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Abstract 
The study investigated the seasonal effects of weather elements on water table 
fluctuations in drinking wells in Nimikoro and Tankoro Chiefdoms in Kono 
District, Eastern Sierra Leone. The study specifically determined the trends in 
precipitation, air temperature and relative humidity relative to water table 
depth and water volume in both manually dug and mechanically drilled water 
wells in the chiefdoms. The key objective was to provide a clear guide on sus-
tainable well development and operation in the study area and beyond. To do 
so, the depth of each well was taken and the water table measured. Also, data 
on key weather elements such as precipitation, air temperature and relative 
humidity were collected on the 15th of every month for a period of one year. 
The data were analyzed on Excel, SPSS and ArcGIS platforms for monthly 
and seasonal trends in the time-space fabric. The results showed that the 
depth to water table was high in the dries (small well water volume) and low 
in the rains (large well water volume) for both manually dug and mechani-
cally drilled wells. Well water temperature increased as temperature increased 
during the dry season but decreased as temperature decreased during the 
rainy season. The study showed that weather elements such as precipitation 
and temperature had direct impact on groundwater availability. This is criti-
cal for groundwater development and management in the study area and in 
Sierra Leone at large. 
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1. Introduction 

Water is so much so useful for nearly everything, including domestic, agricul-
tural, industrial and ecological purposes. It is the third most abundant molecule 
in the universe, trailing behind only hydrogen and carbon monoxide [1]. Only 
2.5% of the water on earth is fresh and nearly all of it (98.8%) occurs as 
ice/glacier or groundwater. Groundwater accounts for 99% of the freshwater on 
earth. It is key for food production, industrial growth and national wealth [2] 
[3]. 

The primary sources of water are groundwater and surface water [4]. If col-
lected and stored, precipitation can be a good source of water too. Surface water 
(such as lake, reservoir, stream and river) is the source of drinking water for 
some 50% of the population in Sierra Leone. This source of water is generally 
poor in quality and therefore requires treatment. Groundwater, the source of 
water for another 30% of the population, is relatively of better quality. 

Water wells are variously used to harness groundwater for drinking and other 
purposes. When hand dug, water well can be less than 15 m deep. If, however, 
machine drilled, water well can be over 30 m deep. Water wells driven in alluvial 
or glacial sediments are typically 30 m deep. About 97% of the available freshwater 
in the world is from the ground, providing water for individual, community, na-
tional needs. Some wells are drilled for heating or cooling purposes. Wells dug for 
water scientific studies are called monitoring wells [5]. Wood-lined wells are 
known from the early Neolithic Linear Pottery Culture, as found in Kückhoven 
(dated 5090 BC), in Eythra (dated 5200 BC) in Schletz and in Austria [6].  

Climate change is posing a considerable threat to the ecological environment 
we live in today. It has changed the normal patterns of temperature, rainfall, sea 
level rise, etc. Temperature is reported to have increased by 2˚C - 4.8˚C in this 
century alone [7]. There is also evidence of increasing frequency and intensity of 
extreme heat and precipitation events. While precipitation is increasing in high 
latitude zones, it is decreasing in subtropical regions [7]. Groundwater is mainly 
infiltration, percolation and storage of water into the ground following precipi-
tation or snowmelt [8].  

The amount of water that seeps through the soil is a function of the land sur-
face characteristics. In coarse materials such as sand or gravel, as much as 40% - 
50% of rainwater and snowmelt can seep into the ground. For fine materials 
such as clay, water seepage can be as low as 5%. The rest of the rainwater flows 
in streams as runoff or returns to the atmosphere as water vapor via evaporation. 
Water is mostly lost to evapotranspiration during warm periods and to runoff 
during cold periods. Rainwater or snowmelt seeps into the ground and flows 
down under gravity until saturation point is reached. The saturated zone is 
called aquifer, on top of which seats the water table. The water table rises/falls in 
response to water recharge or discharge [9]. Increase in temperature could also 
increase the water table during winter period [10], suggesting that water table 
fluctuation is also driven by climatic factors. Important among these are the in-
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tensity of precipitation, air temperature, evapotranspiration and runoff. Hy-
drology and relief also influence water table fluctuations in a given area [11]. 
Thus, groundwater regimes can be driven by precipitation, temperature and li-
thology of an area [12].  

Rainwater is the main source of groundwater and the variability of rainfall 
particularly influences groundwater storage [13] [14]. The seasonality of rainfall 
affects the amount of water stored in an aquifer [15] [16]. Variations in rainfall 
in time-space fabric affect surface water and groundwater storage. Aquifers rich 
in groundwater are a reliable source of water for domestic use [17] [18]. Basef-
low from groundwater discharge also sustains streamflow in the dry season [19] 
[20]. The combined use of surface water and groundwater is good ecological 
sustainability [8] [21]. High evapotranspiration accelerates groundwater deple-
tion in the dry season in arid/semi-arid regions [22], negatively affecting well 
productivity [23] [24] [25].  

The purpose of this study was to investigate the influence of the weather ele-
ments of precipitation, temperature and relative humidity on water table fluctu-
ation in portable wells in Kono District, Eastern Sierra Leone. The objectives 
were to: 1) determine the trends in precipitation, temperature and relative hu-
midity in 2011-2021; and 2) relate these trends to those in depth to water table 
and water volume in manually dug and mechanically drilled wells in the study 
area. This study is critical for efficient management of portable wells in the study 
area and beyond.  

2. Methods and Materials 
2.1. Study Area 

Kono District is in the Eastern Province of Sierra Leone and it lies within lati-
tude 8˚44'02.44'' and longitude 10˚58'48.00''. There are 14 chiefdoms in this dis-
trict, two of which were covered in this study. The two chiefdoms (Nimikoro and 
Tankoro) are the main agricultural zones, cultivating various crops and equally so 
rearing various animals. These chiefdoms have also been the main source of di-
amonds since the 1900s. The diamond mine has over the decades attracted 
countless number of youths into the chiefdoms, engaged in primarily in artisanal 
small-scale mining of the highly precious diamond and gold minerals. 

Kono District, with Koidu as the district headquarter town, borders with the 
Republic of Guinea [26]. Diamonds were first discovered in Yengema (which 
is in Jaiama Nimikoro) in the 1930s. This was the start of both artisanal and 
small-scale mining of the so-called alluvial diamond in Jaiama Nimikoro Chief-
dom. This later expanded to include Tankoro Chiefdom. 

The climate in the study area is humid with unimodal precipitation [26]. The 
annual average temperature, precipitation and relative humidity are respectively 
24.4˚C, 1694 mm and 87.3% [27].  

In Nimikoro Chiefdom, the mechanically-drilled hand-pumped well investi-
gated was located at 8˚26'38.409''W and 11˚1'21.021''N. Then the manually-dug 
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hand-drawn well was located at 8˚36'38.739''W and 11˚1'22.669''N. In the conti-
guous Tankoro Chiefdom, the mechanically-drilled hand-pumped well lied at 
8˚37'53.500''W and 10˚59'24.200''N, and the manually-dug hand-drawn well at 
8˚37'56.000''W and 10˚59'28.400''N in Figure 1. 
 

  
 

 

Figure 1. A map of Sierra Leone showing Kono District and the Nimikoro and Tankoro Chiefdoms. NMA = manually dug and oper-
ated well in Nimikoro Chiefdom; NME = mechanically drilled and operated well in Nimikoro Chiefdom; TMA = manually dug and 
operated well in Tankoro Chiefdom; and TME = mechanically drilled and operated well in Tankoro Chiefdom. 
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2.2. Depth to Water Table and Well Water Volume 

Before collecting water samples, well diameter, well depth and depth to water ta-
ble of each well were measured. The well diameter was measured using the sim-
ple measuring tape. The well depth was measured using the tape measure and 
weight method. Here, a 1.0 kg lead ball was tied to a long tape measure and then 
sank into the well until there was no more tension in the tape measure. The 
point at which there was a loss of tension suggested that lead ball has rested at 
the bottom of the well and the measurement therefore taken at that point. For 
the depth to water table, also the same tape measure and weight method was 
used. Here, however, the weight was replaced with fishing float. The measure of 
depth to water table was done every month for the 12 months in 2021. Note that 
this measurement was done before purging the water well. 

2.3. Well Water Sampling 

To determine well water temperature, water samples were collected from four 
wells in the study area, two manually dug and operated wells and two mechani-
cally drilled and operated wells. The well water samples were collected on the 5th 
of every month in 2021. A set of water samples was collected at a time, one be-
fore and another after purging [28]. The well water temperature was measured 
in situ using two mercury thermometers for comparison. This was repeated 
three times at each well site and the average reading recorded. 

2.4. Climatic Data 

Data for precipitation (mm), temperature (˚C) and relative humidity (%) for the 
period 2011-2021 were obtained from the Sierra Leone Meteorological and Cli-
mate Agency [27]. 

2.5. Data Analysis 

The collected data, including that SLMCA data, were screened for outliers and 
analyzed in Microsoft Excel, Statistical Package for Social Sciences (SPSS) and 
Geographic Information System (GIS) ArcMap. 

The Coefficient of Determinant (r2) was used to determine the interdepen-
dence of the variables, Coefficient of Variation (CV) to assess the variability in 
the data, and T-test to determine the significance correlation at p < 0.05. The 
results were plotted in time-series and spatial distributions.  

3. Results 
3.1. Climatic Variables 

The dynamics of the climatic variables of precipitation, temperature and relative 
humidity are plotted in time-series in Figure 2. The time-series plot of the pre-
cipitation averaged for 2011-2021 (green line) peaked in July followed by Au-
gust. That for the 2021 was peaked in August, followed by September. Given the 
months before and after the peak precipitations of the 2011-2021 average and for 
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2021, it was clear that the period of high rains in the study area was June, July 
and August. Equally so, the period of low rains was December, January and 
February. 

The period of high air temperatures is March, April and May and that of low 
temperatures was December, January and February. While it coincided with 
precipitation for the period of low temperatures, it was vastly different for the 
period of high temperatures. 

Relative humidity was a bit hard to explain, especially for the 2021 dynamics. 
Going, however, by the average trend for 2011-2021, the period of high relative 
humidity was July, August and September and that of low relative humidity was 
January, February and March. For both high and low relative humidity, it oc-
curred later than precipitation by one month. The implications of the dynamics 
of the climatic variables for water table and well water volume can be critical for 
groundwater availability in the study area. 
 

 

Figure 2. Time-series plots of monthly precipitation, air temperature and relative humid-
ity for 2021 and 2011-2021 average for the study area. 
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3.2. Water Well Parameters 

The depth to water table, well water volume and their correlativity are also plot-
ted as time-series in Figure 3 for both manually dug and mechanically drilled 
wells in the study area. The depth to water table was highest (low water table) in 
May for mechanically drilled well, April for manually dug well and also May for 
the average for the study area. It was lowest (high water table) in September for 
the two well types in the study area and the average. 

For well water volume, it was highest in September (when depth to water table 
was lowest) and lowest (when depth to water table was highest) in May for the 
mechanically drilled well and the average, and in April for manually dug well in 
the study area. 

It then implied that the depth to water and well water volume were negatively 
correlated, very so clearly confirmed in the bottom plots of Figure 3. Strikingly, 
the correlations ware perfect for both manually dug wells and mechanically 
drilled wells. 

3.3. Well Water Temperature 

For both mechanically drilled and manually dug wells in the study area, water 
temperatures were generally higher for unpurge than purged wells (Figure 4). 
Well water temperatures were highest in January and lowest in August. This was 
quite different from the trend in air temperature, but nearly the reverse of the in 
precipitation the study area. For mechanically drilled wells (which were general-
ly deeper than manually dug wells), water temperatures were highest in February 
and lowest in September (one month delay from the manually dug wells). This 
suggested that precipitation had a direct effect on well water temperature in the 
study area. 

3.4. Spatial Distribution 

The plot of well water temperature over the space of the study area in Figure 5 
shows that temperatures were lowest for manually dug wells and highest for 
mechanically drilled wells. But there was the case (see left side of the plot) where 
water temperature in manually dug well was higher than in mechanically drilled 
well. This suggested that well type was not specifically the sole factor driving well 
water temperature. Factors like the location and possible the depth affected well 
water temperature in the study area. 

4. Discussions 
4.1. Precipitation and Water Table 

Precipitation had the most effect on water table and well water volume in the 
study area. When precipitation was high, water table and indeed well water vo-
lume in the well were high too. The depth to water table was shortest, implying 
that there was substantial amount of water in the well. When precipitation was 
low on the other hand, water table and well water volume were low too. It implied  
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Figure 3. Time-series plots of monthly Depth to Water Table (DWT) and Well Water 
Volume (WWV) and the corresponding correlations for manually dug (ME) and me-
chanically drilled (MA) wells in the study area. 
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Figure 4. Time-series plots of monthly water temperature (Temp) before (UP) and after 
(PU) purging of manually dug (MA) & mechanically drilled (ME) wells in the study area. 
 

 

Figure 5. Spatial distribution of average monthly well water temperature (Temp) of in the 
study area. 
 
that the depth to water table was longest and the corresponding amount of water 
in the well smallest. There was general one month delay in the response of water 
table and well water volume to precipitation in the study area [29]. The result 
sowed that direct correlations existed among water table, well water volume and 
precipitation in the study area. 
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4.2. Temperature and Water Table 

Air temperature in the study area was highest in April-May and lowest in Janu-
ary. Well water temperature on the other hand was generally highest in January 
and lowest in August. Then water table and well water volume were highest in 
September and lowest in April-May. It suggested that while air temperature was 
largely not in phase with precipitation in the study area, well water temperature 
was generally in reverse phase with precipitation. This implied that well water 
temperature (and not air temperature) was negatively correlated with water table 
and well water volume in the study area. With the coming of rains, well water 
temperature dropped and the water table and well water volume increased, and 
vice versa. 

High air temperatures triggered precipitation months later in the region. How-
ever, with high well water temperatures, there was the possibility of groundwater 
evaporation and vice versa. The implication was that the potential for ground-
water availability was low with high water temperatures and high with low well 
water temperatures. 

4.3. Relative Humidity and Water Table 

Relative humidity was lowest in March and highest in August, similar to preci-
pitation but different from air temperature for peak values. In terms of relative 
humidity, water table delayed by 1 - 2 months for the lowest values but was al-
most in tune for the highest values. This suggested that relative humidity was 
not entirely a determining factor of the dynamics of water and well water vo-
lume in the study area. Generally, low relative humidity could cause more eva-
poration of water and vice versa. In this sense, relative humidity enhanced 
groundwater potential in its high period of August and limited it in its low pe-
riod of March. 

5. Conclusion 

The study showed that precipitation was the principal driving factor of the dy-
namics of water table, well water volume and hence groundwater potential in the 
study area. The other climatic factors of air temperature and relative humidity 
were also largely dependent on precipitation. Irrespectively, climatic factors im-
portantly determined the dynamics of water table (or the depth to water table), 
well water volume and groundwater potential in the study area. 
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