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Abstract 
In 2012, Hsu et al. generalized the classical connectivity of graph G and in-
troduced the concept of g-component connectivity ( )gc Gκ  to measure the 
fault tolerance of networks. In this paper, we determine the g-component 
connectivity of some graphs, such as fan graph, helm graph, crown graph, 
Gear graph and the Mycielskian graph of star graph and complete bipartite 
graph. 
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1. Introduction 

Multiprocessor systems are always built according to a graph which called its in-
terconnection network (network, for short). In a network, vertices to processors, 
and edges correspond to communicating links between pairs of vertices. Since 
failures of processors and links are inevitable in multiprocessor systems, fault 
tolerance is an important issue in interconnection networks. Fault tolerance of 
interconnection networks becomes an essential problem and has been widely 
studied, such as, structure connectivity and substructure connectivity of hyper-
cubes, extra connectivity of bubble sort star graphs, g-extra conditional diagno-
sability of hierarchical cubic networks, g-good-neighbor connectivity of graphs, 
conditional connectivity of Cayley graphs generated by unicyclic graphs. 

For any positive integer g, the g-component cut of the graph G is a vertex set 
F V⊆  such that G F−  has at least ( )2g g ≥  components. The g-component 
connectivity of graph G, denoted by ( )gc Gκ , is the cardinality of a minimum 
g-component cut of graph G, that is, ( ) ( ){ }min : ,gc G F F V G F gκ ω= ⊆ − ≥ . 
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Of course, we define that ( ) 0gc Gκ =  if G is a complete graph nK  or a dis-
connected graph. Obviously, ( ) ( )2c G Gκ κ=  and ( ) ( )1g gc G c Gκ κ +≤ . 

In [1] [2] [3], authors determined the g-component connectivity of n-dimen- 
sional bubble-sort star graph nBS , n-dimensional burnt pancake graph nBP , 
the hierarchical star networks nHS , the alternating Group graphs nAG  and 
split star graph 2

nS . Zhao et al. [4] [5] and Xu et al. [6] respectively determined 
the g-component connectivity of Cayley graphs generated by n-dimensional 
folded hypercube nFQ , n-dimensional dual cube nD  and transposition tree. 
In addition, Chang et al. [7] determined the g-component connectivity of alter-
nating group networks nAN  when 3,4g = . Ding et al. [8] dealt with the 
g-component (edge) connectivity of shuffle-cubes nSQ  for small g. Recently, Li 
et al. [9] studied the relationship between extra connectivity and component 
connectivity of general networks, and Hao et al. [10] and Guo et al. [11] inde-
pendently proposed the relationship between extra edge connectivity and com-
ponent connectivity of regular networks in the literature. In this paper, we 
mainly discusses g-component connectivity of some graphs, such as fan graph, 
helm graph, crown graph, gear graph and the Mycielskian graph of star graph 
and complete bipartite graph. 

All graphs considered in this paper are finite and simple. We refer to the book 
[12] for graph theoretical notation and terminology not described here. For the 
graph G, let ( )e G , ( )n G , G , and ( )Gω  represent respectively the size, the 
order, the complement and the number of components of G. For ( ),u v V G⊆ , 

( ) ( ) ( ){ }:GN v u V G uv E G= ∈ ∈ , ( ) ( )G Gd v N v= . We call G k-regular if  
( )Gd u k=  for every vertex ( )u V G∈ . By ( )Gδ  and ( )G∆  denote the 

minimum and maximum degree of the graph G, respectively. By S  denote the 
number of elements in S and ( )GN S  denote the set of vertices of G which has 
neighbour vertex in S, that means ( ) ( ) \G Gv SN S N v S

∈
=


. 

2. Preliminary 

Proposition 2.1. [13] If H is spanning subgraph of G, then ( ) ( )g gc H c Gκ κ≤ .  
Proposition 2.2. [13] Let g be a non-negative integer and G be a connected 

graph with order n. If ( ) 0gc Gκ ≠ , then 2 1g n≤ ≤ − , ( )1 1
2
n

n e G  
− ≤ ≤ − 

 
.  

Proposition 2.3. [13] Let g be a positive integer and G be a connected graph 
of order n such that 2 1g n≤ ≤ − . Then ( ) ( )gG c G n gκ κ≤ ≤ − . Particularly, 
when ( ) 1Gκ = , ( )1 gc G n gκ≤ ≤ − .  

Proposition 2.4. [13] Let g be a positive integer. If nC  is a cycle with order 

( )4n n ≥ , then ( )gc G gκ =  for 2
2
ng  ≤ ≤   

.  

Proposition 2.5. [13] Let g be a positive integer. For the complete bipartite 
graph ( ), 2a bK a b≥ ≥ , we have g a≤  and ( ),g a bc K bκ = .  

Proposition 2.6. [14] Let g be a positive integer and nP  is a path with order 

( )3n n ≥ , then ( ) 1g nc P gκ = −  for 2
2
ng  ≤ ≤   

.  
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3. Main Result 

In this section, we determine the g-component connectivity of graphs such as 
fan graph, helm graph, crown graph, gear graph and the Mycielskian graph of 
star graph and complete bipartite graph. 

Let 3n ≥ , the fan graph G (Figure 1) is defined as the join of 1K  and the 
path nP . Let 1 nG K P= + . We call the vertex of 1K  the center of G.  

Theorem 3.1. Let g be a positive integer and 1 nG K P= +  with 3n ≥ . If 

2
2
ng  ≤ ≤   

, then ( )gc G gκ = .  

Proof. Let v be the center of fan graph 1 nG K P= +  and  
( ) { }1 2, , , , nV G v u u u=  . Suppose X is a g-component cut of G, then v X∈ . If 

not, assume v X∉ , then ( ) 1G Xω − = , a contradiction. By Proposition 5, we 
know ( ) 1g nc P gκ = −  and thus nP  has a g-component cut 0X  such that  
( )0nP X gω − ≥  and 0 1X g= − . Let { }0X X v′ = ∪ , it is clear that X ′  is a 

g-component cut of G since ( ) ( )0nG X P X gω ω′− = − ≥ . Consider  

0 1 1 1X X g g′ = + = − + = , we have ( )gc G X gκ ′≤ = . 
On the other hand, we show ( )gc G gκ ≥ . If not, assume that there exit a 

g-component cut X of G such that 1X g≤ − . Consider v X∈ , let { }1X X v= − , 
since 1X  is a cut of nP  with 1 2X g≤ − , we have ( )1 1 1 1nP X X gω − ≤ + ≤ − . 
This implies ( ) ( )1 1nG X P X gω ω− = − ≤ − , a contradiction. So we have  

( )gc G gκ ≥ . Therefore, ( )gc G gκ = . This completes the proof.  
A wheel graph nW  with order n, also called n-wheel, is a graph that contains 

a cycle of order n, and for which every vertex in the cycle is connected to one 
additional vertex. The helm graph is the graph on 2 1n +  vertices obtained 
from the n-wheel by adjoining a pendant edge at each vertex of the cycle. 

Theorem 3.2. Let G be a helm graph with order 2 1n +  for 3n ≥  and g be a 
positive integer for 2 1g n≤ ≤ + . Then ( ) 1gc G gκ = − .  

Proof. Suppose ( ) { }1 2 1 2, , , , , , , ,n nV G v v v v u u u=    such that ( ) 1id u =  for 
1 i n≤ ≤ . First let { }0 1 2 1, , , gF v v v −=  , it is clear that 0G F−  is disconnected 
with ( )0G F gω − = . So we have ( ) 0 1gc G F gκ ≤ = − . On the other hand, no-
tices that ( ) 1G S Sω − ≤ +  for any cut set S of G, we have ( ) 1X G Xω≥ − −  
for any g-cut X. This implies that ( ) 1gc G gκ ≥ − . Thus we get ( ) 1gc G gκ = − . 
This completes the proof.  

The Gear graph nG , also call a bipartite wheel graph, is obtained by subdi-
viding each edge of the outer cycle of a wheel nW . 

 

 
Figure 1. The fan graph 1 nG k p= + . 

https://doi.org/10.4236/ojapps.2023.1312189


G. H. Xie, Y. K. Li 
 

 

DOI: 10.4236/ojapps.2023.1312189 2424 Open Journal of Applied Sciences 
 

Theorem 3.3. Let G be a Gear graph with 2n ≥  and g be a positive integer. 
If 2 1g n≤ ≤ + , then 

( )
, 2 1;
, , 1.g

g g n
c G

n g n n
κ

≤ ≤ −
=  = +

 

Proof. Let ( ) 1 2V G V V= ∪  for { } { }1 iV v u= ∪  and { }2 iV v=  such that  
( ) 2id u =  for 1 i n≤ ≤ . Clearly, 1V  and 2V  are both independent set of G. 
Case 1 2 1g n≤ ≤ − . 
Let { }0 1 2, , , gX v v v=  . Clearly, 0X g=  and ( )0G X gω − = . Thus we 

have ( ) 0gc G X gκ ≤ = . Now we show ( )gc G gκ ≥ . If not, assume there exist 
( )S V G⊆  is a g-component cut of G with 1S g≤ − , then v S∉ . In fact, if 

v S∈ , consider G v−  is a cycle 2nC , then { }S S v′ = −  is a cut set of 2nC  
with 2S g′ ≤ − . By Proposition 4, 2nC S ′−  has at most 2g −  components 
and so does G S− , the later contradicts to S is a g-component cut of G. Now we 
go on deducing contradictions. If 1S V∩ ≠∅ , then either ( ) 1G Sω − =  or 
( ) 1G S gω − ≤ − , a contradiction. If 1S V∩ ≠∅ , then ( ) 1G S gω − ≤ − , a con-

tradiction again. So we get ( )gc G gκ ≥  and thus ( )gc G gκ = . 
Case 2 , 1g n n= + . 
Let 1 2X V= . Clearly, 1X n=  and ( )1 1G X nω − = + , thus we have  
( )gc G nκ ≤ . On the other hand, we show ( )gc G nκ ≥ . If not, assume S is a 

g-component cut of G with 1S n≤ − . Consider v S∉ , similarly as Case 1, we 
would get ( )gc G nκ ≥ . Hence ( )gc G nκ = . This completes the proof.  

For 3n ≥ , the n-crown graph on 2n vertices is defined as ,n nK M− , where 
M is a perfect matching in ,n nK . Crown graphs can also be viewed as the tensor 
product , 2n nK K× . 

Theorem 3.4. Let G be a n-crown graph with 3n ≥  and g be a positive in-
teger. If 2 g n≤ ≤ , then 

( )
1, 2;

, 3 .g

n g
c G

n g n
κ

− =
=  ≤ ≤

 

Proof. Let { }1 2, , , nA v v v=  , { }1 2, , , nB u u u=   be the set of two parts of the 
graph G with ( ) ( ) 1i jd v d u n= = −  for 1 ,1i n j n≤ ≤ ≤ ≤ ). 

Case 1 2g = . 
Take arbitrary vertex of A, named 1v , consider ( ) { }1 2 3, , ,G nN v u u u=  , let 

( )1GS N v= , then ( ) 2G Sω − = , this means ( )2 1c G nκ ≤ − . 
Now, to show ( )2 1c G nκ ≥ − . If not, assume there exit a 2-component cut S 

of G such that 2S n≤ − , this contradicts to the fact that G is ( )1n − -regular. 
So, ( )2 1c G nκ ≥ − . Hence, we get ( )2 1c G nκ = − . 

Case 2 3 g n≤ ≤ . 
Let { }0 1 2, , , nF v v v=  , consider G F−  is disconnected and ( )0G F nω − = , 

we get ( )gc G nκ ≤ . 
Now, show ( )gc G nκ ≥ . If not, assume that there exist is a g-component cut 

F of G such that 1F n≤ − . Similarly, consider G is ( )1n − -regular, it is imposs-
ible to obtain a g-component cut F of G such that 1F n≤ − . So, ( )gc G nκ ≥  
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and thus we get ( )gc G nκ = . Hence, ( ),g n nc K M nκ − =  
Next, we define the traditional Mycielski construction. Suppose G is a graph 

with ( ) { }1 2, , , nV G v v v=  . The Mycielskian of G, denoted ( )Gµ , is a graph 
with vertex set { }1 2 1 2, , , , , , , ,n nv v v u u u ω  . For each edge i jv v  in G, the graph 
( )Gµ  has i jv v , i jv u , and i ju v . In addition, ( )Gµ  has edges iuω  for  
{ }1,2, ,i n∈  . Clearly, ( )Gµ  has an isomorphic copy of G on vertices  

{ }1 2, , , nv v v . ( )1,3Kµ  is show in Figure 2. 
Facts: Let G be a graph with G n=  and ( )G id v k= . Then ( ) 2 1G nµ = + ; 

( ) ( )Gd nµ ω = ; ( ) ( ) 2iGd v kµ = ; ( ) ( ) 2iGd u kµ = ; ( ) ( ) { } ( )\i G iGN u N vµ ω = .  
Theorem 3.5. Let nS  (Figure 3) be a star graph with order 2n ≥  and g be 

a positive integer. 1) If 2n = , then ( )( )2 2 2c Sκ µ = ; 2) If 3n ≥ , then 

( )( ) ( )
2, 2 ;
3, 1 2 1 .g n

g n
c S

n g n
κ µ

≤ ≤
=  + ≤ ≤ −

 

Proof. 
Case 1 2n = . 

 

 

Figure 2. ( )1,3Kµ . 

 

 
Figure 3. The graph ( )nSµ . 
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Clearly, ( )2Sµ  is a 5-circle, then by Proposition 2.4, we get ( )( )2 2 2c Sκ µ = . 
Case 2 3n ≥ . 
Subcase 1 2 g n≤ ≤  
Let { },nF v ω= , consider ( )( )nS F n gω µ − = ≥ . We get ( )( ) 2g nc Sκ µ ≤ . 
Now, show ( )( ) 2g nc Sκ µ ≥ . On the contrary, suppose F is a vertex set of 
( )nSµ  such that 1F =  and ( )nS Fµ −  has at least g components. Then 

discuss as follows. 
If { }nF u=  or { }nv  or { }ω , then ( )( ) 1nS F gω µ − = < , a contradiction. 

If { }1 2 1, , , 1nF v v v −∩ = , since ( )( ) 1nS Fω µ − = , then ( )nS Fµ −  is con-
nected, a contradiction. If { }1 2 1, , , 1nF u u u −∩ = , then ( )( ) 1nS Fω µ − = , 
that ( )nS Fµ −  is connected, also contradiction. Hence, ( )( ) 2g nc Sκ µ = . 

Subcase 2 ( )1 2 1n g n+ ≤ ≤ −  
First let { }, ,n nX v u ω= . Clearly, 3X =  and ( )( ) ( )2 1nS X n gω µ − = − ≥ . 

So ( )( ) 3g nc Sκ µ ≤ . 
Now show ( )( ) 3g nc Sκ µ ≥ . On the contrary, suppose that S is a g-component 

cut of G with 2S ≤ . Let { }1 2 1 1 2 1, , , , , , ,n nv v v v u u u− −∈   , we deduce contra-
dictions as follows. 

If { },n nS v u=  or { },nv ω , then ( )( ) 1nS S n gω µ − = ≤ − , a contradiction. If 
{ },nS u ω=  or { },nu v  or { },nu v  or { },v ω , then ( )( ) 1nS S gω µ − = < , a 

contradiction. Hence, ( )( ) 3g nc Sκ µ = . 
Theorem 3.6. Let ,n mK  be a complete bipartite graph with 2m n≥ ≥  and g 

be a positive integer. Then 

( )( ),

1, 2 1;
2 1, 2 2 .g n m

n g m
c K

n m g m
κ µ

+ ≤ ≤ +
=  + + ≤ ≤

 

Proof. Let { }1 2, , ,m m m nX v v v+ + +=  , { }1 2, , , mY v v v=   be two parts of com-
plete bipartite graph ,n mK , { }1 2, , ,m m m nS u u u+ + +=  , { }1 2, , , mT u u u=  .  

[ ]1G G S Y= ∪ , [ ]2G G X T= ∪  and { }3G G ω= − . By proposition 2.6, we 
have ( ) ( )1 2g gc G c G nκ κ′ ′= =  for g m′ ≤ . 

Case 1 2 1g m≤ ≤ + . 
Let { } { }0 1 2, , , ,m m m nF X v v vω ω+ + += ∪ =  . Clearly, 0 1F n= +  and  

( )( ), 0 1n mK F m gω µ − = + ≥ . Hence, ( )( ), 1g n mc K nκ µ ≤ + . 
On the other hand, we show ( )( ), 1g n mc K nκ µ ≥ + . If not, assume there exist 

( )( ),n mF V Kµ⊆  is a g-component cut of ( ),n mKµ  with F n≤ , then we dis-
tinguish cases to deduce contradictions. 

Subcase 1.1 Fω∈ . 
Let { }0F F ω= − , ( )1 0 1F F V G= ∩  and ( )2 0 2F F V G= ∩ , so 0 1F n≤ − . If 

( )0 1F V G⊆ , then 0F  is a cut of 1G  with 0 1F n n≤ − < , we have  
( )1 0 1G Fω − = , then it is connected between 1 0G F−  and 2G , so  

( )( ), 1n mK F gω µ − = < , a contradiction. If ( )0 2F V G⊆ , the reason is similar to 
that of the situation “ ( )0 1F V G⊆ ”. If 1F ≠ ∅  and 0F ≠ ∅ , then ( )1 1 1G Fω − =  
and ( )2 2 1G Fω − = , and it is connected between 1 1G F−  and 2 2G F− , thus 

( )( ), 1n mK F gω µ − = < , also a contradiction. 
Subcase 1.2 Fω∉ . 
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Let ( )1 1F F V G= ∩  and ( )2 2F F V G= ∩ . If 1F F n= ≤ , then we have 
( )1 1G F mω − =  or 1, however 1 1G F− , 2G  and ω  are connected, this im-

plies that ( )( ), 1n mK F gω µ − = < , a contradiction. If 2F F n= ≤ , the reason 
is similar to that of the situation “ 1F F n= ≤ ”. If 1F ≠ ∅  and 0F ≠ ∅ , then 

1 1F n≤ −  and 2 1F n≤ − , this implies that ( )1 1 1G Fω − =  and  
( )2 2 1G Fω − = , then 1 1G F− , 2 2G F−  and ω  are connected, this implies that 

( )( ), 1n mK F gω µ − = < , a contradiction. Hence, ( )( ), 1g n mc K nκ µ = + . 
Case 2 2 2m g m+ ≤ ≤ . 
Let { } { }1 2 1 2, , , , , , , ,m m m n m m m nF X S v v v u u uω ω+ + + + + += ∪ ∪ =   . Clearly,  

2 1F n= +  and ( )( ), 2n mK F m gω µ − = ≥ . So ( )( ), 2 1g n mc K nκ µ ≤ + . 
Now, to show ( )( ), 2 1g n mc K nκ µ ≥ + . Suppose, to the contrary, that  

( )( ),n mF V Kµ⊆  is a vertex set of ( ),n mKµ  such that 2F n≤  and  
( ),n mK Fµ −  has at least g components. Let ( )1 1F F V G= ∩  and  

( )2 2F F V G= ∩ . 
Subcase 2.1 1 2 1n m n+ ≤ ≤ − . 
If 1F F ω= ∪ , then 1 1G F−  is connected or disconnected and  
( )1 1G F mω − ≤ , then it is connected or disconnected and ( )3 1 1G F n gω − ≤ + <  

between 1 1G F−  and 2G , thus ( )( ) ( ), 3 1 1n mK F G F n gω µ ω− = − ≤ + < , a 
contradiction. If 2F F ω= ∪ , then 2 2G F−  is connected or disconnected and 
( )2 2G F mω − ≤ , then it is connected or disconnected and ( )3 2 1G F m gω − ≤ + <  

between 2 2G F−  and 1G , thus ( )( ) ( ), 3 2 1n mK F G F m gω µ ω− = − ≤ + < , a 
contradiction. If 1 2F F F ω= ∪ ∪ , assume 1 2F F≤ , since 1 2 2 1F F n+ ≤ − , 
then 1 1F n≤ − , we have ( )1 1 1G Fω − = , 2 2G F−  is connected or discon-
nected and ( )2 2G F mω − ≤ , then it is connected or disconnected and  
( )3 1 2 1G F F m gω − − ≤ + <  between 2 2G F−  and 1 1G F− , thus  

( )( ) ( ), 3 1 2 1n mK F G F F m gω µ ω− = − − ≤ + < , a contradiction; assume 1 2F F≥ , 
since 1 2 2 1F F n+ ≤ − , then 2 1F n≤ − , we have ( )2 2 1G Fω − = , 1 1G F−  is 
connected or disconnected and ( )2 2G F mω − ≤ , then it is connected or dis-
connected and ( )3 1 2 1G F F n gω − − ≤ + <  between 2 2G F−  and 1 1G F− , thus 

( )( ) ( ), 3 1 2 1n mK F G F F n gω µ ω− = − − ≤ + < , a contradiction. If 1 2F F F= ∪ , 
assume 1 2F F n= = , we have 1 1G F−  is connected or disconnected and  
( )1 1G F mω − ≤ , 2 2G F−  is connected or disconnected and ( )2 2G F mω − ≤ , 

then 2 2G F− , 1 1G F−  and ω  is connected or disconnected and  
( )1 2 1G F F m gω − − ≤ + < , thus ( ) ( )1 2 1G F G F F m gω ω− = − − ≤ + < , a con-

tradiction; assume 1 2F F< , then 1 1F n≤ − , we have ( )1 1 1G Fω − = , 2 2G F−  
is connected or disconnected and ( )2 2G F mω − ≤ , however 2 2G F− , 1 1G F−  
and ω  is connected, thus ( )( ) ( ), 3 1 2 1n mK F G F F gω µ ω− = − − = < , a contra-
diction; assume 1 2F F> , then 2 1F n≤ − , we have ( )2 2 1G Fω − = , 1 1G F−  
is connected or disconnected and ( )1 1G F mω − ≤ , however 2 2G F− , 1 1G F−  
and ω  is connected, thus ( )( ) ( ), 3 1 2 1n mK F G F F gω µ ω− = − − = < , a contra-
diction. If 1 2F F n= ≤ , then we have ( )1 1G F mω − ≤ , however 1 1G F− , 2G  
and ω  are connected, this implies that ( )( ), 1n mK F gω µ − = < , a contradiction. 
If 2 2F F n= ≤ , the reason is similar to that of the situation “ 1 2F F n= ≤ ”. 
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Subcase 2.2 2m n= . 
If 1F F ω= ∪ , then 1 1G F−  is connected or disconnected and  
( )1 1G F mω − ≤ , then it is connected between 1 1G F−  and 2G , thus  

( )( ) ( ), 3 1 1n mK F G F gω µ ω− = − = < , a contradiction. If 2F F ω= ∪ , then  

2 2G F−  is connected or disconnected and ( )2 2G F mω − ≤ , then it is connected 
or disconnected and ( )3 2 1G F m gω − ≤ + <  between 2 2G F−  and 1G , thus  

( )( ) ( ), 3 2 1n mK F G F m gω µ ω− = − ≤ + < , a contradiction. If 1 2F F F ω= ∪ ∪ , 
assume 1 2F F≤ , since 1 2 2 1F F n+ ≤ − , then 1 1F n≤ − , we have  
( )1 1 1G Fω − = , 1 1G F−  is connected or disconnected and ( )2 2G F mω − ≤ , 

then it is connected or disconnected and ( )3 1 2 1G F F m gω − − ≤ + <  between 

2 2G F−  and 1 1G F− , thus ( )( ) ( ), 3 1 2 1n mK F G F F m gω µ ω− = − − ≤ + < , a 
contradiction; assume 1 2F F≥ , since 1 2 2 1F F n+ ≤ − , then 2 1F n≤ − , we 
have ( )2 2 1G Fω − = , 1 1G F−  is connected or disconnected and  
( )2 2G F mω − ≤ , then it is connected between 2 2G F−  and 1 1G F− , thus  

( )( ) ( ), 3 1 2 1n mK F G F F gω µ ω− = − − = < , a contradiction. If 1 2F F F= ∪ , as-
sume 1 2F F n= = , we have 1 1G F−  is connected or disconnected and  
( )1 1G F mω − ≤ , 2 2G F−  is connected or disconnected and ( )2 2G F mω − ≤ , 

then 2 2G F− , 1 1G F−  and ω  is connected or disconnected and  
( )1 2 1G F F m gω − − ≤ + < , thus ( ) ( )1 2 1G F G F F m gω ω− = − − ≤ + < , a con-

tradiction; assume 1 2F F< , then 1 1F n≤ − , we have ( )1 1 1G Fω − = , 2 2G F−  
is connected or disconnected and ( )2 2G F mω − ≤ , however 2 2G F− , 1 1G F−  
and ω  is connected, thus ( )( ) ( ), 3 1 2 1n mK F G F F gω µ ω− = − − = < , a contra-
diction; assume 1 2F F> , then 2 1F n≤ − , we have ( )2 2 1G Fω − = , 1 1G F−  
is connected or disconnected and ( )1 1G F mω − ≤ , however 2 2G F− , 1 1G F−  
and ω  is connected, thus ( )( ) ( ), 3 1 2 1n mK F G F F gω µ ω− = − − = < , a contra-
diction. If 1 2F F n= ≤ , then we have ( )1 1G F mω − ≤ , however 1 1G F− , 2G  
and ω  are connected, this implies that ( )( ), 1n mK F gω µ − = < , a contradiction. 
If 2 2F F n= ≤ , the reason is similar to that of the situation “ 1 2F F n= ≤ ”. 

Subcase 2.3 2m n> . 
If 1F F ω= ∪ , then 1 1G F−  is connected or disconnected and  
( )1 1G F mω − ≤ , then it is connected between 1 1G F−  and 2G , thus  

( )( ) ( ), 3 1 1n mK F G F gω µ ω− = − = < , a contradiction. If 2F F ω= ∪ , then  

2 2G F−  is connected or disconnected and ( )2 2G F mω − ≤ , then it is connected 
or disconnected and ( )3 2 1G F m gω − ≤ + <  between 2 2G F−  and 1G , thus 

( )( ) ( ), 3 2 1n mK F G F m gω µ ω− = − ≤ + < , a contradiction. If 1 2F F F ω= ∪ ∪ , 
assume 1 2F F≤ , since 1 2 2 1F F n+ ≤ − , then 1 1F n≤ − , we have  
( )1 1 1G Fω − = , 2 2G F−  is connected or disconnected and ( )2 2G F mω − ≤ , 

then it is connected or disconnected and ( )3 1 2 1G F F m gω − − ≤ + <  between 

2 2G F−  and 1 1G F− , thus ( )( ) ( ), 3 1 2 1n mK F G F F m gω µ ω− = − − ≤ + < , a 
contradiction; assume 1 2F F≥ , since 1 2 2 1F F n+ ≤ − , then 2 1F n≤ − , we 
have ( )2 2 1G Fω − = , 1 1G F−  is connected or disconnected and  
( )2 2G F mω − ≤ , then it is connected between 2 2G F−  and 1 1G F− , thus  

( )( ) ( ), 3 1 2 1n mK F G F F gω µ ω− = − − = < , a contradiction. If 1 2F F F= ∪ , as-
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sume 1 2F F n= = , we have 1 1G F−  is connected or disconnected and  
( )1 1G F mω − ≤ , 2 2G F−  is connected or disconnected and ( )2 2G F mω − ≤ , 

then 2 2G F− , 1 1G F−  and ω  is connected or disconnected and  
( )1 2 1G F F m gω − − ≤ + < , thus ( ) ( )1 2 1G F G F F m gω ω− = − − ≤ + < , a con-

tradiction; assume 1 2F F< , then 1 1F n≤ − , we have ( )1 1 1G Fω − = , 2 2G F−  
is connected or disconnected and ( )2 2G F mω − ≤ , however 2 2G F− , 1 1G F−  
and ω  is connected, thus ( )( ) ( ), 3 1 2 1n mK F G F F gω µ ω− = − − = < , a contra-
diction; assume 1 2F F> , then 2 1F n≤ − , we have ( )2 2 1G Fω − = , 1 1G F−  
is connected or disconnected and ( )1 1G F mω − ≤ , however 2 2G F− , 1 1G F−  
and ω  is connected, thus ( )( ) ( ), 3 1 2 1n mK F G F F gω µ ω− = − − = < , a contra-
diction. If 1 2F F n= ≤ , then we have ( )1 1G F mω − ≤ , however 1 1G F− , 2G  
and ω  are connected, this implies that ( )( ), 1n mK F gω µ − = < , a contradiction. 
If 2 2F F n= ≤ , the reason is similar to that of the situation “ 1 2F F n= ≤ ”. 
Hence, ( )( ), 2 1g n mc K nκ µ = + . 
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