
Open Journal of Applied Sciences, 2024, 14, 205-222 
https://www.scirp.org/journal/ojapps 

ISSN Online: 2165-3925 
ISSN Print: 2165-3917 

 

DOI: 10.4236/ojapps.2024.141016  Jan. 31, 2024 205 Open Journal of Applied Sciences 
 

 
 
 

Detection of Burned Areas through Spectral 
Indices Analysis of Sentinel-2A Satellite Images 
in the Abokouamékro Wildlife Reserve  
(Central, Côte d’Ivoire) 

Bob Kouakou Kouadio1,2, Sié Ouattara1,2,3, Alain Clément4, Jean-Marc Gala Bi Zaouri2,  
Jean-Luc Kouadio Kouassi Jean-Luc2, Edouard Kouakou N’guessan5,6 

1Laboratoire des Sciences et Technologies de la Communication et de l’Information (LSTCI), Institut National Polytechnique 
Houphouët Boigny (INP-HB), Yamoussoukro, Côte d’Ivoire 
2Laboratoire des Sciences Agronomiques et Génie Rural, Institut National Polytechnique Houphouët Boigny (INPHB),  
Yamoussoukro, Côte d’Ivoire 
3Ecole de Géomatique et du Territoire (EGT), Abidjan, Côte d’Ivoire 
4LARIS, SFR MATHSTIC, Université d’Angers, Angers, France 
5Centre Universitaire de Recherche et d’application en Télédétection (CURAT), UFR des Sciences de la Terre et des Ressources 
Minières, Abidjan, Côte d’Ivoire 
6Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire 

 
 
 

Abstract 
In Côte d’Ivoire, the recurring and unregulated use of bushfires, which cause 
ecological damage, presents a pressing concern for the custodians of pro-
tected areas. This study aims to enhance our comprehension of the dynamics 
of burnt areas within the Abokouamékro Wildlife Reserve (AWR) by em-
ploying the analysis of spectral indices derived from satellite imagery. The re-
search methodology began with the calculation of mean indices and their 
corresponding spectral sub-indices, including NDVI, SAVI, NDWI, NDMI, 
BAI, NBR, TCW, TCG, and TCB, utilizing data from the Sentinel-2A satellite 
image dated January 17, 2022. Subsequently, a fuzzy classification model was 
applied to these various indices and sub-indices, guided by the degree of 
membership α, with the goal of effectively distinguishing between burned and 
unburned areas. Following the classification, the accuracies of the classified 
indices and sub-indices were validated using the coordinates of 100 data 
points collected within the AWR through GPS technology. The results re-
vealed that the overall accuracy of all indices and sub-indices declines as the 
degree of membership α decreases from 1 to 0. Among the mean spectral 
indices, NDVI-mean, SAVI-mean, NDMI-mean exhibited the highest over-
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all accuracies, achieving 97%, 95%, and 90%, respectively. These results 
closely mirrored those obtained by sub-indices using band 8 (NDVI-B8, 
SAVI-B8, and NDMI-B8), which yield respective overall accuracies of 93%, 
92%, and 89%. At a degree of membership α = 1, the estimated burned areas 
for the most effective indices encompassed 2144.38 hectares for NDVI-mean, 
1932.14 hectares for mean SAVI-mean, and 4947.13 hectares for mean 
NDMI-mean. A prospective approach involving the amalgamation of these 
three indices could have the potential to yield improved outcomes. This study 
could be a substantial contribution to the discrimination of bushfires in Côte 
d’Ivoire.  
 

Keywords 
Spectral Indices, Wildfire, Burned Areas, Abokouamékro Wildlife Reserve, 
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1. Introduction 

Bushfires are recognized as one of the most widespread ecological distur-
bances globally, alongside natural disasters such as droughts, floods, or hur-
ricanes [1]. Indeed, every year, approximately 350 million hectares of vegetation 
burn worldwide, with nearly half of this occurring in sub-Saharan Africa [2]. 
Although the use of bushfires is highly beneficial for humans in land preparation 
for agriculture, pasture renewal for livestock, and hunting practices, their recur-
rent and uncontrolled use disrupts forest ecosystems [3]. A recent study con-
ducted by [4] highlighted that 2.7 million hectares burn every year mostly in sa-
vannah and forest ecosystems. These fires lead to a decrease in biodiversity and 
soil fertility loss [5]. 

In Côte d’Ivoire, village committees for bushfire control have been established 
by the government. Researchers like [6] and [7] have proposed earlier fires as 
solution to uncontrolled fires through their experimentations installed respec-
tively in Kokondekro and Lamto. Despite these insitiatives, effective solutions to 
this situation have not been found yet. So each year, bushfires continue to cause 
damages in different regions. The Abokouamékro Wildlife Reserve (AWR), lo-
cated in the central region of Côte d’Ivoire, is not immune to this scourge. This 
protected area, which houses a diverse wealth of flora and fauna, regularly faces 
forest fires and the spatiotemporal dynamics of which remain poorly understood 
by managers [8]. Therefore, it is necessary to seek alternative and complementa-
ry solutions to existing ones. 

Today, the use of satellite remote sensing offers significant opportunities for 
detecting and monitoring these fires in a given area [3]. Detecting burnt areas 
using satellite images is a continuously evolving discipline with significant im-
plications for forest fire management. One approach to bushfire management is 
to have a good understanding of the spatiotemporal dynamics of past fires. At 
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this level, several authors have worked from a global to a local scale. At the glob-
al and continental scale, some authors have used medium spatial resolution im-
ages to map bushfire areas. These include [9], who characterized burned areas in 
the Guinean savannahs of Senegal. The advantage of these images is their fre-
quent repetition, providing information at short time intervals. Also, certain 
images, such as Modis, provide data on bushfires (active fires, burned areas) that 
are directly usable. At the local scale, high spatial resolution images (Landsat, 
Spot, Sentinel, PlanetScope, etc.) are required to better understand details about 
burned areas. Despite their high spatial resolution, they have the drawback of 
not having frequent information (low repetition). Several researchers, such as 
[10], have mapped the spatiotemporal dynamics of burned areas in Togo using 
Landsat ETM+ images. Joachim and Collins [11] compared three methods for 
detecting burned areas using Landsat ETM+ imagery in the forest-savanna tran-
sition zone in Cameroon. Processing these images requires classification models 
to extract burned areas because there have no directly usable data (active fires or 
burned areas). Some classification models are applied to spectral indices to 
detect burned areas. This is the case with the work of [12], which showed that 
the combination of Normalized Burn Ratio (NBR) and the Normalized Differ-
ence Vegetation Index (NDVI) allow for better characterization of burned areas 
in a region of China. Wenliang Liu et al. [13] also showed that the Burned Area 
Index (BAI) discriminates better burned areas by comparing several spectral in-
dices from HJ satellite images. The work of David Fornacca et al. [14] demon-
strated that the NBR and the Normalized Difference Moisture Index (NDMI) 
discriminate better burned areas. 

The study we propose aims to analyze the ability of various spectral indices 
derived from Sentinel-2A images to detect burnt areas in the AWR. Specifically, 
the objectives are to: 1) Calculate spectral indices from the Sentinel-2A image; 2) 
discriminate burnt areas from unburned ones by applying a fuzzy classification 
model; 3) evaluate the different indices based on classification accuracies (con-
fusion matrix) and estimate burned areas. 

2. State of Art 

The state of the art in the field of wildfire detection using Sentinel-2A images is 
built upon a variety of approaches and methodologies. For instance, [12] intro-
duced a sophisticated method for detecting burned areas by leveraging spectral 
indices derived from Sentinel-2A data. Their work emphasized the significance 
of the Normalized Burn Ratio (NBR) and the Normalized Difference Vegetation 
Index (NDVI) in enhancing the accuracy of burned surface detection. Martinez 
et al. [15] focused their efforts on mapping burned areas in Mediterranean eco-
systems using Sentinel-2A data. Their research highlighted the positive impact of 
the high spatial resolution of these images for improved forest fire identification 
in this specific region. 

Khan et al. [16] explored the application of deep learning algorithms, specifi-
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cally Convolutional Neural Networks (CNNs), for detecting burned areas from 
Sentinel-2A data, providing an in-depth insight into the use of machine learning 
for this task. The integration of multispectral and thermal infrared data from 
Sentinel-2A was addressed by [17]. Their study emphasized the utility of thermal 
infrared in improving forest fire detection and discussed the advantages of this 
approach. 

Davis and Walker [18] developed a methodology for change detection based 
on time series of Sentinel-2A images, enabling the monitoring of burned areas’ 
evolution over time. In the context of disaster management, Davis and Wilson 
[19] explored the use of machine learning for rapid assessment of burned areas 
using Sentinel-2A data, highlighting the importance of speed and accuracy in 
such emergency situations. 

Gonzalez and Rodriguez [20] assessed the usefulness of Sentinel-2A data for 
mapping burned areas in arid regions, providing crucial insights into the specific 
challenges of wildfire detection in these environments. Walker and Lopez [21] 
conducted a comparative analysis of burned area detection methods using Sen-
tinel-2A images in different environments, thus demonstrating the importance 
of method adaptability depending on the context. 

Smith and Miller [22] proposed an ensemble approach for mapping burned 
areas from Sentinel-2A data, thereby emphasizing the improvement in result re-
liability through the combination of various methods. Geospatial analysis of 
burned area severity was explored by [23], enabling the evaluation of fire-induced 
damages and their impact on the environment using Sentinel-2A data. 

Garcia and Brown [24] conducted a comparative study of spectral indices for 
burned area detection from Sentinel-2A images, offering a detailed overview of 
the performance of various indices and their respective advantages. In the con-
text of natural reserves, [20] examined the use of Sentinel-2A data for monitor-
ing burned areas, highlighting the importance of remote sensing for biodiversity 
management in these sensitive environments. 

Lastly, [25] evaluated the accuracy of mapping burned areas in urban areas 
using Sentinel-2A data, shedding light on the specific challenges associated with 
fire detection in urban settings. 

3. Materials and Methods  
3.1. Study Area  

This study was conducted in the developed part of the AWR located in the heart 
of the “V Baoulé” region in central Côte d’Ivoire. The AWR was established in 
1988 and covers an area of 20,400 hectares, of which 7230 hectares have been 
developed. The reserve is located between the coordinates of 4˚57' and 5˚09' 
West longitude and 6˚48' and 6˚55' North latitude. Administratively, it belongs 
to both the Bélier region and the N’Zi region, as well as the autonomous district 
of Yamoussoukro. It falls within the subequatorial Baoulé climate, characterized 
by four seasons, including two rainy seasons and two dry seasons. The average 
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annual precipitation is around 1050 mm, with an average annual temperature of 
26˚C and an average annual relative humidity of 75%. 

The reserve is drained by two main rivers, the Kan and the Pra, along with 
their various tributaries. The area features ferralitic and remodeled tropical fer-
ruginous soils [26]; the vegetation in the AWR comprises forest formations (gal-
lery forests, forested patches) and savanna formations (wooded savannas, tree 
savannas, shrub savannas). Forest formations are dominated by species such as 
Antiaris toxicarea (Moraceae), Aubrevillea kerstingii (Mimosaceae), Ceiba pen-
tandra (Bombacacée), Cola cordifolia (Sterculiaceae), Kaya grandifoliola (Ma-
liaceae), Carapa procera (Meliaceae), and Elaeis guineensis (Arecaceae), among 
others. Savanna formations are characterized by species such as Borassus aethi-
opum (Arecaceae), Daniellia oliveri (Caesalpiniaceae), Ficus platyphylla (Mora-
ceae), Lophira lanceolata (Ochnaceae), Parkia biglobosa (Mimosaceae), Annona 
senegalensis (Annonaceae), Crossopteryx febrifuga (Rubiaceae), Dichrostachyus 
cinerea (Mimosaceae), Hymenocardia acida (Euphorbiaceae), Piliostigma thon-
ningii (Caesalpiniaceae), Elymandra androphila (Poaceae), Hyparrhenia smi-
thiana (Poaceae), Imperata cylindrica (Poaceae), and Loudetia arundinacea 
(Poaceae) [5]. The riparian areas of the AWR are inhabited by both indigenous 
and non-indigenous populations. The local economy of these communities pri-
marily relies on agriculture, livestock, tourism, and craftsmanship. Figure 1 de-
picts the location of the developed zone within the Abokouamékro Wildlife Re-
serve.  
 

 

Figure 1. Location of the developed zone within the AWR. 
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3.2. Data 

Two types of data were used in this study. The first type of data includes an im-
age derived from multi-spectral sensors of the Sentinel-2A satellite, which is part 
of the Sentinel-2 twin satellite system. The Sentinel-2A image used in this article 
is from January 17, 2022, and is characterized by a 280 km-wide field of view 
with a revisit period of five days. These images encompass thirteen spectral 
bands covering the visible and infrared ranges. The visible bands include b1 
(band 1), b2 (band 2), b3 (band 3), b4 (band 4), while the near-infrared bands 
include b5 (band 5), b6 (band 6), b7 (band 7), b8 (band 8), b8A (band 8A), b9 
(band 9), b10 (band 10), and the mid-infrared spans b11 (band 11) and b12 
(band 12). These spectral bands were used to compute various spectral indices 
and sub-indices. The characteristics of the Sentinel-2A image are summarized in 
Table 1. 

The second type of data consists of Global Positioning System (GPS) coordi-
nates for burned areas collected after bushfires. Data collection took place dur-
ing field missions from January 25 to January 31, 2022, within the AWR. A total 
of 250 fixed points, covering burned and unburned areas (vegetation, bare 
ground, water bodies), were collected to encompass the developed zone of the 
AWR. Among these 250 points, 150 were used to classify the indices, and the 
remaining 100 points served to validate the classified indices. 
 
Table 1. Sentinel-2A image caracteristics. 

Spectral domain Band 
Wave length 

(nm) 

Spatial 
resolution 

(m) 

Visible 

Coastal Aerosol b1 442.3 - 443.9 60 

Blue b2 492.1 - 496.6 10 

Green b3 559 - 560 10 

Red b4 664.5 - 665 10 

Near 
Infrared 

Red ege1 b5 703.8 - 703.9 20 

Red ege2 b6 739.1 - 740.2 20 

Red ege3 b7 779.7 - 782.5 20 

Near Infrared b8 833 - 835.1 10 

Near Infrared Narrow b8A 864 - 864.1 20 

Water Vaper b9 943.2 - 945 60 

SWIR Citrus b10 1276.9 - 1373.5 60 

Medium 
Infrared 

Short Wave Infrared b11 1610.4 - 1613.7 20 

Long Wave Infrared b12 2185.7 - 2202.4 20 
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3.3. Methods 

The methodological approach in this article consists of three phases. The first 
phase involved preprocessing the image and calculating spectral indices. The 
second phase focused on classifying the different spectral indices and estimating 
burned areas. The third phase dealt with the validation of the classified indices. 

3.3.1. Image Preprocessing and Spectral Indices Calculation  
Image preprocessing and spectral indices calculation were carried out in three 
phases using ENVI 5.10 software. In the first phase, the raw image was georefe-
renced to make it compatible with other data sources already possessing geo-
graphic coordinates. This process involved generating the coordinates of specific 
points within the image based on fixed points called “reference points.” Each 
band from the visible to the infrared was georeferenced using the k nearest 
neighbors’ method. 

The second phase involved resizing the pixel dimensions of certain image 
bands. Specifically, the 20 m dimensions of the b5, b6, b7, b11, and b12 spectral 
bands and the 60 m dimensions of the b1, b9, and b10 bands were all adjusted to 
a 10 m size using bilinear interpolation. The study area’s definition was based on 
a vector file representing the boundaries of the developed part of the reserve. 
This area corresponds to an extracted image window covering an area of pixels 
with dimensions 764 × 754 pixels. 

The spectral indices and image transformations considered in this article were 
selected from a wide range of indices described in the literature. These include 
seven spectral indices: NDVI (Normalized Difference Vegetation Index), SAVI 
(Soil-Adjusted Vegetation Index), MNDWI (Modified Normalized Difference 
Water Index), NDWI (Normalized Difference Water Index), NDMI (Normalized 
Difference Moisture Index), NBR (Normalized Burned Ratio), BAI (Burned Area 
Index), MIRBI (Mid-infrared Burned Index), and three image transformations: 
TCW (Tasseled Cap Wetness), TCG (Tasseled Cap Greenness), and TCB (Tas-
seled Cap Brightness). The calculation of these parameters involved generating 
new channels in the spectrum ranging from visible to infrared using the raw 
image bands. The calculation models and bibliographical references for these 
spectral indices are presented in Table 2. 

Among the seven spectral bands b6, b7, b8, b8A, b9, b10 available in the Sen-
tinel-2A image in the near-infrared domain, five have been considered in this 
article. These are bands b5, b6, b7, b8, and b8A. Five sub-indices corresponding 
to each of the spectral indices NDVI, SAVI, BAI were calculated by taking the 
ratio of each of the above-mentioned bands to band b4. Five other sub-indices 
corresponding to the spectral indices NDMI and NBR were calculated by taking 
the ratio of each of the near-infrared bands to band b11 for NDMI and band b12 
for NBR. Regarding NDWI, five sub-indices were obtained from the ratio of 
band b3 to each of the near-infrared bands. Furthermore, no sub-spectral indices 
were calculated for MNDWI, MIRBI, TCW, TCG, TCB. The list of calculated 
sub-spectral Indexes is presented in Table 3. 
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Table 2. Calculation models and bibliographical references for the spectral indices used. 

Indices spectraux Formule Référence 

Normalized Difference Végétation Index 
(NDVI) 

NIR R
NIR R

−
+

 Rousse et al. (1973) 

Soil-adjusted Vegetation Index (SAVI) ( )0.5 1.5
NIR R

NIR R
−

+ + ∗
 Chuvieco et al. (2002) 

Normalized Difference Moisture Index 
(NDMI) 

NIR SWIR
NIR SWIR

−
+

 Key and Benson (2000) 

Normalized Burned Ratio (NBR) 
NIR LWIR
NIR LWIR

−
+

 Key and Benson (2000) 

Mid-infrared Burned Index (MIRBI) 10 * LWIR − 9.5 * SWIR + 2 Trigg and Flasse (2001) 

Burned Area Index (BAI) 

( ) ( )2 2

1
0.1 0.06R NIR+ + +

 Chuvieco et al. (2002) 

Normalized Difference Water Index 
(NDWI) 

G NIR
G NIR
−
+

 McFeeters (1996) 

Modified Normalized Difference Water 
Index (MNDWI) 

G SWIR
G SWIR
−
+

 Xu (2006) 

Tasseled Cap Wetness (TCW) 
0.1363 * B + 0.2802 * G + 0.3072 * R + 0.5288 * Re1 + 

0.1379 * Re2 − 0.0001 * Re3 − 0.0807 * NIR1 − 0.4064 * 
SWIR1 − 0.5602 * SWIR2 − 0.1389 * NIR2

 

 

Tasseled Cap Greeness (TCG) 
0.1363 * B + 0.2802 * G + 0.3072 * R + 0.5288 * Re1 + 

0.1379 * Re2 − 0.0001 * Re3 − 0.0807 * NIR1 − 0.4064 * 
SWIR1 − 0.5602 * SWIR2 − 0.1389 * NIR2

 

 

Tasseled Cap Brigthness (TCB) 
0.1363 * B + 0.2802 * G + 0.3072 * R + 0.5288 * Re1 + 

0.1379 * Re2 − 0.0001 * Re3 − 0.0807 * NIR1 − 0.4064 * 
SWIR1 − 0.5602 * SWIR2 − 0.1389 * NIR2

 

 

 
Table 3. List of calculated sub-spectral indexes. 

Index Sub-Spectral Indexes 

NDVI NDVI-b5, NDVI-b6, NDVI-b7, NDVI-b8, NDVI-b8A 

SAVI SAVI-b5, SAVI-b6, SAVI-b7, SAVI-b8, SAVI-b8A 

BAI BAI-b5, BAI-b6, BAI-b7, BAI-b8, BAI-b8A 

NDWI NDWI-b5, NDWI-b6, NDWI-b7, NDWI-b8, NDWI-b8A 

NDMI NDMI-b5, NDMI-b6, NDMI-b7, NDMI-b8, NDMI-b8A 

NBR NBR-b5, NBR-b6, NBR-b7, NBR-b8, NBR-b8A 

3.3.2. Fuzzy Classification for Burned and Unburned Area Detection 
1) Method for Determining Models for Burned and Unburned Areas 
Separation thresholds between burned areas and unburned areas (vegetation, 

bare ground, water bodies) were determined for each spectral index and 
sub-spectral index. The method involved extracting the pixel values for each 
spectral index or sub-spectral index from the 150 points collected in the field. 
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Using this data, statistics such as the mean (μ), standard deviation (σ), minimum 
value (Min), and maximum value (Max) were calculated for each index and 
sub-index. The lower and upper bounds for extracting burned pixels were de-
termined using Equation (1). 

 xµ σ µ σ− ≤ ≤ +  (1) 

where: 
x: set of spectral values (index or sub-index) from the 150 points collected in 

the field, 
μ: mean of the spectral values from the 150 points, 
σ: standard deviation of the spectral values from the 150 points. 
A pixel is considered “burned” when its value falls within the interval defined 

by the lower and upper bounds calculated above. On the other hand, any pixel 
with a value outside this interval is considered “unburned.” 

2) Determination of Breakpoints in Classification Models  
In this study, it is assumed that a pixel belongs to the “burned” class with cer-

tainty when it falls within the intervals defined by the lower and upper bounds of 
all sub-spectral indices. However, any pixel that falls within 2, 3, or 4 out of 5 
sub-indices can be considered to belong to the “burned” class with a lower de-
gree of certainty. Pixels located outside all the intervals of all sub-indices are 
classified as “unclassified.” 

To extract these 3 categories of pixels, all sub-indices for each spectral index 
were intersected to determine their intersections. This operation allowed the 
construction of fuzzy classification models (Figure 2(a) and Figure 2(b)) for 
each spectral index. The breakpoints of these models were determined as fol-
lows. In Figure 2(a) and Figure 2(b), “a” corresponds to the minimum of the 
minima lower bounds of all sub-indices. “b” corresponds to the maximum of the 
minima lower bounds of all sub-indices. “c” corresponds to the minimum of the 
maxima upper bounds of all sub-indices. “d” corresponds to the maximum of 
the maxima upper bounds of all sub-indices. 
 

   
(a)                                                    (b) 

Figure 2. (a): Fuzzy Model for the Classification of NDVI, SAVI, BAI, NDMI, NBR, and NDWI Indices; (b): Fuzzy Model for the 
Classification of TCW, TCG, TCB, MIRBI, MNDWI indices. 
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These various models allow assigning a pixel to either the “burned” class or 
the “unburned” class for different degrees of membership (α), which ranges 
from 0 to 1. For a high degree of membership (α → 1), the index values are likely 
to accurately identify burned pixels. However, as it gradually decreases (α → 0), 
we enter the maximum overlap zone between burned and unburned pixels. The 
degree of membership (α) remains constant (α = 0) for all indices without 
sub-indices (MNDWI, MIRBI, TCW, TCG, TCB); therefore, a = b and c = d. 
The breakpoint values of these models are recorded in Table 4. 

3) Fuzzy Model for Burned and Unburned Area Classification  
The fuzzy model algorithms used in this article were determined as follows. 

The question at hand is: for a given degree of membership (α), what is the set of 
pixels X of the index that designate burned pixels? In other words, what are the 
lower and upper bounds of each index that defines the pixels for a given degree 
of membership (α)? The different classification algorithms were determined 
based on the degree α (Table 5). 

The different algorithm and programming code of these models enabled the 
generation of spectral indices and sub-indices classified based on the fuzzy 
membership degree α using Matlab software 

4) Evaluation and Validation of Classified Indexes 
To assess the discrimination potential of the ten spectral indices, a method 

based on constructing a confusion matrix (Table 6) was employed. The classifi-
cation confusion matrix was calculated by comparing the results of the classifi-
cation of burned and unburned areas (predicted data) with the ground truth da-
ta (actual data). 

From the confusion matrix, indicators for the spectral indices, such as omis-
sion, commission, and overall accuracy, were calculated using Equations (2)-(4). 
 
Table 4. Breakpoint values of fuzzy models. 

Indices a b c d 

NDVI 0.096 0.146 0.214 0.267 

SAVI 0.158 0.235 0.319 0.4 

NBR −0.117 −0.0062 −0.08 −0.031 

NDWI −0.216 −0.157 −0.118 −0.071 

NDMI −0.103 −0.059 0.111 0.171 

BAI −63 * 10−5 59 * 10−5 55 * 10−5 51 * 10−5 

MNDWI −0.267 0.207 −0.163 −0.009 

MIRBI 0.040 0.040 0.128 0.128 

TCW −342.37 −342.37 −106.36 −106.36 

TCG 333.46 333.46 635.06 635.06 

TCB 2643.16 2643.16 3244.16 3244.16 
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Table 5. List of algorithms used for fuzzy models based on degree of membership (α). 

Index If α = 0 If 0 < α < 1 If α = 1 

NDVI 0.096 ≤ NDVI ≤ 0.267 0.096 + 0.050 * α ≤ NDVI ≤ 0.267 − 0.053 * α 1.46 ≤ NDVI ≤ 0.214 

SAVI 0.158 ≤ SAVI ≤ 0.40 0.158 + 0.077 * α ≤ SAVI ≤ 0.4 − 0.081 * α 0.235 ≤ SAVI ≤ 0.4 

NDMI 0.103 ≤ NDMI ≤ 0.171 0.044 * α − 0.103 ≤ NDMI ≤ 0.17 − 0.06 * α −0.059 ≤ NDMI ≤ 0.111 

NBR −0.117 ≤ NBR ≤ −0.031 0.055 * α − 0.062 ≤ NBR ≤ −0.015 * α − 0.031 −0.062 ≤ NBR ≤ −0.046 

NDWI −0.216 ≤ NDWI ≤ −0.071 0.059 * α − 0.216 ≤ NDWI ≤ −0.047 * α − 0.071 −0.157 ≤ NDWI ≤ −0.118 

BAI −0.00063 ≤ BAI ≤ −0.000516 
0.36 * 105 * α − 0.63 * 103 ≤ 

BAI ≤ −0.35 * 105 * α − 0.51 * 103 
−0.000595 ≤ BAI ≤ −0.00051 

MNDWI −0.207 ≤ MNDWI ≤ −0.163 −0.207 ≤ MNDWI ≤ −0.163 −0.207 ≤ MNDWI ≤ −0.163 

MIRBI 0.040 ≤ MIRBI ≤ 0.128 0.040 ≤ MIRBI ≤ 0.128 0.040 ≤ MIRBI ≤ 0.128 

TCW −342.372 ≤ TCW ≤ −106.364 −342.372 ≤ TCW ≤ −106.364 −342.372 ≤ TCW ≤ −106.364 

TCG 333.463 ≤ TCG ≤ 635.064 333.463 ≤ TCG ≤ 635.064 333.463 ≤ TCG ≤ 635.064 

TCB 2643.159 ≤ TCB ≤ 3244.163 2643.159 ≤ TCB ≤ 3244.163 2643.159 ≤ TCB ≤ 3244.163 

 
Table 6. Classification confusion matrix. 

 
Predicted Burned Areas Predicted Unburned Areas 

Actual Burned Areas True Positives (TP) False Positives (FP) 

Actual Unburned Areas False Negatives (FN) True Negatives (TN) 

 

 FPOmission error
FP FN

=
+

 (2) 

 FNCommission error
VN FN

=
+

 (3) 

 VP VNOverall Accuracy
VP VN FP FN

+
=

+ + +
 (4) 

where: 
TP: True Positives; FP: False Positives; TN: True Negatives; FN: False Nega-

tives. 
The omission error indicates the rate of truly burned pixels that are classified 

as unburned, which corresponds to the false positive rate (FP). The commission 
error is the rate of pixels predicted as unburned by the model but classified as 
burned, which corresponds to the false negative rate (FN). Overall accuracy, or 
global error rate, represents the general quality of the model. The confusion ma-
trix helps determine and compare index performances in terms of overall accu-
racy or errors (commission, omission). 

The summary of the methodology is illustrated in Figure 3. 

4. Results and Discussion  
4.1. Spectral Indices and Sub-Indices 

The spectral indices and sub-indices generated from the raw Sentinel-2A image 
dated January 17, 2022, are represented by the images listed in Figure 4. 
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Figure 3. Summary of the methodology for various image processing steps. 
 

For vegetation indices (NDVI, SAVI, TCG), three entities are observed, rang-
ing from a red hue to a whitish hue. Whitish areas indicate high chlorophyll ac-
tivity, corresponding to wooded savannah, open forests, and gallery forests. 
Red-toned areas indicate low chlorophyll activity, characterizing degraded sa-
vannah. Dark red or black-toned areas reveal an absence or very little vegetation 
cover, potentially representing water surfaces or mineral areas. For the interpre-
tation of water or humidity indices (MNDWI, NDWI, NDMI, TCW), whitish 
areas would indicate water presence, while other hues would be attributed to ve-
getation and bare surfaces. For the bare soil index (TCB), whitish areas would 
represent bare surfaces, while other hues would represent vegetation and water 
surfaces. Regarding burn indices (MIRBI, BAI, NBR), whitish areas could represent 
areas with ash presence after a fire, while red or dark red areas indicate low or com-
plete absence of ash. 

4.2. Estimation and Validation of Burned Areas  

Fuzzy classification was applied to various indices and sub-indices based on the 
degree of membership α to distinguish burned and unburned areas. The classifi-
cation confusion matrix was calculated by comparing the results of the fuzzy  
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Figure 4. Spectral indices and sub-indices produced from the raw sentinel-2A Image.  
 
classification with ground control data (ground truth). The achieved accuracies 
are presented in Table 3. The best overall accuracies obtained from the classifi-
cation of indices and sub-indices are shown in Table 7. 

Intra-index analysis reveals that as α approaches 1, the overall accuracy in-
creases for all spectral indices, while it decreases as α approaches 0. These trends 
reflect a conservative behavior that reduces false alarms at the expense of a high-
er rate of missed burned areas. Inter-index analysis shows that classifying the 
mean indices yields satisfactory results in terms of overall classification accuracy 
compared to classifying each sub-index individually. The overall accuracies of 
the mean indices are nearly identical to those obtained from sub-indices derived 
from band 8. Therefore, using the mean indices is equivalent to directly using 
the sub-indices from band 8. However, the highest accuracy (97.20%) was 
achieved with the mean NDVI (NDVI-moy), followed by the mean SAVI 

https://doi.org/10.4236/ojapps.2024.141016


B. K. Kouadio et al. 
 

 

DOI: 10.4236/ojapps.2024.141016 218 Open Journal of Applied Sciences 
 

Table 7. Overall accuracies obtained from the classification of indices and sub-indices. 

Spectral Indexes 
Overall Accuracy (%) 

α = 1 α = 0.8 α = 0.6 α = 0.4 α = 0.2 α = 0 

NDVI-moy 97.2 96.3 95.4 94.1 93.2 92.5 

NDVI-b8 95.5 94.8 93.7 92.2 91.6 90.5 

SAVI-moy 94.1 93.2 92.5 91.5 90.6 89.3 

SAVI-b8 93.4 92.1 91.4 90.2 89.1 88.8 

NDMI-moy 90.2 89.3 88.3 88.3 88.3 88.3 

NDMI-b8 89.9 88.8 87.1 87.1 87.1 87.1 

NDWI-moy 80.3 79.1 77.3 77.1 76.7 75.3 

NDWI-b8 80.1 79.2 78.1 76.8 76.1 75.0 

NBR-moy 75.8 73.8 73.3 72.8 71.7 70.9 

NBR-b8 75.3 73.1 72.3 71.6 70.6 69.5 

BAI-moy 70.9 70.1 69.9 69.1 68.8 67.6 

BAI-b8 69.5 68.9 68.5 67.5 66.8 66.4 

MNDWI 78.4 77.2 77.3 77.2 76.4 75.3 

TCW 79.2 79.1 78.3 77.1 76.8 75.2 

TCG 81.3 80.2 80.1 79.8 78.3 77.6 

TCB 62.9 61.8 61.3 60.9 60.6 59.8 

 
(SAVI-moy) (95.50%) and the mean NDMI (NDMI-moy) (90.20%), while the 
lowest accuracy (62.90%) was obtained with the TCB index. These results differ 
from those of D. Stroppiana et al. [27], who found that NBR and CSI indices 
provide better discrimination of burned areas in the mediterranean region. Da-
vide Fornacca et al. [14] also found that NBR is the index that best characterizes 
burned areas in a region in China. Wenliang Liu et al. [13] found that NDVI 
provides good classification results when combined with NBR. This situation 
can be explained by the fact that, in savannah regions like WAR, it is difficult to 
identify burned area using traditional fire indices like NBR, BAI, MIRBI, etc., 
because just after fires, the great part of ash disappears with the wind. In con-
trast, vegetation in of mediterranean and temperate regions the traces of fire are 
easily recognized by traditional fire indices. This confirms the idea that the 
choice of the index for characterizing burned areas differs depending on the 
physical and biological characteristics of the components of a given environ-
ment. The estimated burned areas resulting from the classification of the best 
spectral indices are recorded in Figure 5. 

The burned areas detected by the mean NDVI, SAVI, and NDMI indices for a 
degree of membership α = 1 are 2144.38 ha, 1932.14 ha, and 4947.13 ha, respec-
tively. 
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Figure 5. Burned areas for Mean NDVI, SAVI, and NDMI indices. 

5. Conclusions 

In this study, we set out to enhance our understanding of burned areas by har-
nessing the potential of spectral indices and employing a fuzzy classification ap-
proach. This approach allows for a more nuanced evaluation of the data, offering 
a range of degrees of membership (α) that enables a fine-tuned analysis of the 
results. 

The outcomes of our research revealed a consistent trend: as the degree of 
membership α decreased from 1 to 0, the accuracy of all the spectral indices 
gradually declined. However, two indices, NBR and BAI, exhibited an interesting 
exception to this pattern. These indices maintained their accuracy across the 
range of α values. 

Furthermore, we observed that the mean spectral indices, specifically NDVI, 
SAVI, NDMI, and NDWI, consistently outperformed their individual counter-
parts in terms of classification results. These mean spectral indices exhibited re-
markable sensitivities of 86%, 85%, 82%, and 81%, respectively, demonstrating 
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their robustness in identifying burned areas. Moreover, they achieved high ac-
curacies of 95%, 94%, 92%, and 90%, indicating the reliability of these composite 
indices in accurately characterizing the extent of fire-affected areas. 

It’s noteworthy that these results, while highlighting the efficiency of these 
mean spectral indices, did not significantly differ from the performance of indi-
vidual indices, with sensitivities ranging from 79% to 84%, and accuracies rang-
ing from 87% to 93%. This suggests that, whether through the combination of 
indices or the use of individual ones, our approach can effectively contribute to 
the precise discrimination of bushfires in Côte d’Ivoire. 

The date of image acquisition (January) and field data collection could be 
some limitations for the study, because, at that date, all the bushfires in the WAR 
had not been completed. As a result, burned areas may be underestimated. The 
results of the study could be supplemented by others detections of burned areas 
using some images of February and early March. 

In conclusion, the findings of this study offer valuable insights for fire man-
agement and monitoring in the region. By applying fuzzy classification and 
carefully selecting or averaging spectral indices, we have improved the accuracy 
and reliability of burned area identification. These results can significantly aid 
the efforts to understand, predict, and mitigate the impact of bushfires in Côte 
d’Ivoire and other regions facing similar challenges. 
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