distance criterion (dmin),  
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Figure 1. ODCD. 

 

 
Figure 2. MLHD. 

 
φp criterion(φp), and minimum potential energy criterion (U). Larger values of 
dmin indicate stronger spatial uniformity, while smaller values of φp and U indi-
cate greater spatial uniformity. Below is a brief description of the three criteria. 

1) Maximum and minimum distance criterion [23]. The objective of the mini-
mum distance criterion is to maximize the minimum distance between experi-
mental sample points, satisfying the condition: 
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{ } ( ){ }min 1 , ,
max max min ,i ji j m i j

d d x x
≤ ≤ ≠

=                 (1) 

where m is the number of sample points, and d(xi, xj) represents the distance 
between any two sample points, xi and xj 

( )
1
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nd x x d x x t t
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 = = − = ∑             (2) 

2) φp criterion [15]. Morris and Mitchell extended the application of the 
minimum distance criterion, introducing the φp criterion. If an experimental de-
sign is referred to as a φp-optimal design, it satisfies the following conditions: 

{ }
1

1min min s p p
p ii iJ dφ −

=
 
  
 
 

=  


∑                  (3) 

For a given experimental design, calculate the distance dij between any two 
sample points (here, t = 1). Sort these distances to obtain a list of distance func-
tion values (d1, d2, ..., ds) and their corresponding index list (J1, J2, ..., Js). The dis-
tances di represent different distance values, and 1 2 sd d d< < < , where Ji is 
the number of pairs with a distance of di, and S is the number of distinct distance 
values. In this formula, p is a positive integer set to 50. 

3) Minimum Potential Energy Criterion [20]. This criterion is inspired by 
physical principles: when the system’s potential energy reaches a minimum, it is 
in an equilibrium state. The expression for potential energy U is given by: 

1 2
1 1

m m
iji j iU d− −

= = +
= ∑ ∑                       (4) 

Ensuring identical variables, generate experiment samples of the same size 
using the ODCD method and MLHD method. To reduce experimental errors, 
repeat the process 100 times. Evaluate the test samples using dmin, φp, and U cri-
teria, recording the optimal, worst, and average values for dmin, φp, and U. Table 
1 presents the results for four variables, including two continuous variables and 
two discrete variables. 

From the table, it can be observed that the average values of the performance 
criteria φp and U for the experiment samples generated using the ODCD method 
are smaller than those using the MLHD method, while the average value for dmin 
is greater than that of the MLHD method. This indicates that the ODCD method 
yields experiment samples with superior performance compared to the MLHD 
method. The results for optimal and worst values align with the average values. 

To further illustrate the sample performance of the ODCD method, generate 
experiment samples of different scales using ODCD and MLHD methods, par-
ticularly in scenarios with numerous design variables. Evaluate the samples us-
ing the three criteria, and average the results over 50 iterations. The outcomes are 
presented in Table 2, where N denotes the sample quantity, A represents the sam-
ple dimensionality, a denotes the dimensionality of continuous variables, and b 
represents the dimensionality of discrete variables. Similar to the low-dimensional 
cases, the ODCD method demonstrates superior sample performance compared  
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Table 1. Four-dimensional samples. 

 
ODCD MLHD 

Sample 
sizes 

Criterions 
Optimal 

value 
Worst 
value 

Average 
value 

Optimal 
value 

Worst 
value 

Average 
value 

16 

dmin 4.737 3.543 3.964 3.700 0.681 2.478 

φp 0.119 0.204 0.159 0.159 1.037 0.285 

U 1.653 2.693 1.896 2.293 4.536 2.647 

32 

dmin 3.241 2.653 2.971 2.563 0.557 1.538 

φp 0.199 0.285 0.239 0.238 1.316 0.506 

U 9.017 10.275 9.532 10.624 17.509 12.042 

64 

dmin 2.327 1.732 1.995 1.414 0.293 0.875 

φp 0.296 0.432 0.359 0.492 2.711 0.975 

U 40.037 44.745 41.865 47.340 64.639 52.581 

128 

dmin 1.437 1.132 1.193 1.074 0.055 0.500 

φp 0.483 0.793 0.598 0.744 13.454 2.182 

U 175.497 189.539 181.136 205.227 549.867 228.283 

 
Table 2. Medium-to-high-dimensional samples. 

  Sample sizes a
bN A×  

  5
364 8×  

4
464 8×  

3
564 8×  

6
4128 10×  

4
6128 10×  

6
5164 11×  

7
5196 12×  

dmin 
MLDH 3.481 3.529 2.966 3.884 4.130 4.427 4.582 

ODCD 5.214 5.137 5.142 5.521 5.684 5.854 6.208 

φp 
MLDH 0.156 0.161 0.221 0.122 0.132 0.104 0.099 

ODCD 0.093 0.101 0.107 0.084 0.088 0.079 0.071 

U 
MLDH 17.787 17.686 18.028 55.232 53.528 79.882 103.758 

ODCD 15.132 15.213 13.980 49.245 44.786 70.013 91.854 

 
to the MLHD method. 

5. Conclusion 

Many engineering design problems involve mixed variables. However, conven-
tional experimental design research has seldom focused on discrete variables. 
The ODCD method proposed in this paper offers an effective solution for prob-
lems with mixed variables. The method utilizes the DVD method for handling 
discrete variables, employs the LHD method for continuous variables, and inte-
grates them with random optimization methods. The proposed ODCD method 
demonstrates high reliability. Results indicate that, compared to methods in-
volving continuous domain sampling followed by rounding to discrete points, 
the ODCD method performs better in terms of spatial coverage. However, due 
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to inheriting the characteristics of the CP algorithm, this method tends to re-
quire a relatively longer computation time. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Xie, B.C., Zhang, Y. and Xu, Z.Y. (2022) Review on Multidisciplinary Optimization 

Key Technology of Electrical Machine Based on Surrogate Models. Transactions of 
China Electrotechnical Society, 20, 5117-5143. 

[2] Wang, W., Wang, D.F. and Liao, X.D. (2016) Multi-Objective Optimization Design 
of Sub-Frame Using Surrogate Model. Journal of Nanjing University of Technology 
(Natural), 4, 130-136. 

[3] He, H., Zhu, G.R. and He, C. (2014) Crashworthiness Optimization Based on Krig-
ing Metamodeling. Journal of Nanjing University of Aeronautics & Astronautics, 2, 
297-303. 

[4] Yang, J., Liu, Y.Q. and Ai, C.A. (2013) Application of Improved Kriging-Model- 
Based Optimization Method in Solid Rocket-Ramjet Missile’s Aerodynamic De-
sign. Journal of Solid Rocket Technology, 36, 590-593. 

[5] Xia, L., Wang, D. and Zhang, Y. (2016) Aerodynamic Optimization Method Based 
on Adaptive Surrogate Model. Acta Aerodynamica Sinica, 34, 433-440. 

[6] Han, Y.Z., Gao, X.S. and Li, L.Z. (2007) Kriging Model-Based Multidisciplinary De-
sign Optimization for Turbine Blade. Journal of Aerospace Power, 22, 1055-1059. 

[7] Yang, J.W., Wu, Z.P. and Wang, W.J. (2021) A Surrogate-Based Optimization Me-
thod for Mixed-Variable Aircraft Design. Engineering Optimization, 54, 113-133.  
https://doi.org/10.1080/0305215X.2020.1855156  

[8] Han, Z.H. (2016) Kriging Surrogate Model and Its Application to Design Optimiza-
tion: A Review of Recent Progress. Acta Aeronautica et Astronautica Sinica, 37, 3197- 
3225. 

[9] Kim, D.Y., Nam, J.K. and Jang, G.H. (2013) Reduction of Magnetically Induced Vi-
bration of a Spoke-Type IPM Motor Using Magneto Mechanical Coupled Analysis 
and Optimization. IEEE Transactions on Magnetics, 49, 5097-5105.  
https://doi.org/10.1109/TMAG.2013.2255307  

[10] Semon, A., Melcescu, L. and Craiu, O. (2019) Design Optimization of the Rotor of a 
V-Type Interior Permanent Magnet Synchronous Motor Using Response Surface 
Methodology. 11th International Symposium on Advanced Topics in Electrical En-
gineering (ATEE), Bucharest, 28-30 March 2019, 1-4.  
https://doi.org/10.1109/ATEE.2019.8724856  

[11] He, J., Li, G.L. and Zhou, R. (2020) Optimization of Permanent-Magnet Spherical 
Motor Based on Taguchi Method. IEEE Transactions on Magnetics, 56, 1-7.  
https://doi.org/10.1109/TMAG.2019.2947863  

[12] Zhang, J.T., Zang, T.M. and Liang, L. (2011) Nonlinear Modeling and Generalized 
Predictive Control of Ultrasonic Motor. Electric Machines and Control, 15, 50-56. 

[13] Duan, H.B. and Gan, L. (2015) Orthogonal Multi-Objective Chemical Reaction Op-
timization Approach for the Brushless DC Motor Design. IEEE Transactions on 
Magnetics, 51, 1-7. https://doi.org/10.1109/TMAG.2014.2347962  

https://doi.org/10.4236/ojapps.2024.142023
https://doi.org/10.1080/0305215X.2020.1855156
https://doi.org/10.1109/TMAG.2013.2255307
https://doi.org/10.1109/ATEE.2019.8724856
https://doi.org/10.1109/TMAG.2019.2947863
https://doi.org/10.1109/TMAG.2014.2347962


Z. L. Wan, Q. Wang 
 

 

DOI: 10.4236/ojapps.2024.142023 352 Open Journal of Applied Sciences 
 

[14] Park, Y.U., Cho, J.H. and Kim, D.K. (2015) Cogging Torque Reduction of Sin-
gle-Phase Brushless DC Motor with a Tapered Air-Gap Using Optimizing Notch 
Size and Position. IEEE Transactions on Industry Applications, 51, 4455-4463.  
https://doi.org/10.1109/TIA.2015.2453131  

[15] Morris, M.D. and Mitchell, T.J. (1995) Exploratory Designs for Computational Ex-
periments. Journal of Statal Planning & Inference, 43, 381-402.  
https://doi.org/10.1016/0378-3758(94)00035-T  

[16] Li, C.F., William, W. and Jeff, W. (1997) Column Wise-Pairwise Algorithms with 
Applications to the Construction of Supersaturated Designs. Technometrics, 39, 171- 
179. https://doi.org/10.1080/00401706.1997.10485082  

[17] Saab, Y.G. and Rao, V.B. (1991) Combinatorial Optimization by Stochastic Evolu-
tion. IEEE Transactions on Computer, 10, 525-535.  
https://doi.org/10.1109/43.75636  

[18] Jin, R., Chen, W. and Sudjianto, A. (2016) An Efficient Algorithm for Constructing 
Optimal Design of Computer Experiments. Journal of Statal Planning and Infe-
rence, 134, 268-287. https://doi.org/10.1016/j.jspi.2004.02.014  

[19] Zhang, X.L. and Zhang, B. (2010) Multi-Objective Experimentation Design Opti-
mization Based on Modified ESE Algorithms. Systems Engineering and Electronics, 
32, 410-414. 

[20] Ye, P.C., Pan, G. and Gao, S. (2019) Sampling Design Method of Fast Optimal Latin 
Hypercube. Journal of Northwestern Polytechnical University, 37, 714-723.  
https://doi.org/10.1051/jnwpu/20193740714  

[21] Yang, J.W. (2020) A Novel ISLE-ESE Method for Mixed-Variable Experiment De-
sign. International Conference on Quality, Reliability, Risk, Maintenance, and Safe-
ty Engineering, Xi’an, 8-11 October 2020, 22-43. 

[22] Cho, I., Lee, Y. and Ryu, D. (2017) Comparison Study of Sampling Methods for 
Computer Experiments Using Various Performance Measures. Structural & Multi-
diplinary Optimization, 55, 221-235. https://doi.org/10.1007/s00158-016-1490-6  

[23] Johnson, M.E., Moore, L.M. and Ylvisaker, D. (1990) Minimax and Maximin Dis-
tance Designs. Journal of Statal Planning & Inference, 26, 131-148.  
https://doi.org/10.1016/0378-3758(90)90122-B  

 
 

https://doi.org/10.4236/ojapps.2024.142023
https://doi.org/10.1109/TIA.2015.2453131
https://doi.org/10.1016/0378-3758(94)00035-T
https://doi.org/10.1080/00401706.1997.10485082
https://doi.org/10.1109/43.75636
https://doi.org/10.1016/j.jspi.2004.02.014
https://doi.org/10.1051/jnwpu/20193740714
https://doi.org/10.1007/s00158-016-1490-6
https://doi.org/10.1016/0378-3758(90)90122-B

	A Mixed-Variable Experimental Design Method
	Abstract
	Keywords
	1. Introduction
	2. General Methods for Handling Mixed Variables
	3. The ODCD Method
	3.1. DVD
	3.2. Latin Hypercube Design
	3.3. Composition of Mixed-Variable Design Matrix
	3.4. Columnwise-Pairwise Algorithms

	4. Comparison and Result Analysis of Experimental Sample Uniformity
	4.1. Qualitative Comparison of Sample Uniformity
	4.2. Quantitative Comparison of Sample Uniformity

	5. Conclusion
	Conflicts of Interest
	References

