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Abstract 
The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on 
maximum deflection, has been investigated on softwoods. Therefore, this 
theory is not adapted for slender glulam beam columns made of tropical 
hardwood species from the Congo Basin. This maximum deflection is caused 
by a set of loads applied to the structure. However, Eurocode 5 doesn’t provide 
how to predict this deflection in case of long-term load for such structures. This 
can be done by studying load-displacement (P-Δ) behaviour of these struc-
tures while taking into account second order effects. To reach this goal, a 
nonlinear analysis has been performed on a three-dimensional beam column 
embedded on both ends. Since conducting experimental investigations on 
large span structural products is time-consuming and expensive especially in 
developing countries, a numerical model has been implemented using the 
Newton-Raphson method to predict load-displacement (P-Δ) curve on a 
slender glulam beam column made of tropical hardwood species. On one 
hand, the beam has been analyzed without wood connection. On the other 
hand, the beam has been analyzed with a bolted wood connection and a slot-
ted-in steel plate. The load cases considered include self-weight and a uni-
formly applied long-term load. Combinations of serviceability limit states 
(SLS) and ultimate limit states (ULS) have also been considered, among other 
factors. A finite-element software RFEM 5 has been used to implement the 
model. The results showed that the use of steel can reduce displacement by 
20.96%. Additionally, compared to the maximum deflection provided by 
Eurocode 5 for softwoods, hardwoods can exhibit an increasing rate of 
85.63%. By harnessing the plastic resistance of steel, the bending resistance of 
wood can be increased by 32.94%. 
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1. Introduction 

Slender glulam beam columns are mostly used in civil engineering constructions 
such as bridges and multi-storey buildings. The use of wood, as a structural 
main-based material in such infrastructures, may present several advantages. It 
is aesthetic and endowed with an interesting strength-to-weight ratio compared 
to materials such as concrete and steel [1]. Construction wood fares well in en-
vironmental analyses due to its carbon sequestration properties and the climate 
benefits associated with the sustainable management of forests [2]. However, in 
practice high rise constructions only made of wood is almost impossible [3]. It is 
convenient to insert some steel-wood connection members such as dowels, 
screws, bolts etc. In this case, the connection should be strong enough to trans-
mit shear loads developed in the interface and rigid enough to limit slip between 
wood and steel. Therefore, the mechanical behaviour of the connection has a 
significant importance in the behaviour of the composite structures, not only in 
the stresses but also in the deformations [4]. 

The analysis of the connection behaviour can be performed using numerical 
models or laboratory tests. In order to study the mechanical behaviour of bolted 
wood connections, three-dimensional (3D) constitutive models were developed 
in [5] for wood, adapted to a 3D finite element (FE) numerical model of a bolted 
wood connection. A nonlinear parallel-to-grain compression of wood was per-
formed to predict load-displacement (P-Δ) curve in bolted wood connections. 
The numerical results matched well with the experimental results. However, in 
the numerical implementation of their models, 3D nonlinear orthotropic ma-
terial constitutive behaviour was not considered. Furthermore, bending strength 
which can lead to large deformations was not considered. A two-dimensional FE 
model was used in [6] to assess the plywood reinforcement of beam-to-column 
dowel joints (T-joints) by studying load-displacement curve with and without 
reinforcement. However, 2D FE models of timber are best applicable for timber 
parts with small thickness [7]. Furthermore, in their modeling, they considered 
timber as an elastic orthotropic material. The elastic orthotropic material model 
cannot retrace the load-deformation behaviour of timber accurately [7]. In order 
to take into account the anisotropic nonlinear behaviour of wood, a good agree-
ment was found between numerical simulations and experimental results while 
considering wood as elastoplastic orthotropic material [7] [8] [9]. 

In order to evaluate reinforcement in structures, many authors studied the 
load-displacement curves with and without reinforcement. The reinforcement of 
walls with densified wood under shear strength was studied in [10]. The experi-
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mental results matched well with the numerical simulation. Results showed an 
increase of the stiffness (strength-to-slip ratio) with reinforced walls. After per-
forming bending tests on glulam beams to predict the load-displacement beha-
viour in [11], it was found that densified wood used as reinforcement can in-
crease the bending resistance of wood. The efficiency of connections in wood 
(wood-wood connection and wood-steel connection) was compared in [12] from 
bending tests. Results from load-displacement curves showed an increase of 
loads and a reduction of displacements when steel (dowels and plates) is used in 
the connection. 

To assess wood connection systems through testing, two major aspects still 
require solutions. The first is the development of protocols for long-term loads 
and repeated loads. The second is the definition of failure for systems developing 
large deformations before the maximum load [13] [14]. An incremental and 
iterative method could provide a solution to these aspects for the fact that it en-
ables to describe the state of the structure at each step of load increment. The 
one which is best known is the Newton-Raphson method. 

An analytical model was developed in [15] using the Newton-Raphson 
method to design plastic structures. Its implementation was adapted for a spe-
cific software CEPAO. Besides, this model was useful for steel frame structures. 
An automatic method was developed in [16] to analyse the (P-Δ) effect using the 
Newton-Raphson method in steel plane structures. A theoretical model was de-
veloped in [17] to perform a nonlinear analysis on a timber beam using the 
Newton-Raphson method. However, these studies are performed either on steel 
or on wood. They don’t consider both materials. Furthermore, they are not in-
terested in carrying out the effect of steel on the stability of wood structures. 

The present work predicted the load-displacement behaviour in a wood 
structure with bolted wood connection using the Newton-Raphson method nu-
merically implemented in RFEM 5, a finite-element software developed by 
Dlubal Software Group. On one hand, the beam has been considered without 
wood connection, on the other hand, the beam has been considered with a 
bolted wood connection and a slotted-in steel plate. Self-weight and a uniformly 
applied long-term load have been considered as load cases. Serviceability limits 
states (SLS) and ultimate limits states (ULS) have also been considered as com-
binatorics among others. A finite-element software RFEM 5 has been used to 
implement the model. Results showed that steel can reduce displacement by 
20.96%. 

2. Materials and Method 
2.1. Materials 

Tali wood and Fraké wood were selected in this work. Table 1 presents some 
physical and mechanical properties of these species, referenced in the Tropix 7.0 
database. Tali wood is a dense and emblematic hardwood from the Congo Basin. 
The colour of the wood varies from orange yellow brown to reddish brown. The 
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colour of Frake wood is light yellow and does not have demarcated sapwood. 
These species are abundant and can be glued for a structural use. They present a 
good interest for a glulam use [1]. The differences of densities and elasticity mod-
uli (MOE) should make Tali and Frake, respectively, suitable for external and in-
ternal lamellae of the glulam. For this work, we have selected Epoxy as our glue. 
Its characteristics were set up as presented on Table 2. 

 
Table 1. Average and standard values of some physical and mechanical properties of Tali 
and Frake woods at 12% moisture content [18]. 

Timber 
Species 

Density 
(kg/m3) 

Total 
Tangential 
Shrinkage 

(%) 

Total 
Radial 

Shrinkage 
(%) 

MOE (MPa) 
Saturation 

Fiber 
Point (%) 

Tali 910 ± 80 8.4 ± 1.2 5.1 ± 1.4 19,490 ± 3,224 26 

Frake 540 ± 70 6.1 ± 0.9 4.3 ± 1.1 11,750 ± 2,480 28 

 
Table 2. Average characteristics of Epoxy at 23˚C [19]. 

Type of glue Relative density (g/cm3) MOE (MPa) Poisson’s ratio 

Epoxy 1.3299 3355.78 0.43 

 
In this study we have considered the following dimensions of the beam, length: 

30 m, width: 100 mm, height: 78 mm. Since our software could not consider more 
than 3 lamellae, we have set the number of lamellae to 3. The thickness of each la-
mella has been set to 25 mm, and the thickness of each glue layer was set to 1.5 mm. 
The characteristics of the bolts will be determined in the method. 

2.2. Method 

The simulation of the load-displacement (P-Δ) behaviour was made according 
to the following assumptions: 
• Wood is an elastoplastic orthotropic material [7]; 
• The transverse isotropy is considered, which assumes identical properties in 

the radial and tangential directions [4] [5]; 
• Glue is isotropic linearly elastic; 
• Bolts are modelled as elastic-perfectly plastic material; 
• The hole clearance and the splitting in timber due to tension stresses perpen-

dicular to the grain don’t have a significant influence in the load-deformation 
analysis [20] [21]; 

• Out-of-plane deformations are not considered; 
• The beam is subjected to uniformly applied long-term loads; 
• Moisture content is constant; 
• Bending strength is dominant in wood connections [22]. 

In order to determine the characteristics of bolts, we have used the yield the-
ory through Equations (1) to (3) [23]: 
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where elM  is the elastic moment of bolt, plM  is the plastic moment, yf  is 
the yield strength, d is the diameter of bolt which is set to 12 mm in this study, 

,y RkM  is the yield bending moment of bolt and ,u kf  its tensile strength. 
We can express the shear strength ,V RkF  of bolt using Equation (4) from 

Eurocode 5 [23]: 
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where hf  is the embedding strength of wood, t is the thickness of wood and d 
the diameter of bolt. The embedding strength of wood can be expressed from 
Equation (5) [23]: 

 ( )0.082 1 0.01h kf d ρ= × − × ×  (5) 

where kρ  is the relative density of wood. 
There are two ways to express the ultimate shear strength. According to 

Eurocode 5 we have Equation (6) [23]: 

 , ,
mod

V Rd V Rk
M

k
F F

γ
⋅=  (6) 

where modk  is the modification factor of wood and Mγ  its partial coefficient. 
The second way to express the ultimate shear strength is Equation (7) from Eu-
rocode 3 [24]: 

 ,
2

V ub
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M

f A
F

α
γ
⋅ ⋅

=  (7) 

where Vα  is a coefficient depending on the class resistance of bolt, ubf  is the 
notation of ,u kf  in Eurocode 3, A is the cross section of bolt and 2 1.25Mγ = . 

If ,V EdF  is the applied load, the number of bolts can be determined from 
Equation (8) [23]: 

 ,

,

V Ed

V Rd

F
n

F
=  (8) 

2.2.1. The Newton-Raphson Method 
Algorithms that aim at solving nonlinear problems have become a necessity to 
develop theoretical models with complex behavior. It becomes essential to have 
reliable and efficient resolution algorithms. The classical resolution algorithms 
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used in the finite element method are incremental and iterative algorithms, 
which often have convergence issues related to the existence of limits in terms of 
loads, displacements or both at the same time. The incremental and iterative 
method consists of applying gradually a load by increments, and to find for each 
increment, the structure response. This response is obtained after linearizing the 
equilibrium equations [25] [26] [27]. The incremental and iterative method 
commonly used is the Newton-Raphson method. It consists of setting a load in-
crement, and applying for each increment a correction on the equilibrium equa-
tions using an iterative process. This correction is done through a tangent stiff-
ness matrix. We can describe this process as follows: a structure is subjected to a 
total load {F}, this load is applied step by step. Let’s {∆F} be the load increment. 
At step m + 1, load can be expressed from Equation (9): 

 { } { } { }1 1m m mF F F+ += + ∆  (9) 

The left superscript m indicates the incremental step m. let’s { }m U , { }m σ , 
{ }m ε  be our solutions at step m, at step m+1, for a load increment {∆F}, we 

have Equations (10) to (12): 

 { } { } { }1m mU U U+ = + ∆  (10) 

 { } { } { }1m mσ σ σ+ = + ∆  (11) 

 { } { }1 1m mF R+ +=  (12) 

Equation (12) is the equilibrium between the external nodal loads { }1m F+  
and the internal nodal loads { }1m R+ . But in practice, the two sets of loads are 
not equal. The difference between them is called residual loads and expressed by 
Equation (13): 

 { } { }1 1m mF F R+ +∆ = −  (13) 

These residual loads should be undermined to insure the equilibrium. The 
Newton-Raphson method uses the tangent stiffness matrix updated at each ite-
ration to correct the equilibrium (see on Figure 1). 

This method has a rapid convergence, but its main inconvenient is the com-
puting time to update the tangent stiffness matrix at each iteration. This com-
puting time is costly when modelling at large scale and with high degrees of 
freedom. In order to reduce computing time, we often prefer the modified New-
ton-Raphson method. This method is identical to the classical Newton-Raphson 
method except for the fact that, the tangent stiffness matrix remains constant at 
each increment (see on Figure 2). 

2.2.2. Modelling and Loading of the Beam Column 
First and foremost, we have determined the total weight of the beam taking into 
account the characteristics of the materials. The beam is made of Tali and glue. 
The total self-weight stands at 0.078 KN∙m−1 (see on Figure 3). Figure 4 illus-
trates the mid-span deflection. 
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Figure 1. Newton-Raphson method, KT updated at each iteration. 

 

 
Figure 2. Modified Newton-Raphson method, KT is constant at each increment. 

 

 
Figure 3. Beam subjected to its self-weight. 
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The beam is embedded at the two ends. Figure 5 shows one embedded end, 
and Figure 6 indicates the long-term applied load of 5 KN∙m−1 on the beam. 

The stability check of the bolted wood connection is performed on Figure 7, 
and Figure 8 shows the top view of the bolted wood connection with a slotted-in 
steel plate. 

A set of 2 loads cases and 5 combinatorics were considered as indicated on 
Table 3. 

 

 
Figure 4. Mid-span deflection. 

 

 
Figure 5. One embedded end of the beam. 

 

 
Figure 6. Beam subjected to the long-term applied load. 
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Figure 7. Stability check of the bolted wood connection. 

 

 
Figure 8. Top view of the bolted wood connection with a slotted-in steel plate. 

 
Table 3. Loads cases and combinatorics considered. 

Groups Names Description 

Loads Cases 
CC1 Self-Weight 

CC2 Applied Load 

Combinatorics 

CO1 1.35 × CC1 

CO2 1.35 × CC1 + 1.5 × CC2 (ULS) 

CO3 CC2 

CO4 1.8 × CC1 

CO5 CC1 + CC2 (SLS) 

3. Results and Discussion 
3.1. Results 

For the self-weight CC1, Figure 9 displays displacements over increments and 
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iterations without bolted wood connection, and with a bolted wood connection. 
The results obtained in this Figure are found respectively on Table 4 and Table 
5. 

 

 
Figure 9. Displacements over increments and iterations with and without bolted wood 
connection for the self-weight. 

 
Table 4. Results for the self-weight without bolted wood connection. 

Increment 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacement (u) 
[mm] 

1 1 0.030 195.3 

1 2 0.309 311.2 

1 3 1.000 398.8 

1 4 1.000 384.7 

1 5 1.000 384.1 

1 6 1.000 384.1 

1 7 1.000 384.1 

 
Table 5. Results for the self-weight with a bolted wood connection. 

Increment 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacement (u) 
[mm] 

1 1 0.043 195.3 

1 2 0.479 307.4 

1 3 1.000 334.9 

1 4 1.000 333.6 

1 5 1.000 333.6 

1 6 1.000 333.6 
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The curves on Figure 9 increase to reach maximum values. These values are 
maximum displacements. It stands at max 38 mm4.1u =  for the self-weight 
without bolted wood connection (see on Table 4), and max 33 mm3.6u =  with 
bolted wood connection (see on Table 5). The presence of the residual loads can 
increase these values to max 39 mm8.8u =  without bolted wood connection (see 
on Table 4, iteration n˚3), and max 33 mm4.9u =  with bolted wood connection 
(see on Table 5, iteration n˚3). Displacements are greater for the self-weight 
without bolted wood connection. This difference stands at max 5 5 mm0.u∆ = . It 
means that the presence of steel has reduced the maximum displacement by 50.5 
mm (13.15% of the initial displacement). According to Eurocode 5, especially 
the standard NF EN 1995-1-1/NA, the maximum deflection finW  caused by the 
set of loads and creep is 125 2 m0 m4finW L= =  (L = 30 m). Compared to the 
previous values, the gap between this maximum deflection and maximum dis-
placements is 37.5% without bolted wood connection, and 28.06% with bolted 
wood connection. From iteration n˚1 to iteration n˚2, load factor has been in-
creased by 0.436 (1.02 KN) and displacement has increased by 112.1 mm with 
bolted wood connection (see on Table 5). The strength-to-displacement ratio 
stands at 9 N for 1 mm. While, load factor has been increased by 0.279 (0.65 KN) 
and displacement by 115.9 mm without bolted wood connection (see on Table 
4). The strength-to-displacement ratio is rather 5.61 N for 1 mm Thus, by re-
ducing displacements and increasing load factors, steel brought more stability to 
the structure. 

For the long-term load CC2, Figure 10 displays displacements over increments  
 

 
Figure 10. Displacements over increments and iterations with and without bolted wood 
connection for the applied load CC2. 
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and iterations without bolted wood connection, and with a bolted wood connec-
tion. The results obtained from this Figure are found on Table 6 and Table 7. 

On Figure 10, the maximum values are respectively max 13 mm24.1u =  for CC2 
without bolted wood connection, and max 10 mm42.5u =  with bolted wood con-
nection (see on Table 6 and Table 7). The difference stands at max 281 mm.6u∆ =  
(21.27% of the initial displacement). This difference is greater than the one ob-
tained for CC1. It means that the more the loads are high, the more steel reduces 
their displacements. We can also notice that these displacements are greater than 
the limit finW  provided by Eurocode 5. The gap stands at 81.87% without 
bolted wood connection, and 76.98% with bolted wood connection. Load factors  

 
Table 6. Results for CC2 without bolted wood connection. 

Increment 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacements (u) 
[mm] 

1 1 0.001 195.3 

1 2 0.008 320.0 

1 3 0.028 466.2 

1 4 0.076 625.5 

1 5 0.165 792.2 

1 6 0.314 961.7 

1 7 0.537 1127.4 

1 8 0.837 1276.4 

1 9 1.000 1325.4 

1 10 1.000 1324.1 

1 11 1.000 1324.1 

1 12 1.000 1324.1 

1 13 1.000 1324.1 

1 14 1.000 1324.1 

1 15 1.000 1324.1 

1 16 1.000 1324.1 

1 17 1.000 1324.1 

1 18 1.000 1324.1 

1 19 1.000 1324.1 

1 20 1.000 1324.1 

1 21 1.000 1324.1 

1 22 1.000 1324.1 

1 23 1.000 1324.1 

1 24 1.000 1324.1 
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Table 7. Results for CC2 with bolted wood connection. 

Increment 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacements (u) 
[mm] 

1 1 0.002 195.3 

1 2 0.016 321.2 

1 3 0.059 461.4 

1 4 0.140 595.1 

1 5 0.274 726.8 

1 6 0.475 855.6 

1 7 0.753 976.2 

1 8 1.000 1046.3 

1 9 1.000 1042.4 

1 10 1.000 1042.4 

1 11 1.000 1042.4 

1 12 1.000 1042.5 

 
are greater and increase faster with bolted wood connection. From iteration 
n˚1 to iteration n˚8 it has increased by 0.836 (125.4 KN) without bolted wood 
connection, and by 0.998 (149.7 KN) with bolted wood connection (see on Ta-
ble 6 and Table 7). In the meantime, displacements have increased by 1081.1 
mm without bolted wood connection (115.99 N for 1 mm), and by 851 mm with 
bolted wood connection (175.9 N for 1 mm). At iteration n˚1, displacements 
remain the same ( 195.3 mmu = ). It means that for very low load factors 
( 0.008λ ≤ ), there is no need to use steel reinforcement. In other words, for 
loads lesser than 1.2 KNP = , there is no need to use steel reinforcement. 

Figure 11 displays displacements over increments and iterations for the com-
binatoric CO1 with and without bolted wood connection. The results corre-
sponding to these curves are respectively found on Table 8 and Table 9. 

On Figure 11, the curves reach maximum values before stabilizing. These 
values are respectively max 466.4 mmu =  without bolted wood connection and 

max 406.3 mmu =  with bolted wood connection (see on Table 8 and Table 9). 
Here steel has reduced maximum displacements by max 60.1 mmu∆ = . This dif-
ference is greater than the one obtained from self-weight CC1. Indeed, this com-
binatoric is greater than self-weight (CO1 = 1.35 × CC1). The more displace-
ments are high, the more impact of steel is visible. In other words, the more 
loads are high, the more bolted wood connection absorbs them. It is the elas-
tic-perfectly plastic character of steel that is highlighted. 

For the ULS (CO2 = 1.35 × CC1 + 1.5 × CC2), Figure 12 shows the plot of dis-
placements over increments and iterations with and without bolted wood connec-
tion. The results of these curves are found on Table 10 and Table 11, respectively 
for CO2 without bolted wood connection, and with bolted wood connection. 
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Figure 11. Displacements over increments and iterations for the combinatoric CO1. 

 

Table 8. Results for the combinatoric CO1 without bolted wood connection. 

Increments 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacements (u) 
[mm] 

1 1 0.017 195.3 

1 2 0.172 315.2 

1 3 0.685 454.9 

1 4 1.000 466.0 

1 5 1.000 466.4 

1 6 1.000 466.4 

1 7 1.000 466.4 

1 8 1.000 466.4 
 

Table 9. Results for the combinatoric CO1 with bolted wood connection. 

Increment 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacements (u) 
[mm] 

1 1 0.025 195.3 

1 2 0.264 313.9 

1 3 1.000 430.8 

1 4 1.000 407.5 

1 5 1.000 406.3 

1 6 1.000 406.3 

1 7 1.000 406.3 
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Figure 12. Displacements over increments and iterations for CO2. 
 

Table 10. Results for CO2 without bolted wood connection. 

Increments 
n˚ 

Iteration 
n˚ 

Load Factor (λ) 
[−] 

Displacements (u) 
[mm] 

1 1 0.000 195.3 

1 2 0.004 320.0 

1 3 0.014 466.4 

1 4 0.038 626.5 

1 5 0.083 795.5 

1 6 0.158 970.9 

1 7 0.274 1149.2 

1 8 0.439 1326.2 

1 9 0.657 1495.1 

1 10 0.917 1641.8 

1 11 1.000 1670.6 

1 12 1.000 1670.5 

1 13 1.000 1670.5 

1 14 1.000 1670.4 

1 15 1.000 1670.4 

1 16 1.000 1670.4 
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Continued 

1 17 1.000 1670.4 

1 18 1.000 1670.4 

1 19 1.000 1670.4 

1 20 1.000 1670.4 

1 21 1.000 1670.4 

1 22 1.000 1670.4 

1 23 1.000 1670.4 

1 24 1.000 1670.4 

1 25 1.000 1670.4 

1 26 1.000 1670.4 

1 27 1.000 1670.4 

1 28 1.000 1670.4 

1 29 1.000 1670.4 

1 30 1.000 1670.4 

 
Table 11. Results for CO2 with bolted wood connection. 

Increment 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacement (u) 
[mm] 

1 1 0.001 195.3 

1 2 0.008 321.3 

1 3 0.029 461.7 

1 4 0.069 596.2 

1 5 0.135 730.1 

1 6 0.234 864.3 

1 7 0.375 997.7 

1 8 0.563 1127.4 

1 9 0.795 1246.7 

1 10 1.000 1323.8 

1 11 1.000 1320.2 

1 12 1.000 1320.2 

1 13 1.000 1320.2 

1 14 1.000 1320.2 

1 15 1.000 1320.2 

 
On Figure 12, maximum displacements are respectively max 1670.4 mmu =  

without bolted wood connection, and max 1320.2 mmu =  with bolted wood 
connection (see on Table 10 and Table 11). We notice a maximum reduction 

https://doi.org/10.4236/ojapps.2024.142018


M. Ourmama et al. 
 

 

DOI: 10.4236/ojapps.2024.142018 259 Open Journal of Applied Sciences 
 

max 350.2 mmu∆ =  (20.96% of the initial displacement). Indeed, in the ULS 
loads are greater than any other combinatoric. It is the combinatoric which has 
the most penalizing effect on the structure. Compared to the limit finW  pro-
vided by Eurocode 5, the gap stands at 85.63% without bolted wood connection, 
and 81.82% with bolted wood connection. While there was no need for using 
steel in the applied load for 0.008λ ≤  (1.2 KN), it is advised to use steel when 
one designs at ULS for 0.004λ ≥  (912.6 N) (see on Table 10). For the struc-
tural analysis and design, we can define the plastic resistance value of steel as the 
intersection between the initial tangent stiffness and the tangent stiffness at the 
final part of the load-displacement curve ( ),y yF U  [6]. This value is determined 
at the ULS from the load-displacement curve CO2 with bolted wood connection. 
In order to make it easier we are going to use the original curve from the soft-
ware (see on Figure 13). 

From this curve, the plastic resistance yF  corresponds to the 6.9 iteration. 
We obtain 84.34 KNyF =  and 1323.8 mmyU = . To assess the reinforcement 
of walls with densified wood under shear strength, the stiffness was defined in 
[10] as the ratio between the maximum load and the maximum slip. Compared 
to this present study where bending strength is dominant, we can define the 
bending stiffness by the ratio between the maximum load and the maximum 
deflection. From Table 10 and Table 11, the bending stiffness has increased 
from 0.13 KN∙mm−1 without bolted wood connection to 0.17 KN∙mm−1 with 
bolted wood connection. The bending stiffness has been increased by 32.94%. 
Since the bending stiffness is proportional to the critical load in [1], the increase 
of the bending stiffness results to the increase of the critical load by 32.94%. 
Thus, inducing the increase of the bending resistance by 32.94%. 

For the SLS (CO5), Figure 14 displays the curves of displacements over in-
crements and iterations with and without bolted wood connection. Table 12 and 
Table 13 provide their corresponding results. 

 

 
Figure 13. Displacements over increments and iterations for CO2 with bolted wood 
connection (original curve from the software RFEM5). 
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Figure 14. Displacements over increments and iterations for CO5. 

 
Table 12. Results for CO5 without bolted wood connection. 

Increments 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacements (u) 
[mm] 

1 1 0.001 195.3 

1 2 0.006 320.0 

1 3 0.022 466.3 

1 4 0.059 625.9 

1 5 0.128 793.7 

1 6 0.244 965.9 

1 7 0.420 1137.5 

1 8 0.665 1300.8 

1 9 0.961 1437.7 

1 10 1.000 1441.9 

1 11 1.000 1441.9 

1 12 1.000 1441.9 

1 13 1.000 1441.9 

1 14 1.000 1441.9 

1 15 1.000 1441.9 

1 16 1.000 1441.9 

1 17 1.000 1441.9 

1 18 1.000 1441.9 

1 19 1.000 1441.9 
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Continued 

1 20 1.000 1441.9 

1 21 1.000 1441.9 

1 22 1.000 1441.9 

1 23 1.000 1441.9 

1 24 1.000 1441.9 

1 25 1.000 1441.9 

1 26 1.000 1441.9 

 
Table 13. Results for CO5 with bolted wood connection. 

Increment 
n˚ 

Iteration 
n˚ 

Load factor (λ) 
[−] 

Displacement (u) 
[mm] 

1 1 0.001 195.3 

1 2 0.013 321.3 

1 3 0.045 461.6 

1 4 0.107 595.7 

1 5 0.209 728.4 

1 6 0.362 859.9 

1 7 0.577 987.2 

1 8 0.852 1102.6 

1 9 1.000 1142.2 

1 10 1.000 1141.3 

1 11 1.000 1141.3 

1 12 1.000 1141.3 

1 13 1.000 1141.3 

1 14 1.000 1141.4 

 
The maximum displacements are respectively max 1441.9 mmu =  mm and 

max 1141.4 mmu = . Here the difference is max 300.5 mmu∆ =  (20.84% of the 
initial displacement). Displacements are lower than the ones obtained from ULS. 
In order to ensure the safety of the structure, it is advised to use steel reinforce-
ment for load factors 0.006λ ≥  (914 N) (see on Table 12 and Table 13). The 
SLS are used to limit deformations in the structure. During the design process, 
one should make sure that the value of the mid-span deflection caused by the set 
of loads applied to the structure remains lower than the limit value. 

3.2. Discussion 

The model developed in this study could find applications in frameworks, 
bridges and any structure subjected to high bending strength, where it is impor-
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tant to undermine deformations which can lead to instabilities. For wood beams 
subjected to bending strength, checking deformations at the SLS is the most im-
portant criterion for structural analysis and design [23]. This study enables to 
predict load-displacement (P-Δ) behaviour in structures subjected to uniformly 
be applied long-term loads, which is difficult to carry out through testing. The 
elastoplastic steel properties provide good estimates of load-displacement [28]. 
Mechanical properties of wood and glue used for the simulation in the software 
are realistic and obtained from various tests (see on Table 1 and Table 2). Realistic 
characteristics of steel were used as inputs of the model, since they were drawn 
from Eurocode 3. The bi-linear trends of load-displacement curves obtained are 
confirmed by authors such as in [5] [7] and [28]. Knowing the load-displacement 
behaviour of the structure helps designers reduce costs of construction. Indeed, 
they are able to know when to use steel reinforcements that are very costly. 

Moreover, in the literature it is difficult to find investigations about load-dis- 
placement behaviour on large span structures made of tropical hardwood species. 
Most of studies are dealing with small size structures made of softwoods. For in-
stance, load-displacement behaviour was studied in [12] on a 1200 mm length 
beam with and without bolted wood connection. They obtained from bending 
tests approximately 6000 N for 40 mm displacement without steel and 6000 N 
for 20 mm with steel. In this present study, after performing a linear interpola-
tion from Figure 11, Table 6 and Table 7, 6000 N corresponds to 505.9 mm 
displacement without steel and 399.45 mm with steel. This significant gap could 
be explained by the differences in the sizes of beams, wood nature and the char-
acteristics of bolts. The plastic resistance obtained in [6] was 86.1 KNyF = . In 
this present study, the plastic resistance is 84.34 KNyF = . This slight difference 
could be explained by the fact that in their work, they have used dowels with 
class resistance 4.8 which means that the nominal yield and ultimate tensile 
strength are respectively equal to 320 MPa and 400 MPa [24]. While in this 
study, class resistance of bolts was set to 4.6 which means that the nominal yield 
and ultimate tensile strength are respectively equal to 240 MPa and 400 MPa 
[24]. 

Conducting experimental investigations on large span structural product 
would be difficult. Indeed, the process is a priori time-consuming and expen-
sive. For these reasons, the present paper is devoted to modelling by using a 
3D FE nonlinear analysis. FE analysis is suited for modelling and evaluating 
parallel and perpendicular to the grain loading of wood with bolted wood con-
nections [28]. That is the reason why many authors used 3D FE models to pre-
dict load-displacement behaviour in timber with bolted wood connections [5] 
[6] [9] [28]. 

The iterative Newton-Raphson method was used in [16] to study the nonlin-
ear behaviour of a large span steel frame structure (10 m). A load of 45 tons was 
uniformly step by step applied to the structure. Their simulation was performed 
through a CEPAO program. They carried out loads versus displacements curves 
considering steel as elastic-perfectly plastic material as we did in this work. The 
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trends of the curves were the same as we obtained in this work. The elasto-plas- 
tic analysis done in their work revealed that the curves stabilize after a load fac-
tor 0.754λ =  as on Table 5, Table 7, Table 9, Table 11 and Table 13 with 
bolted wood connection, and displacements can go beyond 30 cm. Reference 
[29] simulated the nonlinear behaviour of a large span glulam beam using the 
Newton-Raphson method. The beam length was set to 8000 mm and the dimen-
sions of the cross section 200 × 1000 mm2. Here the tangent stiffness matrix was 
analytically calculated before being implemented in a MATLAB code. Since the 
length was smaller than the one used in this present work (30 m), there were less 
nodes, thus, less nonlinear equations to resolve. This made it possible to calcu-
late analytically the tangent stiffness matrix. In this present work, the tangent 
stiffness matrix was numerically computed by the software during the simula-
tion. Besides, their nonlinear study was also numerically performed through the 
step-by-step iterative Newton-Raphson method. Instead of carrying out loads 
versus displacements curves as we did in this work, they were interested in car-
rying out loads versus warping angles curves. Results matched well with the ones 
obtained from the analytical Euler method. Several other authors as in [30] [31] 
and [32] successfully performed a numerical nonlinear analysis on large span 
glulam beam columns using the iterative Newton-Raphson method. In most of 
these cases, a uniform load was step by step applied to the beam. Their works 
proved the efficiency of the Newton-Raphson method compared to the classical 
finite element method. 

However, this study focused on the nonlinear analysis of the load-displacement 
behaviour without predicting failure. The stability check for bolts was performed 
in a different section of the RFEM 5 software called RF-JOINTS (see on Figure 
7). In order to enable the software to run the simulation, we had to select a load 
that meets stability conditions for both wood and steel. This made it difficult to 
predict failure for both materials despite the lack of accuracy in this investigation 
[28]. Geometrical imperfections due to the curvature of the beam-column (ini-
tial out of straightness) were not considered in this work. Such imperfections 
may create an additional bending moment along the axis of the beam, thus per-
turbing the loading of the glulam beam [1]. Moreover, the study was carried out 
with the assumption that the constant climate in the wood moisture content was 
12%. The natural climate condition, corresponding to the exposure environment 
of these beams, generally varies, thus inducing some mechano-sorptive effects in 
wood which may be characterized by more important deformations. 

4. Conclusion 

In order to analyse the impact of steel, a nonlinear analysis has been performed 
by the Newton-Raphson method. This method has the advantage to be easily 
implemented in finite element software as RFEM 5. Results showed that reduc-
tion of displacements can reach up to 350.2 mm (20.96% of the initial displace-
ment). The maximum deflection can reach up to 1670.4 mm for hardwoods 
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while the one provided by Eurocode 5 for softwoods with the same size is 240 
mm, the gap stands at 85.63%. For applied loads lesser than 1.2 KNP = , there 
is no need to use steel reinforcement. At serviceability limits states, it is advised 
to use steel reinforcement for load factors 0.006λ ≥  (914 N). While at ultimate 
limits states, care should be taken for 0.004λ ≥  (912.6 N). The plastic resis-
tance of steel can increase the bending resistance of wood by 32.94%. Applying 
these results in real design cases could help designers undermine deformations 
and reduce costs of construction by using less steel. Further studies, focusing on 
experimental investigations in natural tropical and temperate climates, will be 
achieved to enrich the model proposed in this work. We intend to quantify the 
mechano-sorptive effects that may occur under these climates to improve the 
prediction of load-displacement behaviour. 
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