4

. . Open Journal of Applied Sciences, 2023, 13, 2480-2491

Q"‘ Scientific . . .
‘ ‘ Research https://www.scirp.org/journal/ojapps
94% Publishing ISSN Online: 2165-3925

@,

ISSN Print: 2165-3917

Malware Detection Using Deep Learning

Achi Harrisson Thiziers, Koné Tiémoman, N'guessan Behou Gérard,
Traoré Tiémoko Qouddouss Kabir

Unité de Recherche et d’Expertise Numérique (UREN), Université Virtuelle de Cote d’Ivoire, Abidjan, Cote d’Ivoire
Email: thiziers.achi@uvci.edu.ci, dg@uvci.edu.ci, behou.nguessan@uvci.edu.ci, tiemoko.traore@uvci.edu.ci

How to cite this paper: Thiziers, A.H.,,
Tiémoman, K., Gérard, N.B. and Kabir,
T.T.Q. (2023) Malware Detection Using
Deep Learning. Open Journal of Applied
Sciences, 13, 2480-2491.

https://doi.org/10.4236/0japps.2023.1312193

Received: November 28, 2023
Accepted: December 26, 2023
Published: December 29, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

(OMOMMY e pcces:

Abstract

Malware represents a real threat to information systems, because of the dam-
age it causes. This threat is growing today, as these programs take on more com-
plex forms. This means they escape traditional malware detection methods.
Hence the need for artificial intelligence, more specifically Deep Learning,
which could detect malware more effectively. In this article, we’ve proposed a
model for malware detection using artificial neural networks. Our approach
used data from the characteristics of machines, particularly computers, to
train our Deep Learning algorithm. This model demonstrated an accuracy of
around 83% in predicting the presence of malware on a machine. Thus, the
use of artificial neural networks for malware detection has shown his ability
to assimilate complex, non-linear patterns from data.

Keywords

Neural Network, ANNs, Malicious Code, Malware Analysis, Artificial
Intelligence

1. Introduction

With the rapid development of the Internet, malware has become one of today’s
major cyberthreats. As the diversity of malware increases, antivirus software is
no longer able to meet security needs. As a result, millions of computers are un-
der attack. According to Kaspersky Labs (2016), 6,563,145 different hosts were
attacked, and 4,000,000 unique malicious objects were detected in 2015. While
traditional methods, such as signature-based static analysis, have been founda-
tional in combating known threats, the dynamic and sophisticated nature of
modern malware necessitates more advanced detection strategies. This paradigm
shift towards deep learning in malware detection has led to substantial im-

provements in identifying previously unseen and polymorphic malware variants.

DOI: 10.4236/0japps.2023.1312193 Dec. 29, 2023

2480 Open Journal of Applied Sciences

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2023.1312193
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2023.1312193
http://creativecommons.org/licenses/by/4.0/

A. H. Thiziers et al.

However, despite the progress made, there exists a research gap in understanding
the robustness, scalability, and generalizability of deep learning models across
diverse malware landscapes. By focusing on this crucial research gap, the pro-
posed study seeks to contribute valuable knowledge to the existing literature,
providing a nuanced understanding of the capabilities and challenges associated
with deploying deep learning for malware detection. Through empirical evalua-
tions and rigorous experimentation, the research endeavors to offer practical
recommendations for optimizing deep learning models, thereby fostering the
development of more robust and resilient malware detection systems in the face
of an ever-evolving cyber threat landscape. This paper presents elements of solu-
tions for detecting malware based on artificial intelligence, mainly Deep Learn-

ing.

2. Malware Basics

2.1. Malware Definition

Malware is a generic term for any type of computer program or software known
as “malicious software”. It covers a range of techniques and tools designed to in-
fect and damage their victims’ hardware, silently exploit their resources, extort
money and/or steal sensitive and important data. They are used by cybercrimin-
als for financial gain. There are different types of malwares, the best known of
which are: Ransomware (Bounaamane, B., & Drissi, Z. (2023)) [1], Trojans
(Moffie, et al 2006) [2], Spyware, Backdoor, Viruses (Horton and Seberry 1997)
[3], Remote Administration Tools (RAT), Worms, Rootkits (Chuvakin 2003)
[4].

2.2. Malware Detection Methods

All malware detection techniques can be divided into two categories: static me-

thods based on signatures; dynamic methods based on behavior [5].

2.2.1. Static Methods Based on Signatures

Signature-based analysis is a static method based on predefined signatures.
These can be file fingerprints, such as MD5 or SHA1 hashes, static strings, or file
metadata. The detection scenario, in this case, would be as follows: when a file
arrives on the system, it is statically analyzed by the antivirus software. If one of

the signatures matches, an alert is triggered, indicating that the file is suspicious

[6].

2.2.2. Dynamic Methods Based on Behavior (Behavior-Based Analysis)

Today’s attackers are developing malware that can modify its signature. This
characteristic of malware is called polymorphism. Antivirus vendors have there-
fore had to find another means of detection, based on behavior or heuristics. In
this method, the actual behavior of malware is observed during execution, look-
ing for signs of malicious behavior: modification of host files, registry keys, es-

tablishment of suspicious connections [7].

DOI: 10.4236/0japps.2023.1312193

2481 Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

2.2.3. Some Signs of Malware in the Information System

The daily impact of malware is disabling your computers and technological
tools; Data loss and theft; Financial losses. Some signs of malware infection are
computer slowness; problems shutting down or starting up your computer (slow
startup); Infection warnings, often accompanied by purchase requests to remedy
the situation; presence of unknown programs on your computer. Figure 1 illu-

strates the presence of malware in the system.

2.3. The Need for Artificial Intelligence and Deep Learning

The two previous methods are increasingly outdated by the complexity of mal-
ware, and a solution based on artificial intelligence has been considered by sev-
eral studies.

Recent work by Ijaz, Durad & Ismail in 2019 focuses on modern malware,
which is represented by its runtime behaviors and collected using the Cuckoo
Sandbox tool. The authors demonstrate that better predictive accuracy is achieved
with static analysis, due to the predominance of simple malware. However, they
point out that dynamic analysis is preferable due to the protection mechanisms
used by malware [8].

Kolosnjaji, Zarras, Webster & Eckert in 2016 applied neural networks to old
malware in PE format (32-bit Windows executables). Although the results ob-
tained were interesting, this methodology cannot be implemented in real time

due to the need for post-processing to remove repeated actions [9].

3. Material and Methods of Our Proposed Model
3.1. Material of Our Proposed Model

We used Microsoft Malware Prediction dataset, from Kaggle database, to build
our prediction models. “Microsoft Malware Prediction” is a set of binary classi-
fication data (HasDetections “0” or “1”), containing around 16,774,736 ma-
chines and 81 attributes (machine and target identifier “HasDetections”), in-

cluding 52 categorical attributes (23 attributes are attributes are numerically

restart. Wi

Figure 1. The blue screen of a computer apparently infected by malware.

DOI: 10.4236/0japps.2023.1312193

2482 Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

coded to protect data confidentiality). Our data source consists of 2 csv files, one
of which is the training file (train.csv) and the other the test file (test.csv). To-
gether, these files contain 83 columns or attributes describing various informa-
tion concerning the hardware and software of each machine. Of these, 53 are
numerical values. The train.csv file contains 567,730 machines and 83 attributes,
while the test.csv contains 243,313 machines with 82 columns. The overview of

our dataset is illustrated by the two images (see Figure 2 and Figure 3).

3.2. Description of the Dataset

The dataset used is made up mainly of healthy machines, as shown by the dis-

tribution of data according to labels, as shown on Figure 4.

3.3. Method of Our Proposed Model

3.3.1. Data Pre-Processing
The first step consisted of dealing with missing values and outliers, the analysis
of the dataset has revealed that more than 44 columns have missing values, and
between them around 7 columns have more than 50% missing data. The visual
representation below shows how missing values are distributed before data
processing (see Figure 5).

The second step consisted of data balancing according to the targeted column.
Analyzing the target column, we observe an imbalance of occurrences, namely:

482,571 machines not infected by malware; 85,159 malware-infected machines.

Machineldentifier ProductName EngineVersion AppVersion AvSigVersion IsBeta RtpStateBitfield IsSxsPassiveMode DefaultBrowser
0 69ch692a4989148b111d02cbb3453688 winddefender 1.1.15200.1 4.18.1807.18075 1.275.1320.0 0 7.0 0
1 521257fc4824d66dd7b02a3bcd107bic winddefender 11142020 4.13.17134.228 1.253125.0 0 70 0
2 537bd077fecd049b7dade8i4cc849fec winddefender 1.1.15200.1 4.8.10240.17443 1.275.1519.0 0 7.0 0
3 61e49801491dd2c137090361bbc5e508 winddefender 1.1.15000.2 4.18.1806.18062 1.271.1124.0 1} 70 0
4 5ae9cab8a552c0159246b208a08e9b47 winddefender 1.1.15100.1 4.16.17656.18052 1.273.1056.0 0 70 0
5§ 5B88892960aa83150aee42f088c438eeb winSdefender 1.1.15200.1 4.8.10240.17443 1.275.1120.0 [} 7.0 0
6 cd3540eb18cT3M1c22915c259ch307aa winddefender 1.1.15100.1 4.18.1807.18075 1.273.1112.0 0 7.0 0
7 5d717fc122d24370312b8bT7abTesd1da winddefender 11151001 4.18.1806.18062 1.273.483.0 0 70 0
8 d2e3a2c36e0026fb210bd13c4109a2b8 winSdefender 1.1.15100.1 4.18.1807.18075 1.273.1699.0 0 7.0 0
9 69378c06d1b4d2c14fC1304b78108737T wingdefender 1.1.15000.2 4.18.1806.18062 1.271.1162.0 1} 70 0
Figure 2. Training file overview (train.csv).
Machineldentifier ProductName EngineVersion AppVersion AvSigVersion IsBeta RtpStateBitfield IsSxsPassiveMode DefaultBrowser
0 69ch692a4989148b111d02cbb3453688 wingdefender 1.1.15200.1 4.18.1807.18075 1.275.1320.0 [} 70 0
1 521257ic4824d66dd7b02a3bc4107h1c winddefender 1.1.14202.0 41317134228 1.253125.0 0 7.0 0
2 537bd077fecd049b7dade8l4cc849fec winSdefender 1.1.15200.1 4.8.10240.17443 1.275.1519.0 0 7.0 0
3 61e4980f491dd2c13709b361bbc5e508 winddefender 1.1.15000.2 4.18.1806.18062 1.271.1124.0 Q0 7.0 0
4 5ae9cab8a552c0159246b208a08e9b47 winddefender 1.1.15100.1 4.16.17656.18052 1.273.1056.0 0 70 0
5 588892960aa83150aee42f086c438eeb winddefender 11152001 481024017443 1.275.1120.0 0 70 0
6 c03540eb18c73r1c22915c259chb307aa wingdefender 1.1.15100.1 4.18.1807.1807% 1.273.1112.0 [} 70 0
7 5d717ic122d2437031208b7abTeed1da winddefender 1.1.15100.1 4.18.1806.18062 1.273.482.0 0 7.0 0
8 d2e3a2c36e0026M210bd13c4109a2b8 winSdefender 1.1.15100.1 4.18.1807.18075 1.273.1699.0 0 7.0 0
9 69378c06d1b4d2c14fc1304b78108737 winSdefender 1.1.15000.2 4.18.1806.18062 1.271.1162.0 Q0 7.0 0

Figure 3. Test file overview (train.csv).

DOI: 10.4236/0japps.2023.1312193

2483

Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

BN Holy Machine
BN |nfected machine

500000
400000 -
300000 1
200000 1
100000 -

Infected machine

Holy Machine

Target column visualization (HasDetections).

Figure 4

[l 1ounuspluoiBay T PM

1WeEDS| PPM

Iqedep Oshem|yuoshem|ys| snsuad
a|qedepuads|_snsuag
pe|qeu3yono] S| snsusd

30IA8(Q|BNMIAS| SNSU8)
P8|qeuz100gNIMS|SnsusD
pa|qeu3100geIndags|” snsua)
UBP|UOISIOABIBMWIIS SNSUSD
1J1JUBP|18INIBJNUBNSIEMIII SNSUBD

SWeNa)e}SaUNIUeD ~SNSUB)

wajsAgbunesedoe|qenods| snsus)
-aweNsuondoeiepdnoinyNMSO~ snsuad

Jaly)uap|a|ed0TINSO SNSUaD

Jayusp|aebenbue|eisu|gQ~shsua)

aweNadA] ||ejsu|SQ”snsuad

QWEeNNMYSSO snsue)

-uonIp3sO” snsuap

-uoisiAeypIINGSO~ SNsus)

JaquIiNnNpP|INGSO” snsua)

youeigsQ~ snsusn

-91n)09}1y2IYSO~ Snsua)

UOISI9ASO Snsuad

sobieypjoiequnNAiepegleulsu|—snsus
| 111 |-edA L A1ey3egleussju|“snsua)

SWEN3|0YWI03)e|dIaMOdSNSua)

- |eolj 9 AUO! soyAe|dsighiewridjeussiu|~snsua)
|BejuOZIIOHU! sayAe|dsighiewlid|euiaiu|” snsua)
soyou|ujezighe|dsigleuoBbelghiewlideussjul—snsuad

BYD sSnsua)
ydlejol snsus)
FaAlI@YsIgleondQseH snsua)
Ayoeden|ejo | swnjopwe)sAS~snsus)
| aweNadA|ysighiewlid snsua)
[R I
| | | | $58|0108530014™ SNSUa)
USP||OPONI0SS80Id~ SNSUBD
USpP|J8IN}OBJNUBNIOSSSO0Id” SNSUBD
09100108$8001d” SNSULY
J3UeP|I8POINIO_SNsus)
1JUSp|aWENINIO ™ SNsus)
we4a91A8Q” snsus)
0B 4WI04ZDAW SNSua)
pajqeusenioen

1USPII8AS|
9pONS
apopend

-uppdpe|dwesgolny
pajosoIds|

-uonipIMmIs
qepIingso

I -2 © | Y 9U110}518| SO

e)ngso
pPIINGsO
J9ASO
J10SS8201d

wioereld

JayyuapjaweNysi|buga|eso]
usp|oweNoaD
ueap|uoneziuebiQ

USp|S81.1SIONPOIdAY
- uapliesmolgiinejed
muos_mzmmmn_mxmm_

uoisiapbiSAY
uoisiopddy
uoisiapaulbug
sweNjonpold
laynuap|aulyoepy

Figure 5. Distribution of missing values by column.

For better learning, we’re going to balance this out by putting them at the same

level, as shown in the figure below. At the end of this resampling, we obtain a

data set containing as many healthy machines as infected machines (see Figure 6).

shows the distribution of infected and uninfected

The following Figure 7

machines after data preprocessing.

2484 Open Journal of Applied Sciences

DOI: 10.4236/0japps.2023.1312193

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

c g

suoposjeaseH
Jaynuspluolbay BPM

Jswe9s| WPM

s|qede OsAem|yuosAemiys| snsued
ajqededuads|—snsua)
pe|qeu3yono] s|_snsua)

921A8Q|ENMIAS| SNSU8D
pa|qeu3j00ge.n0ags|”snsua)
181JUSP|UOISIBABIEMULI SNSUBD
ap|4einjoBNUBBIBMILIIS T SNSUBD
143YB114”snsuen

pajqesiasiybiids|—snsusd

0y snsuan
EENDI LT ITE WL ElE)
weysAgbuneladpolqepiods|—snsuan
aweNsuondoaepdnoINyNMSO~ snsuad
op|9|e907INSO~ SNSuUsd
op|ebenbue|ejsu|SO~snsua)
aweNadA]|jeisu|SO~snsua)
aWeNNYSSO~sNsua)
uolIpaS O~ snsuad
ISIASYPIINGSO” SNSUsD
J2qWINNP|INGSO ™~ SNSU3D
youeigsQ~ snsua)
21n)08}1YoIySO_ Snsuag
UoISIOASOSNSU8)
sabieyjQlequinNAiejjegleussiu| snsuad
SWENS|0YWI0e)e|dIamod” snsue)
|eoiluapuonnjosayAeldsighiewlidleulaju|—snsuad
|ejuoziioquonnjosayAe|dsighlewlidleulaju|” snsuan
sayou|ujazigAe|dsigleuobelghiewlid|eulaiu|— snsua)
aweNadA| sisseyy~snsuan
WvyledisAydiejo—snsuad

aALQYS! 1ndOseH snsua)
Ayoede)ejo | swinjopwelsAgTsnsued
aweNedA 1 ysighlewlid—snsua)
Ayoedep|ejoysighiewnd—snsuad
181J1JUBP||9PONJOSSBO0I4~ SNSUBD
19JUSP|48INJOBINUBNIOSSED0Id ™ SNSUSD
JUN0DBI0DI0SSBI0Id~ SNSUBD

JauUsp||9PONNIO SNSUSD
op|sweNWI O~ snsua)

o=

(]
c
c
]
=
Q
c
]

>
5
«
w
]
Q
>
o
(=)
)
>
@
c
o
o

JojoeJWIo4ZOAN Snsua)
pejqeusen-oen

llemalry

[TEEYEES TS
JsiueplIdaA8|

SpoNs

updos|dwesgoiny
pejosloids|

95E9|04qNSAWI0BIe|dSO
aunsso

10sse201d
uuoyeleld

P®|qeu3sjonpoIdAY
Po[BISUISIONPOIIAY
1911}USP|SSIRISIONPOIAY
9PONDAISSELSXSS|
N o.:/515125 12
ejegs|

uolsiapBISAY
uoisiapddy
uoisiapsulbug
aweNjonpoid
J1aynuepleulyoBR

Figure 6. Distribution of missing values after processing.

B Holy Machine

B Infected machine

400000

350000

3000001

250000

200000

150000

100000+

Infected machine

Holy Machine

Figure 7. Distribution of healthy and infected machines after resampling.

The last step is encoding. We used the following policy: for any categorical va-

riable with more than 2 unique categories, we used label encoding. As shown in

the illustration of Figure 8, columns with categorical values are encoded using

the LabelEncoder function.

Open Journal of Applied Sciences

2485

DOI: 10.4236/0japps.2023.1312193

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

In [38]: def frequency_encoding(feature,data):

*'" function to encode features based on frequency encoding'''
encoded_dict = data[festure].value_counts().to_dict()

return encoded_dict

def encode_categorical_features(final_data,frequency_encoded_features,final_categorical_features):

'" encoding categorical features based on frequency encoding and label encoding'''

for i in tqdm(frequency_encoded_features):

encoded_values = frequency_encoding(i,final_data)
final_data[i] = final_data[i].map(lambda x : encoded_values.get(str(x),8))
final_data[i] = final_data[i].astype(int6d")

for i in tgdm(final_categorical_features):

le = LabelEncoder()
final_data[i] = le.fit_transform(final_data[i])
final_data[i] = final_data[i].astype('int6d')

return final data

In [31]: train_data_used final = encode_categorical_features(final_train_data,frequency_encoded features,categorical_features_final)

100% [s (0000<00.00, 197743
100t [5.3 (0. 10<00 00,5 1815

Figure 8. Encoding categorical values.

3.3.2. Development Environment

The model was deployed in a python environment, on a HP Gamer Omen RTX
computer, 64 GB Ram, Core 19, 2 Tera SSD, with the following tools: Python 3.9;
Jupyter Notebook; Google Colab; These are the following libraries: Matplotlib;
Numpy; Pandas; Seaborn; Scikit-learn, TensorFlow, Keras. We used 70% of our

dataset to train our neural network, while we used 30% of our data for testing.

3.3.3. Our Deep Learning Algorithm Used: Artificial Neural Network
(ANN)

To implement our artificial neural network (ANN), we went through several
steps: data pre-processing, data scaling and finally data partitioning into training
and test samples. The data partitioning is illustrated in the figure below (see
Figure 9).

Our ANN, based on a biological model, is represented as follows, with each
ball representing a neuron (see Figure 10).
- The set {w;, w;, ..., w,} represents the weights associated with each neuron
- The set {x;, x;,, ..., X,} represents the input values for each neuron
- frepresents the activation function
- brepresents the neuron’s bias
- The output s of a neuron in each layer is calculated by applying the activation

function fto the sum of the input values x; weighted by the weights w; and

summed with the bias b.

3.3.4. Our ANN Architecture
The model used for our study is an artificial neural network (ANN) whose mod-

eling approach is described in the diagram of Figure 11.

4. Results and Discussion
4.1. Results

To evaluate the performance of our model, we relied on certain classification
evaluation measures, namely:

e The Matrix confusion [10] is shown on Figure 12

DOI: 10.4236/0japps.2023.1312193

2486 Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

In [34]: X= new_train_data.drop(['HasDetections'], axis=1)
y= new_train_data["HasDetections']

In [35]: from sklearn.preprocessing import MinMaxScaler, StandardScaler

scaler = StandardScaler()
X_scale = scaler.fit_transform(X)
X use = X scale

In [37]: X_train, X_test, y train, y_test = train_test_split(X_use, y, test_size=0.3, random_state=42)

Figure 9. Illustration of data separation.

(Bias)

(Inputs)—| —> f — ypre d

(Activation function)

Data processing

data division
Test data

Number of
layers:
6

[Compilation with
|_Adam optimizer

ANN
s)
00 ol Actual performance of our model
O (accuracy, precision, confusion matrix)

Trained network

Figure 11. Modeling our ANN.

DOI: 10.4236/0japps.2023.1312193 2487 Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

100000

TN
84541
36.97%

- 80000

- 60000

P -40000

105331
46.07%

-20000

0 1

Figure 12. Model confusion matrix.

- TP: Our model predicts 84,541 true positives

- TN: Our model predicts that 29,524 machines are not infected, but are in fact
infected

- FP: Our model predicts that 105,331 machines will be infected

- FN: Our model predicts that 9248 machines are infected, but they are not.

- Precision score

We trained an Artificial Neural Network (ANN) using Keras to predict the
state of machines in relation to malware. Our model achieved an accuracy rate of
83.04%, as shown in Figure 13.

The score was obtained thanks to good training of the neural network. This
training gave the following performance (see Figure 14).

On the left-hand side, the error rate decreases, while the accuracy increases
over time. The error rate has fallen from around 60% to 20%, demonstrating the
accuracy of the model.

e The classification report:

- Precision: Precision is the proportion of instances correctly classified for a
given class among all instances predicted to belong to that class.

- Recall: Recall, also known as sensitivity, measures the proportion of instances
correctly classified for a given class among all instances belonging to that
class.

- Fl-score: Fl-score is a metric that combines both precision and recall into a
single value to assess prediction accuracy. It is particularly useful when
classes are unbalanced.

- Support: Support represents the number of real instances for each class, al-
lowing us to evaluate the distribution of the data. We can see all these in

Figure 15.

DOI: 10.4236/0japps.2023.1312193

2488 Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

from sklearn.metrics import
from sklearn.metrics import
from sklearn.metrics import
from sklearn.metrics import

confusion_matrix
classification_report
roc_curve, auc
accuracy_score

from keras.utils import np utils

import itertools

accuracy_score(y_test, ynew)

©0.8384263396371652

Figure 13. Precision score.

—train :
— train
0.6 0.901
0.851
0.51
a §0.80*
o] —
—04 §0.75-
©
0.3 0.70-
0.651
0'24 '3 T T T T T T T ol T T T T T T T T N
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
epoch epoch
Figure 14. Model performance.
precision recall fil-score support
0 0.90 0.74 0.81 114065
1 0.78 0.92 0.84 114579
accuracy 0.83 228644
macro avg 0.84 0.83 0.83 228644
weighted avg 0.84 0.83 0.83 228644

Figure 15. The classification report of the test.

4.2. Discussion

The solution we have proposed for detecting malware within machines or com-
puters enables us to identify the presence of malware. However, the validity of
our study may vary depending on whether it is applied to machines equipped
with non-proprietary operating systems, such as open-source ones. Indeed, our
research has mainly focused on machines running the Windows operating sys-
tem. Our approach emphasizes machine characteristics, whereas existing studies
focus more on the functional aspects of malware. Consequently, extending our
findings to open-source environments would require in-depth analysis to assess
the feasibility of applying our method.

4.3. Comparison

Given the impact that malware can have on information systems, malware de-

DOI: 10.4236/0japps.2023.1312193

2489 Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

tection is all the more important in cybersecurity.

Z. Zhang, in an article published in 2022, used LightGBM, a machine learning
model. His work was based on the same dataset as ours. LightGBM is a boosting
model based on the gradient boosting algorithm, designed to improve perfor-
mance and efficiency over other boosting methods such as XGBoost or Gradient
Boosting Machine (GBM). Compared with our work, it scored below ours,
which is 0.684 [11].

D. Huo and colleagues have also carried out research into software detection.
They used two learning methods, namely LightGBM and a one-dimensional
CNN, with respective scores of 67.16% and 72.47% [12]. In the following Table
1, we have grouped together the different scores achieved by previous works,

compared with the results of our own.

Table 1. Model comparison table.

Model Score (%) Authors
LightGBM 68.40 Z.Zhang
CNN unidimensionnel 1D 72.47 D. Huo, X. Li, L. Li, Y. Gao, X. Li and J. Yuan
LightGBM* 67.16 D. Huo, X. Li, L. Li, Y. Gao, X. Li and J. Yuan
Our ANN 83.00

5. Conclusion

In this work, we have proposed and implemented a model for detecting malware
within machines. This is a deep learning model based on artificial neural net-
works, to provide a highly efficient model. This work has enabled us to develop a
malware detection model using data derived from machine characteristics. The
python programming language and TensorFlow library were used to implement
this model. The resulting model, based on neural networks, can predict the
presence or absence of malware with an accuracy of 83%. The use of this model
will enabled malware to be detected effectively, even if it could modify code to

evade traditional detection methods and avoid attacks at an early stage.
Acknowledgements

We would like to thank the Université Virtuelle de Cote d’Ivoire for allowing us
to carry out this research work.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Bounaamane, B. and Drissi, Z. (2023) Cybercriminalité et cyber-résilience: Les en-
jeux de la sécurité numérique dans un monde connecté. International Journal of

DOI: 10.4236/0japps.2023.1312193

2490 Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

(2]

(3]

(4]

(7]

(8]

(10]
(11]

(12]

Accounting, Finance, Auditing, Management and Economics, 4, 451-469.

Moffie, M. and Cheng, W. (2006) Hunting Trojan Horses. Proceedings of the 1st
Workshop on Architectural and System Support for Improving Software Dependa-
bility, San Jose, California, 21 October 2006, 12-17.
https://doi.org/10.1145/1181309.1181312

Horton, J. and Seberry, J. (1997) Computer Viruses: An Introduction. In: Patel. M.,
Ed., Proceedings of the Twentieth Australasian Computer Science Conference
(ACSC97), Computer Science Communications, Vol. 19, 122-131.

Chuvakin, A. (2003, February) An Overview of Unix Rootkits. dans iALERT White
Paper, iDefense Labs, Chantilly, VA, p. 27.

Souri, A. and Hosseini, R. (2018) A State-of-the-Art Survey of Malware Detection
Approaches Using Data Mining Techniques. Human-Centric Computing and In-
formation Sciences, 8, Article No. 3. https://doi.org/10.1186/s13673-018-0125-x

Osho, O. and Hong, S. (2021) A Survey Paper on Machine Learning Approaches to
Intrusion Detection. International Journal of Engineering Research & Technology
(IJERT), 10, 94-102. https://doi.org/10.17577/]JERTV 1015010040

Almasoudy, F.H., Al-Yaseen, W.L. and Idrees, A.K. (2020) Differential Evolution
Wrapper Feature Selection for Intrusion Detection System. Procedia Computer
Science, 167, 1230-1239. https://doi.org/10.1016/j.procs.2020.03.438

Ijaz, M., Durad, M.H. and Ismail, M. (2019) Static and Dynamic Malware Analysis
Using Machine Learning. 2019 16th International Bhurban Conference on Applied
Sciences and Technology (IBCAST), Islamabad, 8-12 January 2019, 687-691.
https://doi.org/10.1109/IBCAST.2019.8667136

Kolosnjaji, B., Zarras, A., Webster, G. and Eckert, C. (2016) Deep Learning for
Classification of Malware System Calls Sequences. In: Al 2016: Advances in Artifi-
cial Intelligence: 29th Australasian Joint Conference, Springer International Pub-
lishing, Cham, 137-149. https://doi.org/10.1007/978-3-319-50127-7_11

https://en.wikipedia.org/wiki/Confusion_matrix

Zhang, Z. (2022) Microsoft Malware Prediction Using LightGBM Model. 2022 3rd
International Conference on Big Data, Artificial Intelligence and Internet of Things
Engineering (ICBAIE), Xi’an, 15-17 July 2022, 41-44.
https://doi.org/10.1109/ICBAIE56435.2022.9985850

Huo, D., Li, X., Li, L., Gao, Y., Li, X. and Yuan, J. (2022) The Application of
1D-CNN in Microsoft Malware Detection. 2022 7th International Conference on
Big Data Analytics (ICBDA), Guangzhou, 4-6 March 2022, 181-187.
https://doi.org/10.1109/ICBDA55095.2022.9760349

DOI: 10.4236/0japps.2023.1312193

2491 Open Journal of Applied Sciences

https://doi.org/10.4236/ojapps.2023.1312193
https://doi.org/10.1145/1181309.1181312
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.17577/IJERTV10IS010040
https://doi.org/10.1016/j.procs.2020.03.438
https://doi.org/10.1109/IBCAST.2019.8667136
https://doi.org/10.1007/978-3-319-50127-7_11
https://en.wikipedia.org/wiki/Confusion_matrix
https://doi.org/10.1109/ICBAIE56435.2022.9985850
https://doi.org/10.1109/ICBDA55095.2022.9760349

	Malware Detection Using Deep Learning
	Abstract
	Keywords
	1. Introduction
	2. Malware Basics
	2.1. Malware Definition
	2.2. Malware Detection Methods
	2.2.1. Static Methods Based on Signatures
	2.2.2. Dynamic Methods Based on Behavior (Behavior-Based Analysis)
	2.2.3. Some Signs of Malware in the Information System

	2.3. The Need for Artificial Intelligence and Deep Learning

	3. Material and Methods of Our Proposed Model
	3.1. Material of Our Proposed Model
	3.2. Description of the Dataset
	3.3. Method of Our Proposed Model
	3.3.1. Data Pre-Processing
	3.3.2. Development Environment
	3.3.3. Our Deep Learning Algorithm Used: Artificial Neural Network (ANN)
	3.3.4. Our ANN Architecture

	4. Results and Discussion
	4.1. Results
	4.2. Discussion
	4.3. Comparison

	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

