
Open Journal of Applied Sciences, 2023, 13, 2480-2491
https://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2023.1312193 Dec. 29, 2023 2480 Open Journal of Applied Sciences

Malware Detection Using Deep Learning

Achi Harrisson Thiziers, Koné Tiémoman, N’guessan Behou Gérard,
Traoré Tiémoko Qouddouss Kabir

Unité de Recherche et d’Expertise Numérique (UREN), Université Virtuelle de Côte d’Ivoire, Abidjan, Côte d’Ivoire

Abstract
Malware represents a real threat to information systems, because of the dam-
age it causes. This threat is growing today, as these programs take on more com-
plex forms. This means they escape traditional malware detection methods.
Hence the need for artificial intelligence, more specifically Deep Learning,
which could detect malware more effectively. In this article, we’ve proposed a
model for malware detection using artificial neural networks. Our approach
used data from the characteristics of machines, particularly computers, to
train our Deep Learning algorithm. This model demonstrated an accuracy of
around 83% in predicting the presence of malware on a machine. Thus, the
use of artificial neural networks for malware detection has shown his ability
to assimilate complex, non-linear patterns from data.

Keywords
Neural Network, ANNs, Malicious Code, Malware Analysis, Artificial
Intelligence

1. Introduction

With the rapid development of the Internet, malware has become one of today’s
major cyberthreats. As the diversity of malware increases, antivirus software is
no longer able to meet security needs. As a result, millions of computers are un-
der attack. According to Kaspersky Labs (2016), 6,563,145 different hosts were
attacked, and 4,000,000 unique malicious objects were detected in 2015. While
traditional methods, such as signature-based static analysis, have been founda-
tional in combating known threats, the dynamic and sophisticated nature of
modern malware necessitates more advanced detection strategies. This paradigm
shift towards deep learning in malware detection has led to substantial im-
provements in identifying previously unseen and polymorphic malware variants.

How to cite this paper: Thiziers, A.H.,
Tiémoman, K., Gérard, N.B. and Kabir,
T.T.Q. (2023) Malware Detection Using
Deep Learning. Open Journal of Applied
Sciences, 13, 2480-2491.
https://doi.org/10.4236/ojapps.2023.1312193

Received: November 28, 2023
Accepted: December 26, 2023
Published: December 29, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2023.1312193
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2023.1312193
http://creativecommons.org/licenses/by/4.0/

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2481 Open Journal of Applied Sciences

However, despite the progress made, there exists a research gap in understanding
the robustness, scalability, and generalizability of deep learning models across
diverse malware landscapes. By focusing on this crucial research gap, the pro-
posed study seeks to contribute valuable knowledge to the existing literature,
providing a nuanced understanding of the capabilities and challenges associated
with deploying deep learning for malware detection. Through empirical evalua-
tions and rigorous experimentation, the research endeavors to offer practical
recommendations for optimizing deep learning models, thereby fostering the
development of more robust and resilient malware detection systems in the face
of an ever-evolving cyber threat landscape. This paper presents elements of solu-
tions for detecting malware based on artificial intelligence, mainly Deep Learn-
ing.

2. Malware Basics
2.1. Malware Definition

Malware is a generic term for any type of computer program or software known
as “malicious software”. It covers a range of techniques and tools designed to in-
fect and damage their victims’ hardware, silently exploit their resources, extort
money and/or steal sensitive and important data. They are used by cybercrimin-
als for financial gain. There are different types of malwares, the best known of
which are: Ransomware (Bounaamane, B., & Drissi, Z. (2023)) [1], Trojans
(Moffie, et al. 2006) [2], Spyware, Backdoor, Viruses (Horton and Seberry 1997)
[3], Remote Administration Tools (RAT), Worms, Rootkits (Chuvakin 2003)
[4].

2.2. Malware Detection Methods

All malware detection techniques can be divided into two categories: static me-
thods based on signatures; dynamic methods based on behavior [5].

2.2.1. Static Methods Based on Signatures
Signature-based analysis is a static method based on predefined signatures.
These can be file fingerprints, such as MD5 or SHA1 hashes, static strings, or file
metadata. The detection scenario, in this case, would be as follows: when a file
arrives on the system, it is statically analyzed by the antivirus software. If one of
the signatures matches, an alert is triggered, indicating that the file is suspicious
[6].

2.2.2. Dynamic Methods Based on Behavior (Behavior-Based Analysis)
Today’s attackers are developing malware that can modify its signature. This
characteristic of malware is called polymorphism. Antivirus vendors have there-
fore had to find another means of detection, based on behavior or heuristics. In
this method, the actual behavior of malware is observed during execution, look-
ing for signs of malicious behavior: modification of host files, registry keys, es-
tablishment of suspicious connections [7].

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2482 Open Journal of Applied Sciences

2.2.3. Some Signs of Malware in the Information System
The daily impact of malware is disabling your computers and technological
tools; Data loss and theft; Financial losses. Some signs of malware infection are
computer slowness; problems shutting down or starting up your computer (slow
startup); Infection warnings, often accompanied by purchase requests to remedy
the situation; presence of unknown programs on your computer. Figure 1 illu-
strates the presence of malware in the system.

2.3. The Need for Artificial Intelligence and Deep Learning

The two previous methods are increasingly outdated by the complexity of mal-
ware, and a solution based on artificial intelligence has been considered by sev-
eral studies.

Recent work by Ijaz, Durad & Ismail in 2019 focuses on modern malware,
which is represented by its runtime behaviors and collected using the Cuckoo
Sandbox tool. The authors demonstrate that better predictive accuracy is achieved
with static analysis, due to the predominance of simple malware. However, they
point out that dynamic analysis is preferable due to the protection mechanisms
used by malware [8].

Kolosnjaji, Zarras, Webster & Eckert in 2016 applied neural networks to old
malware in PE format (32-bit Windows executables). Although the results ob-
tained were interesting, this methodology cannot be implemented in real time
due to the need for post-processing to remove repeated actions [9].

3. Material and Methods of Our Proposed Model
3.1. Material of Our Proposed Model

We used Microsoft Malware Prediction dataset, from Kaggle database, to build
our prediction models. “Microsoft Malware Prediction” is a set of binary classi-
fication data (HasDetections “0” or “1”), containing around 16,774,736 ma-
chines and 81 attributes (machine and target identifier “HasDetections”), in-
cluding 52 categorical attributes (23 attributes are attributes are numerically

Figure 1. The blue screen of a computer apparently infected by malware.

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2483 Open Journal of Applied Sciences

coded to protect data confidentiality). Our data source consists of 2 csv files, one
of which is the training file (train.csv) and the other the test file (test.csv). To-
gether, these files contain 83 columns or attributes describing various informa-
tion concerning the hardware and software of each machine. Of these, 53 are
numerical values. The train.csv file contains 567,730 machines and 83 attributes,
while the test.csv contains 243,313 machines with 82 columns. The overview of
our dataset is illustrated by the two images (see Figure 2 and Figure 3).

3.2. Description of the Dataset

The dataset used is made up mainly of healthy machines, as shown by the dis-
tribution of data according to labels, as shown on Figure 4.

3.3. Method of Our Proposed Model
3.3.1. Data Pre-Processing
The first step consisted of dealing with missing values and outliers, the analysis
of the dataset has revealed that more than 44 columns have missing values, and
between them around 7 columns have more than 50% missing data. The visual
representation below shows how missing values are distributed before data
processing (see Figure 5).

The second step consisted of data balancing according to the targeted column.
Analyzing the target column, we observe an imbalance of occurrences, namely:
482,571 machines not infected by malware; 85,159 malware-infected machines.

Figure 2. Training file overview (train.csv).

Figure 3. Test file overview (train.csv).

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2484 Open Journal of Applied Sciences

Figure 4. Target column visualization (HasDetections).

Figure 5. Distribution of missing values by column.

For better learning, we’re going to balance this out by putting them at the same
level, as shown in the figure below. At the end of this resampling, we obtain a
data set containing as many healthy machines as infected machines (see Figure 6).

The following Figure 7 shows the distribution of infected and uninfected
machines after data preprocessing.

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2485 Open Journal of Applied Sciences

Figure 6. Distribution of missing values after processing.

Figure 7. Distribution of healthy and infected machines after resampling.

The last step is encoding. We used the following policy: for any categorical va-

riable with more than 2 unique categories, we used label encoding. As shown in
the illustration of Figure 8, columns with categorical values are encoded using
the LabelEncoder function.

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2486 Open Journal of Applied Sciences

Figure 8. Encoding categorical values.

3.3.2. Development Environment
The model was deployed in a python environment, on a HP Gamer Omen RTX
computer, 64 GB Ram, Core i9, 2 Tera SSD, with the following tools: Python 3.9;
Jupyter Notebook; Google Colab; These are the following libraries: Matplotlib;
Numpy; Pandas; Seaborn; Scikit-learn, TensorFlow, Keras. We used 70% of our
dataset to train our neural network, while we used 30% of our data for testing.

3.3.3. Our Deep Learning Algorithm Used: Artificial Neural Network
(ANN)

To implement our artificial neural network (ANN), we went through several
steps: data pre-processing, data scaling and finally data partitioning into training
and test samples. The data partitioning is illustrated in the figure below (see
Figure 9).

Our ANN, based on a biological model, is represented as follows, with each
ball representing a neuron (see Figure 10).
- The set {w0, w1, …, wn} represents the weights associated with each neuron
- The set {x0, x1, …, xn} represents the input values for each neuron
- f represents the activation function
- b represents the neuron’s bias
- The output s of a neuron in each layer is calculated by applying the activation

function f to the sum of the input values xk weighted by the weights wk and
summed with the bias b.

3.3.4. Our ANN Architecture
The model used for our study is an artificial neural network (ANN) whose mod-
eling approach is described in the diagram of Figure 11.

4. Results and Discussion
4.1. Results

To evaluate the performance of our model, we relied on certain classification
evaluation measures, namely:
● The Matrix confusion [10] is shown on Figure 12

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2487 Open Journal of Applied Sciences

Figure 9. Illustration of data separation.

Figure 10. Illustration of the calculation of a neuron’s output value.

Figure 11. Modeling our ANN.

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2488 Open Journal of Applied Sciences

Figure 12. Model confusion matrix.

- TP: Our model predicts 84,541 true positives
- TN: Our model predicts that 29,524 machines are not infected, but are in fact

infected
- FP: Our model predicts that 105,331 machines will be infected
- FN: Our model predicts that 9248 machines are infected, but they are not.
- Precision score

We trained an Artificial Neural Network (ANN) using Keras to predict the
state of machines in relation to malware. Our model achieved an accuracy rate of
83.04%, as shown in Figure 13.

The score was obtained thanks to good training of the neural network. This
training gave the following performance (see Figure 14).

On the left-hand side, the error rate decreases, while the accuracy increases
over time. The error rate has fallen from around 60% to 20%, demonstrating the
accuracy of the model.
● The classification report:
- Precision: Precision is the proportion of instances correctly classified for a

given class among all instances predicted to belong to that class.
- Recall: Recall, also known as sensitivity, measures the proportion of instances

correctly classified for a given class among all instances belonging to that
class.

- F1-score: F1-score is a metric that combines both precision and recall into a
single value to assess prediction accuracy. It is particularly useful when
classes are unbalanced.

- Support: Support represents the number of real instances for each class, al-
lowing us to evaluate the distribution of the data. We can see all these in
Figure 15.

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2489 Open Journal of Applied Sciences

Figure 13. Precision score.

Figure 14. Model performance.

Figure 15. The classification report of the test.

4.2. Discussion

The solution we have proposed for detecting malware within machines or com-
puters enables us to identify the presence of malware. However, the validity of
our study may vary depending on whether it is applied to machines equipped
with non-proprietary operating systems, such as open-source ones. Indeed, our
research has mainly focused on machines running the Windows operating sys-
tem. Our approach emphasizes machine characteristics, whereas existing studies
focus more on the functional aspects of malware. Consequently, extending our
findings to open-source environments would require in-depth analysis to assess
the feasibility of applying our method.

4.3. Comparison

Given the impact that malware can have on information systems, malware de-

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2490 Open Journal of Applied Sciences

tection is all the more important in cybersecurity.
Z. Zhang, in an article published in 2022, used LightGBM, a machine learning

model. His work was based on the same dataset as ours. LightGBM is a boosting
model based on the gradient boosting algorithm, designed to improve perfor-
mance and efficiency over other boosting methods such as XGBoost or Gradient
Boosting Machine (GBM). Compared with our work, it scored below ours,
which is 0.684 [11].

D. Huo and colleagues have also carried out research into software detection.
They used two learning methods, namely LightGBM and a one-dimensional
CNN, with respective scores of 67.16% and 72.47% [12]. In the following Table
1, we have grouped together the different scores achieved by previous works,
compared with the results of our own.

Table 1. Model comparison table.

Model Score (%) Authors

LightGBM 68.40 Z. Zhang

CNN unidimensionnel 1D 72.47 D. Huo, X. Li, L. Li, Y. Gao, X. Li and J. Yuan

LightGBM* 67.16 D. Huo, X. Li, L. Li, Y. Gao, X. Li and J. Yuan

Our ANN 83.00

5. Conclusion

In this work, we have proposed and implemented a model for detecting malware
within machines. This is a deep learning model based on artificial neural net-
works, to provide a highly efficient model. This work has enabled us to develop a
malware detection model using data derived from machine characteristics. The
python programming language and TensorFlow library were used to implement
this model. The resulting model, based on neural networks, can predict the
presence or absence of malware with an accuracy of 83%. The use of this model
will enabled malware to be detected effectively, even if it could modify code to
evade traditional detection methods and avoid attacks at an early stage.

Acknowledgements

We would like to thank the Université Virtuelle de Côte d’Ivoire for allowing us
to carry out this research work.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Bounaamane, B. and Drissi, Z. (2023) Cybercriminalité et cyber-résilience: Les en-

jeux de la sécurité numérique dans un monde connecté. International Journal of

https://doi.org/10.4236/ojapps.2023.1312193

A. H. Thiziers et al.

DOI: 10.4236/ojapps.2023.1312193 2491 Open Journal of Applied Sciences

Accounting, Finance, Auditing, Management and Economics, 4, 451-469.

[2] Moffie, M. and Cheng, W. (2006) Hunting Trojan Horses. Proceedings of the 1st
Workshop on Architectural and System Support for Improving Software Dependa-
bility, San Jose, California, 21 October 2006, 12-17.
https://doi.org/10.1145/1181309.1181312

[3] Horton, J. and Seberry, J. (1997) Computer Viruses: An Introduction. In: Patel. M.,
Ed., Proceedings of the Twentieth Australasian Computer Science Conference
(ACSC’97), Computer Science Communications, Vol. 19, 122-131.

[4] Chuvakin, A. (2003, February) An Overview of Unix Rootkits. dans iALERT White
Paper, iDefense Labs, Chantilly, VA, p. 27.

[5] Souri, A. and Hosseini, R. (2018) A State-of-the-Art Survey of Malware Detection
Approaches Using Data Mining Techniques. Human-Centric Computing and In-
formation Sciences, 8, Article No. 3. https://doi.org/10.1186/s13673-018-0125-x

[6] Osho, O. and Hong, S. (2021) A Survey Paper on Machine Learning Approaches to
Intrusion Detection. International Journal of Engineering Research & Technology
(IJERT), 10, 94-102. https://doi.org/10.17577/IJERTV10IS010040

[7] Almasoudy, F.H., Al-Yaseen, W.L. and Idrees, A.K. (2020) Differential Evolution
Wrapper Feature Selection for Intrusion Detection System. Procedia Computer
Science, 167, 1230-1239. https://doi.org/10.1016/j.procs.2020.03.438

[8] Ijaz, M., Durad, M.H. and Ismail, M. (2019) Static and Dynamic Malware Analysis
Using Machine Learning. 2019 16th International Bhurban Conference on Applied
Sciences and Technology (IBCAST), Islamabad, 8-12 January 2019, 687-691.
https://doi.org/10.1109/IBCAST.2019.8667136

[9] Kolosnjaji, B., Zarras, A., Webster, G. and Eckert, C. (2016) Deep Learning for
Classification of Malware System Calls Sequences. In: AI 2016: Advances in Artifi-
cial Intelligence: 29th Australasian Joint Conference, Springer International Pub-
lishing, Cham, 137-149. https://doi.org/10.1007/978-3-319-50127-7_11

[10] https://en.wikipedia.org/wiki/Confusion_matrix

[11] Zhang, Z. (2022) Microsoft Malware Prediction Using LightGBM Model. 2022 3rd
International Conference on Big Data, Artificial Intelligence and Internet of Things
Engineering (ICBAIE), Xi’an, 15-17 July 2022, 41-44.
https://doi.org/10.1109/ICBAIE56435.2022.9985850

[12] Huo, D., Li, X., Li, L., Gao, Y., Li, X. and Yuan, J. (2022) The Application of
1D-CNN in Microsoft Malware Detection. 2022 7th International Conference on
Big Data Analytics (ICBDA), Guangzhou, 4-6 March 2022, 181-187.
https://doi.org/10.1109/ICBDA55095.2022.9760349

https://doi.org/10.4236/ojapps.2023.1312193
https://doi.org/10.1145/1181309.1181312
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.17577/IJERTV10IS010040
https://doi.org/10.1016/j.procs.2020.03.438
https://doi.org/10.1109/IBCAST.2019.8667136
https://doi.org/10.1007/978-3-319-50127-7_11
https://en.wikipedia.org/wiki/Confusion_matrix
https://doi.org/10.1109/ICBAIE56435.2022.9985850
https://doi.org/10.1109/ICBDA55095.2022.9760349

	Malware Detection Using Deep Learning
	Abstract
	Keywords
	1. Introduction
	2. Malware Basics
	2.1. Malware Definition
	2.2. Malware Detection Methods
	2.2.1. Static Methods Based on Signatures
	2.2.2. Dynamic Methods Based on Behavior (Behavior-Based Analysis)
	2.2.3. Some Signs of Malware in the Information System

	2.3. The Need for Artificial Intelligence and Deep Learning

	3. Material and Methods of Our Proposed Model
	3.1. Material of Our Proposed Model
	3.2. Description of the Dataset
	3.3. Method of Our Proposed Model
	3.3.1. Data Pre-Processing
	3.3.2. Development Environment
	3.3.3. Our Deep Learning Algorithm Used: Artificial Neural Network (ANN)
	3.3.4. Our ANN Architecture

	4. Results and Discussion
	4.1. Results
	4.2. Discussion
	4.3. Comparison

	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

