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Abstract 
In geology, classification and lithological recognition of rocks plays an im-
portant role in the area of oil and gas exploration, mineral exploration and 
geological analysis. In other fields of activity such as construction and decora-
tion, this classification makes sense and fully plays its role. However, this 
classification is slow, approximate and subjective. Automatic classification 
curbs this subjectivity and fills this gap by offering methods that reflect hu-
man perception. We propose a new approach to rock classification based on 
direct-view images of rocks. The aim is to take advantage of feature extraction 
methods to estimate a rock dictionary. In this work, we have developed a 
classification method obtained by concatenating four (4) K-SVD variants into 
a single signature. This method is based on the K-SVD algorithm combined 
with four (4) feature extraction techniques: DCT, Gabor filters, D-ALBPCSF 
and G-ALBPCSF, resulting in the four (4) variants named K-Gabor, K-DCT, 
KD-ALBPCSF and KD-ALBPCSF respectively. In this work, we developed a 
classification method obtained by concatenating four (4) variants of K-SVD. 
The performance of our method was evaluated on the basis of performance 
indicators such as accuracy with other 96% success rate.  
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1. Introduction 

Rock classification is a key issue for the geology industry and all fields of activity. 
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Traditionally, rock classification and characterization is done visually following 
a long process by geologists and mineralogists with many years’ experience and/or 
through laboratory tests [1]. This classification so-called manual, slow and subjec-
tive classification is subject to errors. Automatic classification, by means of dictio-
nary computation and machine learning, a sub-field of artificial intelligence (AI) 
in which computers learn without being explicitly programmed [2], appears as 
an alternative, a consistent response to this problem. 

Several fields of activity are covered (biomedical [3], facial recognition [4] and 
fingerprints, etc.). Machine learning has been successfully applied to the analysis 
of natural phenomena such as potential earthquakes [5], volcanic eruptions [6], 
classification of seabed mud volcanoes [7] and mining prospects [8]. However, 
only a few research projects using computer vision and image processing are 
concerned with rock classification [1] [9] [10] [11] [12] [13]. In [14], Galdames 
et al. performed a lithological classification with SVM based on textural and co-
lorimetric analysis coupled with 3D laser features to determine the approximate 
mineralogical composition of rocks. Spectral classification and supervised learning 
techniques such as neural network methods have been used to extract features 
from the spectral data of rock minerals, enabling faster and more objective identi-
fication [10]. However, these methods are often tied to manually extracted rock 
features, which limit their adaptability to a wide variety of characteristics. The 
authors of [15] proposed a lightweight convolutional neural network (Shuffle-
Net) in deep learning, combined with the transfer learning method from images 
obtained with a smartphone, to perform rock image classification. However, the 
study carried out by these authors, which is a smartphone application, although 
it solves the problem of time in the recognition process and the terrain-related 
hazards faced by geologists, remains limited in the face of a multi-sample data-
set. 

This is mainly due to the great complexity of rocks, making them difficult to 
classify. To the best of our knowledge, however, there are as yet no works in 
which dictionaries containing rock signatures are estimated by highlighting re-
construction error as a discriminating factor, and where dictionary updating is 
done to adapt rock characteristics. Rock classification using Machine Learning 
systems and algorithms yielded promising results in 2005 with Lëpisto [16]. In 
his study, he used Gabor filters for texture feature analysis and extraction, fol-
lowed by classifiers for rock classification. Good classification is always preceded 
by discriminative texture/color feature extraction methods robust to noise, rota-
tion and illumination change. For more accurate classification, [17] has proposed 
texture/color feature extraction methods named D_ALBPCSF and G_ALBPCSF 
obtained by combining statistical and frequency descriptors on direct view images 
of magmatic and metamorphic rocks. 

This is mainly due to the great complexity of the rocks, making them difficult 
to classify. But to our knowledge, there is no works yet in which dictionaries 
containing rock signatures are estimated by highlighting reconstruction error as 
a discriminating factor and where dictionary updating is done to adapt rock 
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characteristics. Rock classification using Machine Learning systems and algo-
rithms yielded promising results in 2005 with Lëpisto [16]. In his study, he used 
Gabor filters for texture feature analysis and extraction, followed by classifiers 
for rock classification. Good classification is always preceded by discriminative 
texture/color feature extraction methods robust to noise, rotation and illumina-
tion change. For more precise classification, [17] proposed methods for extract-
ing color texture features named D_ALBPCSF and G_ALBPCSF obtained by 
combining statistical and frequency descriptors on direct view images of mag-
matic and metamorphic rocks. For other classification and indexing algorithms 
such as, boosting algorithms (LPBoosting) [18], K-nearest neighbors (K-NN) [19], 
K-means [20] and neural networks [10], features are derived from the measure-
ment of attributes such as energy, entropy, contrast, etc. More repetitively, feature 
extraction methods are based on three forms of visual attribute analysis: spectral 
analysis, radiometric analysis and textural analysis in the joint or separate use of 
color and texture. In [21], Ishikawa and Virginia in 2013, based on these visual 
attributes (texture and color) and Raman spectroscopy, were able to differentiate 
minerals from igneous rocks through analysis of the minerals’ spectral signature 
using neural networks. However, even if mineral classification has been largely 
successful, it is difficult to apply the same methods to all rocks, as spectra may 
present a combination of competing signatures. In [22], Blake et al. (2012), using 
X-ray diffraction, required rock samples to be collected and pulverized prior to 
chemical analysis. However, this method is destructive and, in my view, should 
not be popularized. In [23], the authors evaluated several methods obtained with 
a convolutional neural network and Deep Learning with an accuracy of over 
95% in the classification of plutonic rocks. 

The authors of [24] and [25] use convolutional neural network models to clas-
sify rocks containing a background. The limitations of these methods are linked 
to the influence of background disturbances, background interference and the 
selection of sampling points. Despite much work in these areas, the problem re-
mains unresolved. A number of segmentation and dictionary learning strategies 
have been developed in the literature. Suggested methods include: Artificial Neural 
Networks (ANNs) [13], SVM [25] [26], decision trees [24] [26], K-nearest neigh-
bor (K-NN) [19] [26] [27], K-means [20], boosting algorithms [18], Maximum 
Likelihood (ML), etc. These methods, for the most part, are combined in a single 
algorithm. Most of these methods are combined with dimension reduction me-
thods such as principal component analysis (PCA) or genetic algorithms (GA). 
These combinations help in classification. However, in some cases, these dimen-
sion reduction methods introduce noise into the classification process. Some of 
the algorithms used for classification are like black boxes, where it is difficult to 
control intermediate processes or even guarantee a good decision with a high 
number of color texture descriptors and redundant sample data. In an attempt to 
solve these problems, we explore parsimonious representations by determining 
learned dictionaries. 
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In this paper, rock classification through the implemented methods shows the 
effectiveness of Machine Learning (ML) with machine learning and dictionary 
estimation. The proposed rock recognition method is based on dictionary esti-
mation with K-SVD [28] [29] applied to the color LBP combination and fre-
quency transforms [17], considering the reconstruction error (lower error), al-
lowing correlation between learned dictionaries, as a discriminating factor.  

In Session II, the materials and methods used are analyzed. Section III 
presents the simulation results and discussion, while Section IV concludes this 
study and announces future work. 

2. Materials and Methods 
2.1. Magmatic and Metamorphic Rocks 

Our study concerns igneous rocks and metamorphic rocks. Indeed, igneous 
rocks result from the crystallization of magma at depth (intrusive rock) and on 
the surface of the earth (extrusive rock). The intrusive igneous rocks that we 
want to recognize by image processing have a more pronounced granularity 
than those of extrusive igneous rocks. However, metamorphic rocks, with even 
less grainy textures, are the result of the transformation of igneous or sedimen-
tary rocks under the influence of heating, increased pressure. 

2.2. Organization of Images 

The experimental study was conducted with a data set comprising eight (8) 
classes of direct-view digital images of magmatic (granite, granodiorite, gabbro) 
and metamorphic (schist, cipolin, migmatite, eclogite, hornfels) rocks, totalling 
eighty (80) images. This grouping into eight (8) classes was made by an expert 
geologist, taking into account certain objective characteristics of textures and 
colors. Each rock image in “jpg” format is cropped to a size of 256 * 256 pixels, 
and a sample of each image class is shown in Figure 1. 

Table 1 shows the number of images used per class for training and model va-
lidation. 
 
Table 1. Number of images for training and testing. 

Class 
Number of images for 

training 
Number of images 

for the test 

Class 1: Granite 10 5 

Class 2: Gabbro 10 5 

Class 3: Granodiorite 10 5 

Class 4: Shale 10 5 

Class 5: Eclogite 10 5 

Class 6: Migmatite 10 5 

Class 7: Corneal 10 5 

Class 8: Cipolin 10 5 

Total 80 40 
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Figure 1. Examples of the eight (8) different classes of rock images. 
 

The experiment was carried out using the MATLAB programming language 
on an HP Notebook computer and processor: Intel (R) Core (TM) i5-7200U 
CPU @ 2.50 GHz, 2701 MHz, 2 core(s), 4 logic processor(s). 

2.3. Colors Texture Descriptors 

LBP descriptors and its variants have shown that they can describe textural pat-
terns in images quite well [26]. Studies carried out in 2019 by [17] made it possi-
ble to take into account, in addition to texture and color features, the directio-
nality present in rock images by proposing new extraction methods such as 
D_ALBPCSF and G_ALBPCSF. This testifies to the robustness and capability of 
local binary patterns. 

2.4. Dictionary and Reconstruction Error Estimation 

Dictionary construction is the first step in a parsimonious representation. Dic-
tionary learning is an essential step in obtaining a quality dictionary for a partic-
ular type of data [28] [29]. The dictionary learns the patterns present in an image 
and provides a basis for parsimonious decomposition. It will enable the charac-
teristic elements of a rock image to be grouped together and used as a learning 
base. The main idea is for the dictionary to provide a base in which the asso-
ciated rock is better represented than the others. During classification, we look 
for the dictionary that minimizes the reconstruction error for an imposed par-
simony constraint. The smaller the error, the more suitable the dictionary. In 
our approach, coefficients are obtained by decomposing the signal on the basis 
of elementary signals called “atoms”. Four types of dictionary (Gabor, DCT, 
G-ALBPCSF and D-ALBPCSF) have been estimated, giving rise to four methods: 
K-DCT, K-Gabor, KG-ALBPCSF and KD-ALBPCSF.  

The proposed approaches are summarized in the flow chart in Figure 2. 
Algorithm 1 translates the principle of the classification method presented in 

the flowchart in Figure 2. 

2.5. Parameters Influencing Dictionary Learning and Error  
Estimation 

Dictionary learning is one of the most important steps in the efficient represen-
tation of image atoms. However, it can be optimized for greater efficiency. Cer-
tain parameters influence this optimization: 
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Figure 2. Flowchart of the proposed rock classification method. 
 
Algorithm 1. KSVD_DCT_Gabor_ALBPCSF. 

Input: ALBPCSF image, RGB image, DCT image, Gabor image 
Output: Image dictionaries 
Start 

1. Apply the DCT_Gabor_ALBPCSF to ALBPCSF and RGB images. 
2. Create the image database from DCT, Gabor and 1. 
3. for each image in the image database. 
4. Apply K-SVD to obtain the dictionary and reconstruction error 
5. Save the reconstruction error in the Er vector 
6. End For 

End. 

 
- The stopping criterion or number of iterations, set at 500 in this study.  
- As the number of atoms K increases (K = 75 atoms here) while keeping the 

parsimony (or constraint) L at 3, the reconstruction error increases and the 
algorithm does not converge. As a result, there is no dictionary stability. 
However, when the parameter K is decreased (K = 25 atoms, for example), 
the algorithms converge and the reconstruction error is lower. 

- Increasing or decreasing the size of the dictionary results in an efficient de-
termination of the number of atoms in the dictionary. The size of the rock 
dictionary influences dictionary estimation, i.e. the larger the image size, the 
greater the error. 

2.6. Multi-Algorithm Systems 

Feature vector fusion can be performed in several ways [27] [28]. The one we are 
interested in here is multi-algorithm fusion. This is the most classical type of 
system used by many approaches. Signatures are extracted via different algo-
rithms and then merged to give a single feature vector, providing higher accura-
cies than a single algorithm in rock image classification [27]. 
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3. Experimentation and Simulation Results 

Our method consists of learning the model on 2N observations and then vali-
dating the model on N observations. Rock classification is obtained by searching 
for proximity between the reconstruction errors the Euclidean distance (Equa-
tion (1)), which we found to be simple and better than the Manhattan and Min-
kowski distances. 

 ( ) ( )
1
22

1
,

N

k i ik
i

d A B a b
=

 
= − 
 
∑  (1) 

where ai represents the coordinates of A (or query vector of the current rock to 
be identified) and bik the coordinates of Bk (reference vectors of the k rock classes 
in the database). To estimate the class of a rock image I to be classified, our me-
thod consists of taking into account the reconstruction errors of the rocks of the 
different classes. Indeed, the Euclidean distance between two (2) signature vec-
tors A and Bk of size N, noted d(A, Bk) where k describes rock classes from 1 to 
8. For classification, we retain the class which has the minimum distance with 
image I. Let X be a vector matrix that groups on each row the reconstruction er-
rors for each rock sample obtained over 10 trials for the 80 rock samples, i.e. a 
total of 800 values. Note that the error for each trial is obtained after 500 itera-
tions. Let Y be a vector that groups together the average of the reconstruction 
errors for each sample after 10 trials on each line.  

Y = Fk represents the signature of each K-SVD variant. Yref contains the sig-
nature of each rock class. Note that Yref has a total of 8 values. This experiment 
involved 640 crosses of rock reconstruction errors. 

Model performance is evaluated and compared in terms of correct classifica-
tion rates: the measures of accuracy, specificity, sensitivity and error rate, based 
on the reconstruction errors calculated when estimating the various dictionaries 
of the different rocks used and learned. These performance measures defined in 
[17] are presented for the four methods in Table 2. 

The results of the experimental activity presented above show that our dic-
tionary estimation approaches for the classification of igneous and metamor-
phic rocks with the proposed combinations of methods, i.e. KD-ALBPCSF and 
KG-ALBPCSF, improve on the results obtained with K-DCT and K-Gabor taken 
individually. These results reveal once again that rock classification is a de-
manding and very difficult task. 
 
Table 2. Performance indicators of the four methods for the different classes. 

Methods used 
Performance indicators 

Sensitivity Specificity Exactness Error rate 

Gabor 0.25 0.89 0.81 0.19 

DCT 0.29 0.90 0.82 0.18 

KD-ALBPCSF 0.41 0.92 0.85 0.15 

KG-ALBPCSF 0.50 0.93 0.88 0.12 
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In order to better discriminate between rocks, we concatenated the rock cha-
racteristics from the different variants used for the different experiments already 
carried out on 120 images from the training and test bases. 
- Learning step: 

In the learning step, the signatures of the different rocks class are generated: 
X, F and Yref. 

X is the matrix of reconstruction errors for all 8 rock classes, and for the 4 va-
riants, we have: X1, X2, X3, X4. Each row of this matrix contains the reconstruc-
tion errors for each rock class; each of these 10 columns represents the recon-
struction errors for each trial after 500 iterations. 

F = [F1, F2, F3, F4] represents the concatenation of the characteristic parame-
ters of each rock from the 4 variants of K-SVD for the learning step where F1, F2, 
F3 and F4 each represent the average of the reconstruction errors of each variant. 

Yref is the reference or signature of each rock class and Xk designates the ma-
trix of all reconstruction errors of the 8 rock classes for each method. These dif-
ferent parameters are presented below. 

( )
( )

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

15 25 35 45

16 26 36 46

17 27 37 47

18 28 38 48

Class 1
.

1: K-DCT K-SVD DCT.
2 : KD-ALBPCSF K-SVD D-ALBPCSF.
3 : K-.

.

.
Class 8

ref

Y Y Y Y
Y Y Y Y
Y Y Y Y k
Y Y Y Y k

Y
Y Y Y Y k
Y Y Y Y
Y Y Y Y
Y Y Y Y

→ 
 
 
  = +
 

= + 
=  

= 
 
 
 
 

→ 

( )
( )

Gabor K-SVD Gabor
4 : KG-ALBPCSF K-SVD G-ALBPCSFk

+

= +

 

( )
1, ,10; ou represente la colonne

telle que 1, ,8; ou represente la ligne
1,2,3,4; ou represente l'indice de la methode

k
k ij

i i
X x j j

k k

=
= =
 =



  

For our experiment, the Yref matrix contains 8 rows, 4 columns, presented as 
follows: 

5.0298 6.6733 1.9231 5.1948

6.2540 7.5880 1.6086 7.5937

5.4711 10.8690 1.4577 8.2089

4.7049 4.4742 1.5750 2.4970

3.8894 4.7743 1.6374 1.7804

6.1953 7.0282 1.4707 4.3798

4.4897 4.3354 1.9379 1.4806

3.8759 4.4458 1.9445 3.0411

refY



=




 
 
 
 
 
 
 
 
 
 
 
 



 

However, Xk matrices are matrices of 80 rows and 10 columns. An overview of 
these matrices, in the same dimensions as the Yref matrix, for example X1 corres-
ponding to one of the variants of K-SVD, is defined as follows: 
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1

5.0793 4.9441 4.885 4.9782

4.8398 5.0172 4.645 4.7675

5.6804 5.4445 5.4186 5.298

5.1769 5.5013 5.0159 5.1711

4.8112 4.9204 5.057 4.8567

5.5768 5.2558 5.2361 5.4207

4.6983 4.8746 4.9737 4.8881

5.0562 4.8155 4.8016 5.2816

X







= 












 
 
 
 
 
 

 

The experiment involved comparing the reconstruction error calculated for a 
given rock class with all the Yref representing rock signatures, and retaining the 
smallest distance value from the Euclidean distance formula; this indicates the 
class to which the query rock belongs. Table 3 gives the values of the perfor-
mance indicators calculated to verify the performance of this combination of va-
riants carried out on the learning phase of a set of eighty (80) rock images, each of 
whose eight (8) classes contains ten (10) rock images. These indicators, defined in 
[17], are calculated from Equations (2)-(5). 

 ( )Sensitivity FVP VP VP FN= = +  (2); 

 ( )Specificity FVN VN VN FP= = +  (3); 

 ( ) ( )Precision VP VP FP VN VN FN= + = +  (4); 

 ( ) ( )Accuracy VP VN VP VN FP FN= + + + +  (5); 

- Test step:  
Following the same principle as the learning phase, we calculate X (X11, X22, 

X33, X44) for each query rock and compare these values with the Yref values. For 
this testing experiment, 40 rock images were used. Here, the X matrix contains 
40 rows and 10 columns. An overview of one of these matrices is shown below in 
the form of X11 for the first K-SVD variant: 
 
Table 3. Performance indicators of the combination of the 4 variants of K-SVD. 

Performance indicators Combination of the 4 variants 

VP 68 

VN 548 

FP 12 

F. N. 12 

Rappel 0.85 

Precision 0.85 

Accuracy 0.9625 

Error rate 0.0375 
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Table 4. Rock images used for testing. 

Painting 5 - 11: Images of rocks for the test 

Granites 

   

Granite_1 (A12) Granite_2 (G) Granite_3 (N1) 

Granodiorites 

   

Grano_1 (10) Grano_2 (2) Grano_3 (P) 

Gabbros 

   

Gabbro_1 (6) Gabbro_2 (L) Gabbro_3 (O) 

Migmatites 

   

Mig_1 (3) Mig_2 (2) Mig_3 (16) 

Corneals 

   

Corn_1 (9) Corn_2 (3) Corn_3 (11) 

Eclogites 

   

Hatch_1 (3) Eclo_2 (5) Eclo_3 (9) 
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Continued 

Cipoli 

   

Cip_1 (1) Cip_2 (5) Cip_3 (25) 

Shales 

   

Sch_1 (18) Sch_2 (17) Sch_3 (14) 

 
Table 5. Confusion matrix with our method. 

  PREDICTED CLASSES 

 Classes 1 2 3 4 5 6 7 8 TOTAL 

REAL 
CLASSES 

1 5 0 0 0 0 0 0 0 5 

2 0 4 1 0 0 0 0 0 5 

3 0 0 5 0 0 0 0 0 5 

4 0 0 0 2 2 0 1 0 5 

5 0 0 0 0 4 0 0 1 5 

6 0 2 0 0 0 3 0 0 5 

7 0 0 0 1 0 0 4 0 5 

8 1 0 0 0 1 1 0 2 5 

 TOTAL 6 6 6 3 7 4 5 3 40 

 

 

Figure 3. Average values of variant combination performance indicators. 
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11

5.0793 4.9441 4.885 4.9782
4.8112 4.9204 5.057 4.8567
4.6983 4.8746 4.9737 4.8881
5.1459 4.6852 4.6621 4.9534
4.9732 5.0503 4.8245 4.7057
6.5739 6.3625 6.5404 6.5875
6.4809 6.4807 6.6571 6.3076
7.1768 7.2457 7.3744 7.2229

X







=









 
 
 
 
 
 
 

 

For the other variants, we can have, for example, as a matrix the characteris-
tics of the various other variants X22, X33 and X44 which are not presented here. 

Table 4 shows some of the rock images of the different classes used for testing. 
To validate our approach, a validation test is used to evaluate the combination 

of the four (4) K-SVD variants we propose. The results provide us with a confu-
sion matrix for this evaluation. This confusion matrix was developed for a set of 
40 rock images including 5 of each class (see Table 5) and Figure 3 gives the 
performance indicators for verifying the suitability of the proposed method. 

The results in Table 5 show that the proposed method gives good classifica-
tion performance, with an overall correct classification rate of 93.13%. However, 
the method classifies magmatic rocks better with a rate of 95.83%, compared to 
91.5% for metamorphic rocks. The combination of methods makes up for short-
fall observed with individual methods. Figure 3 shows the average values of the 
various performance indicators achieved. 

4. Conclusions and Future Prospects 

We have proposed new classification methods that have been used in the context 
of the automatic classification of igneous and metamorphic rocks. The perfor-
mance of these methods was evaluated through confusion matrices which re-
sulted in classification rates. It should be noted that dictionary learning is a 
complex problem. Simulation shows that results are not always excellent. It is 
difficult to obtain the same error after two (2) trials. However, the dictionaries 
learned are closer to the characteristic data of the rock. Our two (2) approaches 
nevertheless improve the rate of correct classification by up to 50%. The conca-
tenation of the four (4) K-SVD variants considerably improves the classification 
rate to 93.13% overall, with specific classification rates of 95.83% for magmatic 
rocks, and 91.5% for metamorphic rocks. 

Looking ahead, we plan to improve the performance of our recognition me-
thod by using statistical moments as rock characteristics. We also plan to asso-
ciate data obtained from signal sensors, i.e. the waves measured by these sensors, 
with rock recognition. 
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