
Open Journal of Applied Sciences, 2023, 13, 2329-2342 
https://www.scirp.org/journal/ojapps 

ISSN Online: 2165-3925 
ISSN Print: 2165-3917 

 

DOI: 10.4236/ojapps.2023.1312182  Dec. 20, 2023 2329 Open Journal of Applied Sciences 
 

 
 
 

The Existence of Meromorphic Solutions to 
Non-Linear Delay Differential Equations 

Mingyue Wu1,2 

1School of Science, Beijing University of Posts and Telecommunications, Beijing, China 
2Key Laboratory of Mathematics and Information Networks (Beijing University of Posts and Telecommunications), Ministry of 
Education, Beijing, China 

  
 
 

Abstract 
In this paper, we study the existence of the transcendental meromorphic so-
lution of the delay differential equations  

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

( )( )
,

1 1 , ,
,

k P z w zw z
w z w z a z R z w z

w z Q z w z
′ 

+ − + = =  
 

 where ( )a z   

is a rational function, ( )( ),P z w z  and ( )( ),Q z w z  are polynomials in ( )w z  

with rational coefficients, k is a positive integer. Under the assumption when 
above equations own transcendental meromorphic solutions with minimal 
hyper-type, we derive the concrete conditions on the degree of the right side of 
them. Specially, when ( ) 0w z =  is a root of ( )( ),Q z w z , its multiplicity is at 

most k. Some examples are given here to illustrate that our results are accurate. 
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1. Introduction 

In actual life, a completely linear system does not exist due to part of the system 
itself have varying degrees of non-linear properties and the influence of external 
conditions. At the same time, through the industrial production process and in 
natural social sciences, there are many practical systems like the well-known 
network control transmission system, water and power system, communication 
system, urban traffic management system, etc., which are related to the state of a 
certain moment in the past, and the characteristics of the system are called delay. 
We can see that it is very necessary to study nonlinear time-delay system, among 
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which, nonlinear delay differential equation is a vital tool for studying nonlinear 
time-delay system, we study nonlinear delay differential equation to characterize 
a part of the corresponding nonlinear time-delay system, so as to obtain the 
characteristics of nonlinear time-delay system and solve some practical prob-
lems. 

The differential Painlevé equations over the complex domain and the Painlevé 
type equations are a special and significant class of nonlinear delay differential 
equations with important applications in physics. In 2000, Ablowitz et al. [1] ap-
plied Nevanlinna theory in difference equations of complex domains, studied the 
following equations: 

( ) ( ) ( )( )1 1 ,w z w z R z w z+ + − =  

( ) ( ) ( )( )1 1 ,w z w z R z w z+ − =  

and obtained some results on the degree of the right side of the equations.  
Subsequently, some well-known theories and approaches which are widely 

used in the study of differential and difference equations have emerged such as 
the difference version of the logarithmic derivative lemma (Halburd, Korhonen 
[2] and Chiang, Feng [3]) and so on ([4] [5] [6]). 

In the year of 2007, Halburd and Korhonen [7] discovered a discrete version 
of the Painlevé III and obtained the following theorem: 

Theorem 1.1. Let ( )w z  be an admissible finite-order meromorphic solution 
of the equation 

( ) ( )
( )( ) ( )( )

( )( ) ( )( ) ( )21 1 , ,
c w z c w z c

w z w z R z w
w z a w z a

+ −

+ −

− −
+ − = =

− −
 

where the coefficients are meromorphic functions, 2 0c ≡/  and ( )deg 2w R = . If 
the order of the poles of ( )w z  is bounded, then either ( )w z  satisfies a differ-
ence Riccati equation 

( ) ( )
( )

1
pw z q

w z
w z s

+
+ =

+
 

where ( ), ,p q s S w∈ , ( ( )S w  is a set of small functions of ( )w z ), or equation 
can be transformed by a bilinear change in ( )w z  to one of the equations 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )( )

2 21
1 1 ,

1

z zz w z z w z z z
w z w z

w z w z z
γ δ λ γ µ λ

γ
− + +

+ − =
− −

 

( ) ( ) ( ) ( )
( )

2 2

2

e
1 1

1

zi

w z z
w z w z

w z
δ

π

+
+ − =

−
 

where Cλ∈  and ( ), , S wδ µ γ ∈  are arbitrary finite-order periodic functions 
such that δ  and γ  have period 2 and µ  has period 1. 

In 2017, Halburd and Korhonen [8] applied Nevanlinna theory ([9] [10]) to 
consider the existence of the meromorphic solutions of complex differential- 
difference equations with the hyper-order less than 1 and obtain the following 
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theorem. 
Theorem 1.2. Let ( )w z  be a non-rational meromorphic solution of 

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

( )( )
,

1 1 , ,
,

P z w zw z
w z w z a z R z w z

w z Q z w z
′

+ − − + = =  

where ( )a z  is rational, ( )( ),P z w z  is a polynomial in ( )w z  having rational 
coefficients in z, and ( ),Q z w  is a polynomial in ( )w z  with roots that are 
non-zero rational functions of z and not roots of ( )( ),P z w z . If the hyper-order 
of ( )w z  is less than one, then 

( ) ( ) ( )deg deg 1 3 or deg 1w w wP Q R= + ≤ ≤ . 

Inspiring by the above work, Liu and Song [11] contemplated the non-linear 
difference equations 

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

( )( )
,

1 1 ,
,

P z w zw z
w z w z a z R z w z

w z Q z w z
′

+ − + = = . 

We can’t help but considering how the result would be different when 
( )
( )

w z
w z
′

 

in the above equation turns to a more general 
( )
( )

k
w z
w z
′ 

  
 

. That’s the main pur-

pose of this paper. Here are the main contents and conclusions of this article: 
Theorem 1.3. Suppose that k is a positive integer and that ( )a z  is a rational 

function. Let ( )w z  be a transcendental meromorphic solution of 

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

( )( )
,

1 1 , ,
,

k P z w zw z
w z w z a z R z w z

w z Q z w z
′ 

+ − + = =  
 

 (1.1) 

where ( ),P z w  and ( ),Q z w  are two coprime polynomials in ( )w z  having 

rational coefficients in z. If ( )log ,
limsup 0

r

T r w
r

+

→∞
= , then 

( )( )deg , 2 2w R z w k≤ +  

and one of the following holds for ( ) 0w z =  is not a root of ( ),Q z w . 
(i) when ( )( )deg , 0w Q z w =  or ( )( )deg , 1w Q z w = , we have 

( )( )deg , 1;w P z w k≤ +  

(ii) when ( )( )deg , 2w Q z w ≥ , we have 

( )( ) ( )( ) ( )( )deg , deg , deg , .w w wQ z w P z w k Q z w< ≤ +  

In particular, when 0w =  is a root of ( ),Q z w , its multiplicity is at most k. 

In fact, a meromorphic function which satisfies ( )log ,
limsup 0

r

T r w
r

+

→∞
=   

is called minimal-hypertype where ( )( ),T r w z  is Nevanlinna characteristics of 
( )w z . Now we list some examples below to demonstrate that our results are ac-

curate. 
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Example 1.1. The meromorphic function ( ) cscw z z= π  with 

( )log ,
limsup 0

r

T r w
r

+

→∞
=  

solves 

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

2

21 1 1
w z

w z w z a z a z w z a z
w z
′ 

+ − + = + −  
 

 

We can obtain that ( )( )deg , 2 1 3w P z w k= < + =  since 2k = . 

Example 1.2. The meromorphic function ( ) 1
e 1zw z =
+

 solves 

( ) ( ) ( ) ( )
( )

( )( )
( )( )

2 ,
1 1 ,

,
P z w zw z

w z w z a z
w z Q z w z
′ 

+ − + =  
 

 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

4 3

2

1 1 1, 2 2 5 14 5 14

1 11 7 3 4

P z w z e e w z e a z w z
e e e

a z e a z w z a z e w z a z
e e

        = + − + + + − + −                
    + − − + + + − +        

 

and ( )( ) ( ) ( )21 1, 2 2 1Q z w z e w z e w z
e e

   = − − + + − +      
, where ( )( )0a z ≡/  is 

an arbitrary rational function. Obviously, we have 

( )log ,
limsup 0

r

T r w
r

+

→∞
=  

and 

( )( ) ( )deg , 4 deg 2.w wP z w Q= ≤ +  

This paper is organized as follows. In Section 2, we outline the lemma we need 
to use. The main results discussed on different situations are summarized in Sec-
tion 3. 

2. Auxiliary Lemmas 

We present some lemmas which play important role in the following. The first 
one is the difference version of the logarithmic derivative lemma for meromor-
phic functions with minimal hyper-type due to Zheng and Korhonen [12]. 

Lemma 2.1. [[12], Theorem 1.2] Let ( )w z  be a meromorphic function. If 

( )log ,
limsup 0

r

T r w
r

+

→∞
= , 

then 

( )
( ) ( )( ), , ,

w z c
m r o T r w

w z
 +

=  
 

 

holds for a constant c as ( )r E∉ →∞ , where E is a subset of [ )1,+∞  with the 
zero upper density, that is 
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[ ]1,

1limsup d 0.
E rr

densE t
r→∞

= =∫


 

Lemma 2.2. [[12], Lemma 2.1] Let ( )G r  be a nondecreasing positive function 
in [ )1,+∞  and logarithmic convex with ( ) ( )G r r→+∞ →+∞ . Assume that 

( )log
limsup 0.

r

G r
r→+∞

=  

Set 

( )
( ){ }1

max .
max 1,logt r

tr
G t

φ
≤ ≤

  =  
  

 

Then given a real number 10,
2

δ  ∈ 
 

, one has 

( ) ( )( ) ( ) ( )
1
21 4 ,G r G r r r G r r E

δδ
δφ φ

− 
≤ + ≤ + ∉  

 
, 

where Eδ  is a subset of [ )1,+∞  with the zero upper density. 
Lemma 2.3. [[13], Lemma 19] Let ( )w z  be a non-rational meromorphic 

solution of 

( ), 0P z w = , 

where ( ),P z w  is a differential-difference polynomial in ( )w z  with rational 
coefficients, and let 1 2, , , ka a a  be rational functions satisfying ( ), 0jP z a ≡/  
for all { }1,2, ,j k∈  . 

If there exists 0s >  and ( )0,1τ ∈  such that 

( ) ( )
1

1, , 1 ,
k

j j

n r k n r s w O
w a

τ
=

 
≤ + +  − 

∑  

then ( )log ,
limsup 0

r

T r w
r

+

→∞
> . 

If the right side of (1.1) is a polynomial in ( )w z , we can obtain the following 
fact. 

Lemma 2.4. Let ( )w z  be a non-rational meromorphic solution of the equa-
tion 

( ) ( ) ( ) ( )
( ) ( )( ) ( )1 1 , , ,

k
w z

w z w z a z P z w z k N
w z

+′ 
+ − + = ∈  

 
      (2.1) 

where k is a positive integer, where ( )a z  is a rational function and ( )( ),P z w z  

is a polynomial of ( )w z  on z. If ( )log ,
limsup 0

r

T r w
r

+

→∞
> , then  

( )( )( )deg , 1w P z w z k≤ + . 

The proof of Lemma 2.4. Assume that ( )( )( )deg , 2w P z w z p k= ≥ + . Firstly, 
we consider that ( )w z  have finitely many poles and zeros, it’s obvious that 
there exist a rational function ( )f z  and an entire function ( )g z  such that 

( ) ( ) ( )e .g zw z f z=  
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On the basis of Equation (2.1), we will get 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

1 1
2

2

ee 1 1 , e .
e

kg z g z
g z g z

g z

f z
f z f z a z g z P z f z

f z

+ + − ′ 
′+ − + + =  

 
(2.2) 

Using the Lemma 2.1, one knows 
( ) ( )( ) ( ) ( )( ) ( )( )1 1,e ,e ,e ,g z g z g z g z g zT r m r S r+ − + −= =  

( ) ( )( ) ( ) ( )( ) ( )( )1 1,e ,e ,e .g z g z g z g z g zT r m r S r− − − −= =  

At this point and the fact that ( )eg z  is transcendental, it follows from (2.2) that 

( )( )( ) ( )( ) ( )( ) ( )( )deg , ,e 2 ,e ,e .g z g z g z
w P z w z T r T r S r≤ +  

This is a contradiction since ( )( )( )deg , 2w P z w z p k= ≥ +  for k N +∈ . 
In the following, we consider that either ( )w z  has infinitely many zeros or 
( )w z  has infinitely many poles (or both). Since the coefficients of (2.1) are ra-

tional, we can always choose a zero or a pole jz z=  of ( )w z  in such a way 
that there is no cancellation with the coefficients. At this time, we continue to 
discuss the following two different situations: 

Case 1. jz z=  is a pole of ( )w z  with multiplicity l , then ( ) ( )1 1w z w z+ −  
has a pole with multiplicity ( )pl k>  at jz z= . 

Subcase 1.1. 1jz +  is a pole of ( )w z  with multiplicity t (1 t pl≤ ≤ ) and 
1jz −  is a pole of 1jz −  with multiplicity pl t− . By shifting (2.1) forward 

and backward, we have 

( ) ( ) ( ) ( )
( ) ( )( )1

2 1 1, 1 ,
1

k
w z

w z w z a z P z w z
w z
′ +

+ + + = + +  + 
 

( ) ( ) ( ) ( )
( ) ( )( )1

2 1 1, 1 .
1

k
w z

w z w z a z P z w z
w z
′ −

− + − = − −  − 
 

Analyzing the poles on both sides of the above equations and we will know 
2jz +  is a pole of ( )w z  with multiplicity pt l− , 2jz −  is a pole of ( )w z  

with multiplicity 2p l pt l− − . Continue iterating over the equation, one knows 
3jz +  is a pole of ( )w z  with multiplicity 2p t pl t− − , 3jz −  is a pole of 

( )w z  with multiplicity 3 2 2p l p t pl t− − + , 4jz +  is a pole of ( )w z  with 
multiplicity 3 2 2p t p l pt l− − + , 4jz −  is a pole of ( )w z  with multiplicity  

4 3 23 2p l p t p l pt l− − + + , and so on. Hence, 

( ), d d
jn d z w p l p+ ≥ ≥  

for all d N∈ . It follows that 

( ) ( ) ( )

( )

log ,log , log ,
limsup limsup limsup

loglimsup log 2 0.

j

r r d j

d

d j

n d z wT r w n r w
r r d z

p k
d z

+

→∞ →∞ →∞

→∞

+
≥ ≥

+

≥ ≥ + >
+
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This contradicts to 
( )log ,

limsup 0
r

T r w
r

+

→∞
= , so the assumption is not valid. 

Subcase 1.2. 1jz +  is a pole of ( )w z  with multiplicity ( )t t pl> , 1jz −  is 
a zero of ( )w z  with multiplicity t pl− . By shifting (2.1) up, one can deduce 
that 2jz +  is a pole of ( )w z  with multiplicity pt l− , 3jz +  is a pole of 
( )w z  with multiplicity 2p t pl t− − , 4jz +  is a pole of ( )w z  with multiplic-

ity 3 2 2p t p l pt l− − + , and so on. Thus, 

( ), ,d d
jn d z w p l p+ ≥ ≥  

for all d N∈ , and so 

( ) ( )log ,log ,
limsup limsup 0.

j

r d j

n d z wT r w
r d z

+

→∞ →∞

+
≥ >

+
 

This contradicts to 
( )log ,

limsup 0
r

T r w
r

+

→∞
= . 

Subcase 1.3. 1jz −  is a pole of ( )w z  with multiplicity ( )t t pl> , 1jz +  is 
a zero of ( )w z  with t pl− , as the proof process of Subcases 1.2, we can push 
out the contradicts so that the hypothesis ( )( )( )deg , 2w P z w z p k= ≥ +  is not 
valid. 

Case 2. ( )w z  has a zero in jz z=  with multiplicity q, then ( ) ( )1 1w z w z+ −  
has k-th poles at jz z= . This implies that at least one of 1jz +  and 1jz −  is a 
pole of ( )w z . In the same discussion as in case 1, we can also derive that 

( ) 1log , loglimsup 0.
d

r j

T r w p
r d z

+ −

→∞
≥ >

+
 

This contradicts to 
( )log ,

limsup 0
r

T r w
r

+

→∞
= . The Lemma 2.4 is proved. 

Finally, we consider the case in which ( )( ),Q z w z  of (1.1) has a non-zero 
repeated root as a polynomial in ( )w z . 

Lemma 2.5. Suppose that ( ), 2k m ≥  are two positive integers. Let ( )w z  be 
a non-rational meromorphic solution of 

( ) ( ) ( ) ( )
( )

( )( )
( ) ( )( ) ( )( )1

,
1 1 ,

ˆ ,

k

m

P z w zw z
w z w z a z

w z w z b z Q z w z

′ 
+ − + =   − 

    (2.3)  

where ( )a z , ( )( )1 0b z ≡/  are rational functions, and ( )( )ˆ ,Q z w z  is a poly-

nomial in ( )w z  such that ( ) ( ) ( )( ) ( )1
ˆ , ,

m
Q z w w z b z Q z w− = . If  

( )log ,
limsup 0

r

T r w
r

+

→∞
= , then 

( )( ) ( )( ) ( )( )ˆ ˆdeg , deg , deg , .w w wm z w P z zQk wQ w m+ < < + +  

On basis of Lemma 2.5, one can deduce 
( )log ,

limsup 0
r

T r w
r

+

→∞
>  provided 

that 1k = . Next we give the details of the proof of Lemma 2.5 below. 
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The proof of Lemma 2.5. We can transform (2.3) into ( )( ), 0z w zΦ = , where 
( )( ),z w zΦ  is a differential difference polynomial. Notice that ( )( )1, 0z b zΦ ≡/ , 

so the first condition of Lemma 2.3 is satisfied. 
Suppose that jz  is a zero of ( ) ( )1w z b z−  with multiplicity l , and that 

neither ( )1b z  nor any of the coefficients in (2.3) have a zero or pole at jz z= . 
Furthermore, if the coefficient functions in (2.3) don’t have a zero or a pole at 

jz  and ( )jz i i Z+ ∈ , then jz  is called a generic zeros. Since the coefficients 
of (2.3) are rational, for the case of non-generic zeros, we can know that for in-
tegrated counting functions, it will bring an error term ( )logO r  at most. 
Hence, we only need to consider the generic zeros in the following. 

Case 1. Assume that 

( )( ) ( )( )deg , deg , .ˆ
w wP z w m Q z w≤ +  

Let jz z=  be a generic zero of ( ) ( )1w z b z−  of order l , it follows from (2.3) 
that jz z=  is a pole of ( ) ( )1 1w z w z+ −  with multiplicity ( )h ml l≥ > . This 
implies that at least one of 1jz +  and 1jz −  is a pole of ( )w z . 
○ Assume 1jz +  is a pole of ( )w z  with multiplicity ( )r r h<  and 1jz −  is 

a pole of ( )w z  with multiplicity h r− . By shifting (2.3) forward and 
backward once time, one can deduce that ( )w z  has a pole of order k at 

2jz +  and a pole of order k at 2jz − . By continuing the iteration, it follows 
that ( )w z  has either a finite value or a pole at 3jz +  (or 3jz − ). Conse-
quently, 

( ) ( )

( ) ( )

1

1, 2, 1
2

1 2, 1 ,

ln r n r w O
w b h k

n r w O
m

 
≤ + + − + 

≤ + +

 

since h ml l≥ > . Due to the Lemma 2.3 we have 
( )log ,

limsup 0
r

T r w
r

+

→∞
> , it 

contradicts the assumption. 
○ Assume one of 1jz +  and 1jz −  is a pole of ( )w z  with multiplicity  

( )r r h≥ . 
Iterating (2.3) as before we will know that jz  is a pole of ( )2w z + with mul-

tiplicity k or jz  is a pole of ( )2w z −  with multiplicity k, so 

( ) ( )

( ) ( )

1

1, 2, 1

1 2, 1 ,

ln r n r w O
w b r k

n r w O
m

 
≤ + + − + 

≤ + +

 

since r h≥  and h ml≥ . By Lemma 2.3, we also have  
( )log ,

limsup 0
r

T r w
r

+

→∞
> . This is a contradiction, so 

( )( ) ( )( )deg , deg , .ˆ
w wP z w m Q z w> +  

Case 2. Assume that 
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( )( ) ( )( )deg , deg , .ˆ
w wP z w k m wQ z≥ + +  

We also let jz z=  be a generic zero of ( ) ( )1w z b z−  of order l , it’s easy to 
see that jz z=  is a pole of ( ) ( )1 1w z w z+ −  with multiplicity ( )h ml l≥ > . It 
indicates that at least one of 1jz +  and 1jz −  is a pole of ( )w z . By this time, 
we also expand into several subcases: 
○ Assume 1jz +  is a pole of ( )w z  with multiplicity ( )r r h<  and 1jz −  is 

a pole of ( )w z  with multiplicity h r− . Shifting (2.3) forward and back-
ward and we can deduce that ( )w z  has a pole of order ( )p q r−  at 2jz +  
and a pole of order ( )( )p q h r− −  at 2jz − . Thus, we have 

( ) ( ) ( )

( ) ( )

1

1, 2, 1

1 2, 1 ,

ln r n r w O
w b h p q h

n r w O
m

 
≤ + + − + − 

≤ + +

 

since h ml l≥ > . Combining with the Lemma 2.3 and we will get 

( )log ,
limsup 0

r

T r w
r

+

→∞
>  

which is a contradiction. 
○ Assume one of 1jz +  and 1jz −  is a pole of ( )w z  with multiplicity  

( )r r h≥ . By iterating (2.3) as before, we have that jz  is a pole of ( )2w z +  
with multiplicity ( )p q r−  or jz  is a pole of ( )2w z −  with multiplicity  
( )p q r− , so 

( ) ( ) ( )

( ) ( )

1

1, 2, 1

1 2, 1 ,

ln r n r w O
w b r p q r

n r w O
m

 
≤ + + − + − 

≤ + +

 

since r h≥  and h ml≥ . Following from the Lemma 2.3 and we will obtain 
( )log ,

limsup 0
r

T r w
r

+

→∞
> . This is a contradiction, so 

( )( ) ( )( )deg , deg , .ˆ
w wP z w k m wQ z< + +  

In conclusion, we have proved the Lemma 2.5. 

3. The Proof of Theorem 1.3  

For the equation (1.1), we proceed to prove that ( )( )deg , 2 2w R z w k≤ + . Tak-
ing the Nevanlinna characteristic function of both sides of (1.1), we have 

( ) ( ) ( ) ( )
( )

( )( )( ) ( ) ( ) ( )

, 1 1

, , deg , log

k

w

w z
T r w z w z a z

w z

T r R z w z R T r w O r

 


′ 
+ − +   

 

= = +


 
   

since the coefficients of ( ),R z w  and ( )a z  are rational functions. Further-
more, in view of Lemma 2.2 and the lemma on the logarithmic derivative, 
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( )( ) ( )

( )( ) ( )( ) ( )
( )

( )
( ) ( )

( ) ( )
( ) ( )

deg , ,

, 1 , 1 , , ,

2 , , , .

w

k k

R z w T r w

w z w z
T r w z T r w z m r N r S r w

w z w z

w z
T r w kN r S r w

w z

   ′ ′   
   ≤ + + − + + +               

′ 
≤ + +  

 

(3.1) 

We can see that 
( )
( )

w z
w z
′

 has a pole in jz z=  if and only if ( )w z  has a pole or 

zero in jz z= , so 

( )
( ) ( )( ) ( )

1, , , .
w z

N r N r w z N r
w z w z
′   

≤ +      
   

           (3.2) 

Together with (3.1) and (3.2), we have 

( )( ) ( ) ( ) ( ) ( )deg , , 2 , , ,w R z w T r w k T r w S r w≤ + +  

and thus ( )( )deg , 2 2w R z w k≤ + . 
Next, let us complete the proof of the Theorem 1.3. If ( )( )deg , 0w Q z w = , it 

follows from Lemma 2.4 that ( )( )deg , 1w P z w k≤ + . When 
( )( )1 deg , 2 2w Q z w k≤ ≤ + , 

we consider the following two cases. 
Case 1. ( ) 0w z =  is not a root of ( )( ),Q z w z . 
Subcase 1.1. Assume that ( )deg 1w Q = , without loss of generality, we set 

( )( ) ( ) ( )1,Q z w z w z b z= − , where ( )1 0b z ≠  is a rational function. Thus (1.1) 
can be rewritten as 

( ) ( ) ( ) ( )
( )

( )( )
( ) ( )1

,
1 1 .

k P z w zw z
w z w z a z

w z w z b z
′ 

+ − + =   − 
        (3.3)  

It is easy to see that ( )1b z  is not a solution of (3.3), so the first condition of 
Lemma 2.3 is satisfied. Suppose that 

( )( ) ( )deg , 2w P z w k k N +≥ + ∈  

and that jz  is a generic zero of ( ) ( )1w z b z−  with multiplicity l . It follows 
that ( ) ( )1 1w z w z+ −  has a pole at jz z=  of order at least l .  

If 1jz +  is a pole of ( )w z  with multiplicity ( )0r r l< <  and 1jz −  is a 
pole of ( )w z  with multiplicity l r− . By Shifting (3.3) up, we have 

( ) ( ) ( ) ( )
( )

( )( )
( ) ( )1

1, 11
2 1 ,

1 1 1

k P z w zw z
w z w z a z

w z w z b z
+ +′ +

+ + + =  + + − + 
    (3.4)  

and thus ( )w z  has a pole of order ( )1k r+  at 2jz z= + . Similarly, from (3.3) 
one can obtain that  

( ) ( ) ( ) ( )
( )

( )( )
( ) ( )1

1, 11
2 1

1 1 1

k P z w zw z
w z w z a z

w z w z b z
− −′ −

− + − =  − − − − 
     (3.5)  

and that ( )w z  has a pole of order ( )( )1k l r+ −  at 2jz z= − . Therefore, 
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( ) ( ) ( )

( ) ( )

1

1, 2, 1
1

1 2, 1 .
3

ln r n r w O
w b l k l

n r w O

 
≤ + + − + + 

≤ + +

 

Combining with the Lemma 2.3 and we will get 
( )log ,

limsup 0
r

T r w
r

+

→∞
> , which 

contradicts to the fact in Theorem 1.3. 
If 1jz +  or 1jz −  is a pole of ( )w z  with multiplicity ( )r r h≥ , it follows 

from (3.4) and (3.5) that jz  is a pole of ( )2w z +  with multiplicity ( )1k r+  
or jz  is a pole of ( )2w z −  with multiplicity ( )1k r+ , then we can also ob-
tain 

( ) ( )
1

1 1, 2, 1 ,
3

n r n r w O
w b

 
≤ + + − 

 

which is impossible, so we have 

( )( )deg , 1,w P z w k≤ +  

thus, in view of this fact and Lemma 2.4, the first result (i ) of Theorem 1.3 is 
proved. 

Subcase 1.2. Assume that ( )( )2 deg , 2 2w Q z w z k≤ ≤ + . If ( )( ),Q z w z  of 
(1.1) has at least a non-zero repeated root as a polynomial in ( )w z , it follows 
from Lemma 2.5 that 

( )( ) ( )( ) ( )( )deg , deg , deg , .w w wQ z w P z w k Q z w< < +  

Set ( )( )deg ,w Q z w q= . Now we consider the case of all non-zero roots of 
( )( ),Q z w z  are simple, say ( ) ( )1 , , qb z b z , then (1.1) can be written as 

( ) ( ) ( ) ( )
( )

( )( )
( ) ( )( ) ( ) ( )( ) ( )1

,
1 1 ,ˆ

k

q

P z w zw z
w z w z a z

w z w z b z w z b z Q z

′ 
+ − + =   − −  

 (3.6) 

where ( )( )ˆ 0Q z ≡/  is a polynomial in z. It is obviously that ( ) ( ) ( )1 2, , , qb z b z b z  
are not solutions of the above equation, so it satisfies the first condition of Lem-
ma 2.3. The aim is to prove the inequality 

( )( ) ( )( ) ( )( )deg , deg , deg , .w w wQ z w P z w k Q z w< ≤ +  

Let ( )1,2, ,i
jz z i q= =   be generic zero of ( ) ( )iw z b z−  with multiplicity 

il . If ( )( ) ( )( )deg , deg ,w wP z w Q z w≤ , considering the zeros of ( ) ( )iw z b z−  of 
(3.6), for example ( )1w b z− , we know that ( ) ( )1 1w z w z+ −  has a pole of or-
der at least 1l  at 1

jz z= . 
Assume 1 1jz +  is a pole of ( )w z  with multiplicity ( )0r r l< <  and 1 1jz −  

is a pole of ( )w z  with multiplicity l r− . Shifting (3.6) forward and backward 
and we can obtain that ( )w z  has a pole of order k at 1 2jz +  and a pole of or-
der k at 1 2jz − . Thus, we have 

( ) ( )
1

1, 2, 1 .
2

ln r n r w O
w b l k

 
≤ + + − + 

             (3.7)       
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Assume 1 1jz +  or 1 1jz −  is a pole of ( )w z  with multiplicity ( )r r l≥ . By 
iterating (3.6) as before, we have that jz  is a pole of ( )2w z +  with multiplic-
ity k or jz  is a pole of ( )2w z −  with multiplicity k, we also have 

( ) ( )
1

1, 2, 1 .ln r n r w O
w b r k

 
≤ + + − + 

              (3.8) 

Similarly, we can also obtain (3.7) and (3.8) for any 2,3, ,i q=  . So, we get 

( )log ,
limsup 0

r

T r w
r

+

→∞
>  through the Lemma 2.3, which is a contradiction. 

Consequently, we obtain ( )( ) ( )( )deg , deg ,w wP z w Q z w> . 

Next, we turn to the proof of another side of the inequality, that is 

( )( ) ( )( ) ( )( ){ }deg , deg , min deg , ,2 2 .w w wP z w Q z w k P z w k k≤ + ≤ + +  

Assume that ( )( ) ( )( )deg , deg ,w wP z w Q z w k> +  and let 1
jz  be a generic zero of 

( ) ( )1w z b z−  with multiplicity 1l . From (3.6), we know that ( ) ( )1 1w z w z+ −  
has a pole of order at least 1l  in 1

jz z= . Here we only consider the case of 
1 1jz +  is a pole of ( )w z  with multiplicity at least 1l . By shifting (3.6) up, 

( ) ( ) ( ) ( )
( )
( )( )

( ) ( )( ) ( ) ( )( ) ( )1

1
2 1

1

1, 1
.ˆ1 1 1 1 1

k

q

w z
w z w z a z

w z

P z w z

w z b z w z b z Q z

′ +
+ + +   + 

+ +
=

+ − + + − + +

 

It follows that 1 2jz z= +  is a pole of ( )w z  with multiplicity at least 1kl , and 
thus 

( ) ( ) ( ) ( )1

1 1 1

1 1, 2, 1 2, 1 ,
2

ln r n r w O n r w O
w b l kl

 
≤ + + ≤ + + − + 

 

since k N +∈ . Lemma 2.3 indicates that 
( )log ,

limsup 0
r

T r w
r

+

→∞
> , which con-

tradicts the assumption. Therefore, the result 

( )( ) ( )( ) ( )( )deg , deg , deg ,w w wQ z w P z w k Q z w< ≤ +  

is proved. 
Case 2. ( ) 0w z =  is a root of ( )( ),Q z w z . We shall prove that ( ) 0w z =  is 

a zero of ( ),Q z w  with the multiplicity at most k. Suppose that  
( ) ( ) ( ), ,mQ z w w z Q z w=  , 1m k≥ +  and ( ),Q z w  is a polynomial in ( )w z  

with degree at most 1k + . Then (1.1) can be rewritten as 

( ) ( ) ( ) ( )
( )

( )( )
( ) ( )( )

,
1 1 .

,

k

m

P z w zw z
w z w z a z

w z w z Q z w z
′ 

+ − + =  
  

       (3.9) 

Let jz  be a generic zero of ( )w z  with multiplicity l . Then jz  is a pole of 
( ) ( )1 1w z w z+ −  with multiplicity at lease ml  since 1m k≥ + . Without loss 

of generality, we only consider the case when ( )1w z +  has a pole of order ml  
at jz z= . By shifting (3.9) up, one has 
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( ) ( ) ( ) ( )
( )

( )( )
( ) ( )( )

1, 11
2 1 .

1 1 1, 1

k

m

P z w zw z
w z w z a z

w z w z Q z w z
+ +′ +

+ + + =  + + + +  

  (3.10) 

If ( )( ) ( )( )deg , deg ,w wP z w m z wQ≤ +  , it follows from the above equation 
that jz  is a pole of ( )2w z +  with multiplicity l k+ , and thus ( )3jw z +  
could be finite. This means that 

( ) ( )1, 2, 1 ,ln r n r w O
w ml k l

  ≤ + +  + + 
 

where 1 1
1 3

l
ml k l m

< <
+ + +

. Notice that ( ) 0w z =  is not a solution of (3.9). 

Using Lemma 2.3, we can obtain ( )log ,
limsup 0

r

T r w
r

+

→∞
> , which is a contradic-

tion. 
If ( )( ) ( )( )deg , deg ,w wP z w Q z w i= +  for 1 i k≤ ≤ , it follows from (3.10) that 

jz  is a pole of ( )2w z +  with multiplicity iml l+ . Hence, 

( ) ( ) ( )1 1, 2, 1
1 1

n r n r w O
w i m

  ≤ + +  + + 
, 

where 
( )

1 1
1 1 3i m

<
+ +

. On the basis of Lemma 2.3 we can also get a contradic-

tion. This completes the proof of Theorem 1.3. 
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