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Abstract 
Building on a new model proposed recently for calculating constant elec-
tro-magnetic field values, the present article explores the electro-magnetic 
field configuration generated by parallel electrical wires. This imposes a ree-
valuation of the drawing procedure for constructing field curves with a con-
stant field values around multiple parallel electrical conducting wires. To 
achieve this, we employ methods akin to those used for creating contours on 
topographical maps, ensuring a consistent numerical field value along the en-
tire length of the field curves. Subsequent calculations will be conducted for 
scenarios where wires are not parallel. 
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1. Introduction 

In 1820, Oersted made observations that an electrical current flowing through a 
lengthy wire generates magnetic field vectors in its vicinity [1]. He defined this 
vector to be oriented perpendicular to the wire and contingent upon the electric-
al current. This vector has the capability to reorient small compasses and align 
iron filings [2]. Then, successive vectors can be drawn, forming curves traditional-
ly referred to as magnetic field lines or magnetic flux lines [3]. These experimental 
lines resemble circles around an individual straight electrical wire, as reported by 
M. Zollner in 2002 [4]. Around this straight wire and employing the Biot-Savart 
law [5], these circles have been mathematically calculated [6]. In another scena-
rio, such as when using a circular electrical wire, this vector can be observed by 
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employing iron filings [7]. It is feasible to compute this vector along the entire 
perpendicular axis of this current loop [6]. Along this axis, non-zero vectors have 
been computed [6], with their values diminishing to zero as they move further 
away from the circular wire. Since the first observation, no other concept has been 
developed to calculated magnetic field lines around electrical wires. 

In our most recent publication regarding the field generated by an infinite 
electrical wire, we have introduced a new alternative definition for the field at a 
specific location in proximity to the wire [8]. We had suggested associating a 
single point with one physical field value and three vectors. In the present paper, 
we want to test this recently proposed model. To do so we will focus solely on 
the field value, without considering these three vectors. This consideration will 
reduce the number of parameters employed. As previously evaluating the mag-
nitude of this field value, it will be directly proportional to the current in the 
wire and inversely proportional to the distance from it. This vector less defini-
tion will be employed throughout this article to determine the positions of 
points that share the same value generated by parallel electrical wires. 

The employed method in this paper, is founded on the widely recognized 
process of constructing topographic contour maps, which comprises individual 
data points [9] [10]. In this topographic process, each point’s value is assessed 
based on its elevation or depth and then positioned within horizontal planes 
[11]. Using this approach, field points sharing the same field value will be si-
tuated within a plane that is perpendicular to the wires. 

In this paper, we depict points surrounding straight electrical-current wires 
with varying field values in several scenarios, including cases with different wire 
quantities: a single electrical-current wire, two wires with identical intensity and 
direction, parallel wires with opposing electrical-current directions, two parallel 
wires with different current intensities, scenarios requiring level assessment, and 
finally, instances involving at least five identical wires aligned in the same cur-
rent direction. During the discussion, we elaborate on the validity of the super-
position principle within our test of constant field values. 

Units, used in this paper, are meters (m) for distances, Amperes (A) for elec-
trical-current in wires, and Ampere/meter (A/m) for field values at a point 
placed everywhere out of the wires. To do so, the value of the vacuum permittiv-
ity is chosen equal to one. 

In summary, this paper does not utilize classical magnetic field lines based on 
magnetic vectors. Instead, it employs as defined in our model previously pub-
lished [8] of field values derived from physical calculations, enabling the con-
struction of curves comprised of sequences of points. 

2. Theoretical Bases for the First Application of Our  
Previously Published Model 

This chapter uses a field definition with physical values as calculated in our 
previous article [8] knowing that this field definition has not been found in 
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other scientific publications. The main point was to introduce specific field 
values (not a vector) proportional to electrical current in wires and inversely to 
its distance. 

The physical field value at any point on a perpendicular surface surrounding a 
solitary electrical wire can be assessed [6]. This value corresponds to I/r, where I 
represent the electrical current and r is the distance from the wire. In the case of 
three conducting wires, a single point “p” located within a plane perpendicular 
to the three wires derives its field value through the summation of these values, 
as depicted in Figure 1. 
 

 

Figure 1. Three infinite and parallel electrical-current wires going through a planar surface, 
imposing at point “p”, a physical value of ΣI/r. In (a), the 3D view shows a planar surface 
and three parallel electrical wire in which currents direction are oriented up or down. In (b), 
top view of the planar surface gives the distance of point “p” to each wire. The field at that 
point is calculated depending on the three field values which are an addition of them. 
 

In Figure 1(a) (left), when an electrical current flows downward, it imposes a 
positive field value of I/r with I > 0. In Figure 1(a) (left), when the electrical 
current is flowing upward, the field value becomes negative, denoted as I/r with I 
< 0. By superimposing all these field values at point “p,” the result is equivalent 
to the summation of the three computed values, resulting in ∑ I/r, as illustrated 
in Figure 1(b) (right). For the author, this holds significant physical significance 
as it imbues our model with a robust additivity property at all points within the 
plane perpendicular to the wires. 

Note: The additivity of these values contradicts the conventional additivity of 
magnetic vectors. 

3. Application 

To generate a curve on the plane surface perpendicular to the wires, it is ne-
cessary for all points to share the same field value. (This type of curve does not 
resemble a traditional magnetic field line.) We will demonstrate that our 
drawing method bears a strong resemblance to creating contour lines on con-
ventional topographic maps, where point values correspond to their elevation 
or depth [9].  

3.1. One Electrical-Current Wire 

Traditional magnetic field lines assume a circular shape when generated by a 
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single conducting wire [2]. These lines are determined using magnetic vectors 
equivalent to I/r. In Figure 2, our field value coincides with the magnetic vector 
because only one electrical wire is present. Each circular curve possesses a dis-
tinct “field value,” which diminishes as the distance from the wire increases. In 
certain cases, field values may eventually reach zero as the distance approaches 
infinity. 
 

 

Figure 2. Representations with one 2D view and two 3D views, with one vertical infinite 
current wire of one (a) which is placed at position (−1, 0), and topographic maps around 
one vertical wire. Circles are with field values of 0.333 blue, 0.5 light brown, 1.0 green, 1.5 
red, 2.0 grey, 2.5 brown (A/m). In (c), The smallest circle is brown and is the closest to the 
electrical-current wire with a field value of 2.5 A/m. Topographic maps are superposed in 
(c), due to their calculations for field values and height with I/r: both in the z axe. 
 

To highlight the resemblance between the field curves and topographic maps, 
one could draw a parallel between a field value of zero (A/m) and sea level on a to-
pographic map. In Figure 2(c), a 3D representation illustrates this concept, where 
like in topographic maps, field curves cannot intersect with lines representing dif-
ferent levels [12]. The 3D rendering of curve values always maintains a planar 
arrangement, akin to the contour lines on a topographic map illustrating the re-
lief contour [12]. 

3.2. Two Electrical-Current Wires 

In this chapter, we employ two wires with identical electrical current intensities of 
one ampere (A) and the same direction. At any point on the planar surface, the 
field value is the result of combining two distinct I/r values. While field curves are 
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not depicted with vectors, it’s worth noting that conventional magnetic field 
lines are not included; however, certain training courses may introduce such a 
classical calculation approach [13]. 

In Figure 3, the field curves are depicted in various colors to represent distinct 
physical values. The corresponding colors and their respective values can be found 
in Table 1. These field curve values are determined using the formula: I1/r1 + I2/r2. 
 

 

Figure 3. Three views of field curves around two parallele electrically-conducting wires with 
one (A) for both wires in the z direction. They are placed at xy (−1, 0) or (+1, 0). In (a), (b) 
and (c), blue circles are nearest to one of each electrical-current wires with a field of 3.0 
(A/m). When distances are larger, the field decreases until the current field curves are 
around both electrical wires. In between, and as in (b) and (c), black lines forming a hori-
zontal number 8, show a pass between the two electrical wires exactly like a pass in a topo-
graphic level map between two mountains [14]. Only the black curve cut itself ((a)-(c)). 
 
Table 1. Around two infinite and parallel conducting wires at 1 (A/m), current field 
values are calculated and represented with various colors as in Figure 3. 

Color lines Red Green Brown Black Orange Blue 

Current Field value (A/m) 1.0 1.5 1.8 2.0 2.5 3.0 

 
In Table 1, the value at the pass between the two parallel wires remains con-

stant at 2.0 (A/m). This value persists consistently along the black curve, which 
resembles the infinity symbol. 

3.3. Parallel and Opposite Electrical-Current Wires 

In this chapter, we introduce the concept of negative field values, which appears 
to be employed for the first time.  

The aim is to illustrate field curves around two parallel electrical-current wires 
with opposing intensities, as depicted in Figure 4. 
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Figure 4. Two infinite wires with opposite current in z directions. Around them, field 
curves are at various field values. In (a), a planar view of field curves is shown at field 
values between +0.5 to −0.5 (A/m). In the middle, black field lines are at zero field value 
corresponding to the sea level of the topographic map. In (b) and (c), images are 3D 
views. Positive field curves above the zero-field level are in the left side, whereas in the 
right side they are below the sea level with negative field values. 
 

In Figure 4, the wire on the left carries a positive electrical current of one 
ampere (A), while the wire on the right carries a negative electrical current of 
one ampere (A). 

Also, Figure 4 illustrates drawings of field curves at various current field values. 
The black linear curve, representing sea level (i.e., a field value of zero A/m), 

serves as a horizontal symmetrical axis. This means that a 180-degree rotation 
around this axis does not alter the appearance of the field curves. 

When we compare the drawing in Figure 4(a) with the available data from M. 
Zollner [4], notable differences emerge. M. Zollner’s work suggests that these 
curves take on a circular shape, whereas in Figure 4(a), they do not form circles 
except when very close to the wires on either the left or right side. 

For a comprehensive understanding of the values and colors associated with 
the field curves in Figure 4, please refer to Table 2. 

Table 3 introduces the concept of negative field values in a scientific article for 
the first time. One advantage of this approach is that it facilitates comprehension 
by drawing parallels between field curves and the contours of a topographic map. 
In this analogy, positive levels correspond to elevations above sea level, while 
negative levels represent depths below the zero-sea level. 

When considering these two opposing and parallel wires, the representation  
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Table 2. Relation of colored curves with field values and elevations of field lines drawn in Figure 4. 

Colors Field value Height or depth 

Green 0.5 0.5 

Blue 0.4 0.4 

Gray 0.3 0.3 

Red 0.2 0.2 

Brown 0.1 0.1 

Black 0 0 

Purple −0.1 −0.1 

Orange −0.2 −0.2 

Cyan −0.3 −0.3 

Maganta −0.4 −0.4 

Purple −0.5 −0.5 

 
Table 3. Calculation of the circle positions at level zero for (see next page) field curves at various electrical current of one (A) for 
the wire at position (−1, 0.) and various at position (+1, 0). 

Line Colors 
Right wire intensity 

(A) 
Center (x) Radius 

Left side 
0 < x < 1 

Right side 
x > 1 

Figure 5(a)      

Red −0.1 1.02020202 0.202020202 0.818181818 1.222222222 

Green −0.2 1.083333333 0.416666667 0.666666667 1.5 

Blue −0.3 1.197802198 0.659340659 0.538461538 1.857142857 

Grey −0.4 1.380952381 0.952380952 0.428571429 2.333333333 

Cyan −0.5 1.666666667 1.333333333 0.333333333 3 

Figure 5(b)      

Magenta −0.6 2.125 1.875 0.25 4 

Purple −0.7 2.921568627 2.745098039 0.176470588 5.666666667 

Brown −0.8 4.555555556 4.444444444 0.111111111 9 

Orange −0.9 9.526315789 9.473684211 0.052631579 19 

(Far) −1 Not represented infinity 0.0 infinity 

 
of a field curve consistently maintains a planar structure, like the level contours 
found in topographic maps depicting terrain relief. Furthermore, field curves 
maintain a uniform field value along their entire length, mirroring the behavior 
of topographic contours. 
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3.4. Field Curves at Level Zero (A/m) in Two Parallel Electrical  
Wires with Opposite Current-Directions and Various  
Electrical-Currents. 

With two distinct wires—one carrying a positive current and the other bearing 
various negative currents—it is possible to compute the geometry of multiple 
field curves.  

As depicted in Figure 5, there are two wires, both with different current in 
ampere (A). The first wire is situated on the left side at position (−1, 0), while 
the second wire is on the right side at position (+1, 0). At sea level, where field 
values equal zero, the resulting equation is expressed as Equation (1): 

I1/r1 + I2/r2 = 0 with I1 > 0 and I2 < 0                (1) 

By making mathematical adjustments of Equation (1), it yields the conven-
tional polynomial representation of circles for the field curves, as illustrated in 
Figure 5. 

The field curves depicted in Figure 5 exhibit a circular geometry, and the val-
ues of their field strengths and centers are provided in detail in Table 3. 
 

 

Figure 5. Sea levels with current of one (a) for the left-side electrical wire (position (−1, 0)) and various nega-
tive current for the right-side electrical wire (position (+1, 0)): negative current between −0.1 and to −0.5 A 
are left-side circles, and negative between −0.6 and to −0.9 A for current wire for right-side circles (see details 
in Table 3). 

 
Since this paper lacks physical measurements, it is possible to express field 

values with precision using more than ten significant figures. 

3.5. Pass Level between Different Electrical-Current (A) in Same  
Conducting Direction 

In this section, we compare three distinct field curves. Figure 6 illustrates 
wires with three different currents, resulting in the formation of three distinct 
passes. 

Under alternative electrical conditions, the values for current field passes are 
computed and presented in Table 4. 
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Figure 6. Planar field curves in 2D and 3D representations of pass between two electrical 
wires with current of 1 A in x = −1, and various positive currents at position x = +1. 
These representations are a superposition of three different electrical conductions. Colors 
are blue for right side electrical current of 0.2 A, red for 1.0 and black for 5.0. In (b), dark 
points indicate positions of both electrically-conducting wires. 
 
Table 4. Calculation of current field pass values for various electrical current on the 
right-side and one (A) for the left-side wire. 

Electrical current 
In (A) 

Field value 
In (A/m) 

Pass position 
X in (m) 

0.1 0.8662277660 0.5194938 

0.2 1.0472135954 0.381966 

0.3 1.1977225575 0.2922212 

0.4 1.3324555320 0.225148 

0.5 1.4571067811 0.171573 

0.6 1.5745966692 0.1270166 

0.7 1.6866600265 0.08893315 

0.8 1.7944271909 0.0557281 

0.9 1.8986832980 0.0263340 

1 2 0 

1.1 2.0988088481 −0.023823 

1.2 2.1954451150 −0.0455488 

1.8 2.7416407865 −0.14589803 

5. 5.2360697750 −0.3819660 

3.6. Two Parallel Wires with Opposite Electrical Current  
Directions (A) and with Different Current Field Values (A/m) 

This chapter elucidates the process of depicting multiple field values using two 
dissimilar electrical currents that flow in opposite directions. These configurations 
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are visualized in Figure 7, and they highlight variations in pass positions when 
compared to the passes between two identical electrical currents with opposing 
directions, as depicted in Figure 5. 
 

 

Figure 7. Planar and 3D representations of two different electrical-current wire at x = −1 
(current +1 A) and x = +1 (current −0.5 A). Blue circles are at positive field values in 
A/m. In red, a current field values at the pass level. Black circles are at sea level with zero 
A/m. In orange, field values are negative. When blue curves are closer to the positive wire, 
there field values are higher. Symmetrically, when orange curves are closer to the negative 
wire, there field values are negatively further. 
 

The field values for curves presented in Figure 7 are provided in detail in Table 5. 
 
Table 5. Field value of field lines between two opposite different electrical currents, 1A 
for left-side wire and −0.5 A for right-side wire. 

Colors Field value (A/m) 

Green Up to down: 0.4 0.3 0.2 0.1 A/m 

Blue Pass field value 0.042893219 A/m 

Gray Sea level: field value at 0.0 A/m 

Red Up to down: −0.05 −0.1 −0.15 −0.2 A/m 

3.7. Pass Values in 2D Level Maps between Two Opposite and  
Different Electrical-Currents in Parallel Wires 

When considering two opposing currents with varying intensities, the pass curves 

https://doi.org/10.4236/ojapps.2024.141006


G. Auvert 
 

 

DOI: 10.4236/ojapps.2024.141006 80 Open Journal of Applied Sciences 
 

do not resemble the horizontal Figure 8 as depicted in Figure 2. Instead, these 
distinct configurations for six different current values are illustrated in Figure 8. 
 

 

Figure 8. Various pass values in curves when wires are in opposite directions. Left cur-
rent wire at 1 A, is at x = −1. At x = +1, the wire can have different negative electrical 
currents. In (a), field curves are at negative values: magenta at −0.9, cyan at −0.8 and grey 
at −0.7 A/m. In (b) drawings of field curves are at negative values: blue at −0.6, green at 
−0.5 and red at −0.4 A/m. 
 

Figure 8 displays six distinct pass values corresponding to six different cur-
rent values. In addition to these six values, further evaluations of pass values and 
their respective positions are documented in Table 6. 
 
Table 6. Evaluations of pass positions and field values for 10 negative electrical current. 

I1 (A) I2 < 1 (A) position x (m) Field value at pass (A/m) Color When drown 

1 

−0.1 1.924945 0.233772234  

−0.2 2.618034 0.152786405  

−0.3 3.422062 0.102277443  

−0.4 4.441518 0.067544468 Magenta 

 

−0.5 5.828427 0.042893219 Cyan 

−0.6 7.872983 0.025403331 Grey 

−0.7 11.24441 0.013339973 Blue 

−0.8 17.94427 0.005572809 Green 

−0.9 37.97366 0.001316702 Red 

−1 Infinity 0  

4. Several Parallel Current Wires 
4.1. Domains under One Electrical Wire 

Domains can be established when field curves are constructed with at least one 
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pass. In the instance of a single electrical current wire, where no pass can be 
created, only one domain can be identified. 

4.2. Number of Domains and Number of Pass around Parallel  
Wires 

With several wires, domains are surrounded near and around wires by planar 
field curves. By adding electrical wires, the number of domains and the number 
of passes changes. When adding a new wire, in Table 7, the change in the num-
ber of domains and the number of passes is evaluated. 
 
Table 7. Number of passes and domains around several parallel wires. 

Number of electrical Current wires Number of pass Number of domains 

n n − 1 2 * n − 1 

 
Table 7 provides the most common value for the number of passes or domains. 

For instance, the first domain (n = 2) includes one pass and three domains. When 
a third electrical current wire is introduced, a new pass is automatically generated, 
resulting in five domains (n = 3, following the pattern 2 * n − 1).  

However, when additional wires are added, the possibility of creating more 
than one pass can occur. In such cases, the number of domains does not adhere 
to the guidelines outlined in Table 7. Consequently, when a loop traverses mul-
tiple passes, determining the number of passes and domains must be estimated 
manually, as described in the following chapter. 

4.3. Example with Five Parallel Electrical Current Wires 

In Figure 9, the arrangement is depicted where multiple passes exhibit field val-
ues of 5.34521 A/m in black and 5.73295 A/m in red. 
 

 

Figure 9. Pass between five identical and parallel current wires periodically placed and 
aligned (y = 1) with inter-distance of one (m) in x direction. Green points show positions 
of the five wires, and seven domains are formed. The red field curve at 5.73295 A/m has 
two passes as for the black field curve which is at 5.345208 A/m. 
 

In Figure 9, the arrangement is depicted where multiple passes exhibit field 
values of 5.34521 A/m in black and 5.73295 A/m in red. 
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Also in Figure 9, there are five electrical current wires positioned at the center 
of five small green points. The electrical wire placed in the middle of these five 
wires is represented by the red line, which is the closest and has the highest field 
value of 5.73295 A/m. The black line is farther away and has a lower field value 
of 5.345208 A/m. As anticipated, these current field curves do not intersect. Sur-
prisingly, the number of domains observed is seven, which is fewer than the ex-
pected number of nine based on the direct calculation from Table 7. 

5. Discussion 
5.1. Gauss’s Law of Magnetism 

In Gauss’s law of magnetism, it is asserted that magnetic field lines neither have 
a distinct starting point nor an endpoint; they extend infinitely [15]. Every 3D 
illustration in this current article adheres to this principle. These field lines are 
nearly circular, with only one extending to infinity, as seen in Figure 4. 

In our model, each curve maintains a uniform field value throughout its 
length. Therefore, when certain positions of the curves are at an infinite distance 
from the wires, all positions must exhibit a field value of zero (A/m).  

This characteristic, exemplified by the linear black curve in Figure 4, represents 
an enhancement of Gauss’s law by introducing the concept of zero field value in 
straight lines. 

5.2. Circle Field Curves 

M. Zollner conducted experiments involving magnetic fields with two parallel 
current wires. When the currents were in opposite directions, he represented the 
field lines as eccentric circles [4]. In Figure 4 of this article, the field lines may 
indeed resemble circles when they are near one of the current wires. However, as 
the field values approach zero, the lines progressively adopt a more linear confi-
guration around the midpoint between the two conducting wires. Through this 
comparison, it becomes evident that both theoretical and experimental lines are 
not significantly discrepant. 

One notable advantage of the theory proposed in this article is its applicability 
to highly intricate electrical scenarios, offering a valuable tool for analyzing 
complex electrical configurations. 

5.3. Superposition Principle for Field Curves 

Regarding magnetic field lines, Feynman remarked that “The field lines, howev-
er, are only a crude way of describing a field, and it is very difficult to give the cor-
rect, quantitative laws directly in terms of field lines”. He also noted that “the ideas 
of the field lines do not contain the deepest principle of electrodynamics, which is 
the superposition principle”, Furthermore, he pointed out that “we don’t get any 
idea about what the field line patterns will look like when both sets are present to-
gether” [16]. 

In our paper, we introduce a novel paradigm for field values, employing a dis-
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tinct theoretical approach to construct curves based on electrical current fields. 
In Figure 1(b), the addition of field values (without vectors) enables the repre-
sentation of highly intricate structures. As a result, it appears that our article ad-
heres to the superposition principle, as complex field configurations can be ef-
fectively delineated using this approach. 

At this juncture in the article, the reader might find that a clear and compre-
hensible presentation has been provided, substantiating the author’s claims ef-
fectively. 

6. Conclusion 

This article does not use the conventional magnetic field vectors to represent 
field curves and instead employs specific field values for each point surrounding 
electrical wires. The field value is locally equal to the ratio of current divided by 
distance (I/r). In the case of parallel wires, these points are arranged into planar 
curves, which can assume various forms that are easily calculated through a li-
near summation of the field values. These unique characteristics bear a resem-
blance to the level curves found in topographic maps. Thanks to this analogy, a 
current field curve can intersect itself through a pass, but only once for each 
conducting wire. Looking ahead there is potential for extending our previous 
model to encompass non-parallel wire configurations, which could present in-
triguing opportunities for further exploration. The main application of our pro-
posed model will probably be a precise drawing of field lines in electrical motors. 
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