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Abstract 
Reinsurance is an effective risk management tool for insurers to stabilize their 
profitability. In a typical reinsurance treaty, an insurer cedes part of the loss 
to a reinsurer. As the insurer faces an increasing number of total losses in the 
insurance market, the insurer might expect the reinsurer to bear an increas-
ing proportion of the total loss, that is the insurer might expect the reinsurer 
to pay an increasing proportion of the total claim amount when he faces an 
increasing number of total claims in the insurance market. Motivated by this, 
we study the optimal reinsurance problem under the Vajda condition. To 
prevent moral hazard and reflect the spirit of reinsurance, we assume that the 
retained loss function is increasing and the ceded loss function satisfies the 
Vajda condition. We derive the explicit expression of the optimal reinsurance 
under the TVaR risk measure and TVaR premium principle from the pers-
pective of both an insurer and a reinsurer. Our results show that the explicit 
expression of the optimal reinsurance is in the form of two or three intercon-
nected line segments. Under an additional mild constraint, we get the optimal 
parameters and find the optimal reinsurance strategy is full reinsurance, no 
reinsurance, stop loss reinsurance, or quota-share reinsurance. Finally, we 
gave an example to analyze the impact of the weighting factor on optimal 
reinsurance. 
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1. Introduction 

Reinsurance is one of the effective means for insurers to control their risks. To 
prevent losses or even bankruptcy due to huge risks, the insurer transfers a por-
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tion of the risk to the reinsurer, while the insurer is required to pay a premium 
accordingly. Over the past decades, the optimal reinsurance strategy has always 
been an issue of great concern. With the optimization objective of minimizing 
the VaR of the insurer’s risk, Borch [1] obtains that the optimal reinsurance 
strategy under the expected premium principle is stop-loss reinsurance. With 
the optimization objective of maximizing the expected utility of the insurer’s ul-
timate wealth, Arrow [2] reaches the same conclusion as Borch, i.e., the optimal 
reinsurance strategy is stop-loss reinsurance. Since Borch and Arrow’s seminal 
study, many papers have expanded from the perspective of changing premium 
principles or choosing different optimization criteria. In general, most of the 
papers studied the optimal reinsurance strategy from the perspective of the in-
surer or the reinsurer. For instance, Cai et al. [3] minimize the insurer’s VaR and 
CTE and derive that the optimal reinsurance strategy can be stop-loss reinsur-
ance, quota-share reinsurance, or change-loss reinsurance. Zheng et al. [4] study 
the optimal reinsurance strategy under the distortion risk measure and expect 
value premium principle for the reinsurer. Kaluszka [5] derives optimal rein-
surance under premium principles based on the mean and variance of the rein-
surer’s share of the total claim amount. However, in insurance practice, both 
parties should negotiate the reinsurance contract and have conflicting interests. 
The optimal reinsurance strategy that the insurer believes may not be optimal 
for the reinsurer. So it is necessary to study the optimal reinsurance strategy 
based on the perspective of both the insurer and the reinsurer, see Liu et al. [6] 
and Fang et al. [7]. In this paper, we consider the interests of both parties and 
study the optimal reinsurance strategy under certain constraints. 

It is typically necessary for both the insurer and the reinsurer to pay more for 
a bigger loss in order to avoid moral hazard. As a result, numerous studies ex-
amine the optimal reinsurance strategy when incentives are considered. For in-
stance, Cai et al. [8] and Jiang et al. [9] investigate the optimal reinsurance strat-
egy under the distortion risk measure from the viewpoints of both insurers and 
reinsurers. In reality, though, the insurer tends to ask the reinsurer to cover an 
increasing percentage of the entire amount of claims when the overall number of 
claims faced rises. Vajda [10] suggest the Vajda condition, assuming that the 
proportion paid by reinsurers grows with the increase in risk, to represent the 
original design of reinsurance to protect the insurer. Chi et al. [11] study the op-
timal reinsurance strategy under the Vajda condition from the perspective of the 
insurer. 

In this paper, we study the optimal reinsurance strategy under the TVaR risk 
measure and TVaR premium principle. The three main implications of this 
study are as follows. Firstly, most of the existing literature assumes that the set of 
ceded loss functions can only avoid moral hazard and cannot reflect the spirit of 
reinsurance. In this study, the set of ceded loss functions can successfully avoid 
moral hazard and accurately capture the essence of reinsurance. Secondly, whe-
reas the majority of earlier research looked at the optimal reinsurance with VaR 
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risk measure from the insurer’s perspective, this study examines the optimal 
reinsurance with TVaR risk measure while taking into account the interests of 
both the insurer and the reinsurer. Finally, the expected value premium prin-
ciple is typically chosen in prior works for calculation convenience, however, 
this study picks the TVaR premium principle since it is consistent and contains a 
variety of different premium principles. 

The rest of the paper is organized as follows. In section 2, we will introduce 
some preliminaries and basic knowledge. The optimal reinsurance strategy un-
der TVaR risk measure and TVaR premium principle are given in Section 3. 
Section 4 gives some numerical examples to further illustrate our results. Section 
5 concludes the paper and puts forward the research direction in the future. 

2. Preliminaries 

Reinsurance contracts are a common strategy for managing risk in the financial 
markets. We assume that the initial claim faced by the insurer in a given period 
is a non-negative random variable X on the probability space and X has a finite 
expectation. After underwriting, the insurer’s safety may be jeopardized due to 
the excessive risk of insurance contract claims, etc. For their safety, insurers will 
consider spreading the risk. Thus, reinsurance arises to meet the needs of the 
insurer. By entering into a reinsurance contract with a reinsurer, the insurer 
cedes a portion of the risk ( )f X  to the reinsurer, while the reinsurer charges 
the insurer a fee, also known as a reinsurance premium ( )f XΠ . 

In the case of reinsurance, the cumulative distribution function of X is written as 
( ) { }F x X x= ≤ , and the survival function of X is written as ( ) { }S x X x= > . 
( )f X  is the loss allocated to the reinsurer, and ( ) ( )fR X X f X= −  is the 

part reserved by the insurer. Functions ( )f x  and ( )fR x  are usually referred 
to as the ceded loss function and the retained loss function, respectively. The in-
surer’s risk is represented by ( )fT X  with the following expression 

( ) ( ) ( ).f f fT X R X X= +Π                  (2.1) 

Most papers assume that the set of ceded loss functions is monotonically in-
creasing and 1-Lipschitz continuous for both the ceded loss function and the re-
tained loss function. This means that as the amount of claims increases, the 
amount of benefits borne by both the insurer and the reinsurer will increase. At 
this point, the reinsurance parties are incentive compatible, which can effectively 
prevent the occurrence of moral hazard. However, it does not reflect the spirit of 
reinsurance that protects insurers very well. For this reason, this paper follows 
Vajda [10] and assumes that both the insurer’s retained loss and the proportion 
paid by the reinsurer are increasing in indemnity. Therefore, we need to find the 
optimal reinsurance strategy in the following set of ceded loss functions. 

( ) ( ) ( )
: 0 : and are increasing inf

f x
f x x R x x

x
  = ≤ ≤ 
  

C       (2.2) 

Definition 2.1. (Vajda condition). If ( )f x  is the indemnity function and 
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the loss is depicted by a non-negative random variable X, the Vajda condition 

refers to the increasingness of 
( )f x
x

 on the support of X. 

This condition, joint with the no-sabotage condition, implies that the retained 

risk ( )fR x  is increasing and the relative retained risk 
( )x f x

x
−

 is decreasing  

on the support of X. The functions satisfying the Vajda condition are called the 
Vajda functions. For instance, convex functions are Vajda functions. It is worth 
noting that Vajda functions could effectively reflect the spirit of reinsurance of 
protecting the insurer. That is, as the insurer faces an increasing number of total 
risk X, the reinsurer will bear an increasing proportion of the total risk X of the 
insurer to protect the insurer. 

The total risk faced by the insurer is a random variable that cannot be quanti-
fied, so we use risk measurement to measure the risk faced by the insurer. The 
optimal reinsurance problem under VaR risk measure can be found in Cai et al. 
[12] and the references therein. Compared to the VaR risk measure, TVaR risk 
measure has the following advantages: Firstly, TVaR risk measure satisfies sub-
additivity. However, VaR risk measure does not satisfy subadditivity. Secondly, 
TVaR risk measure takes into account tail losses and represents the average level 
of excess losses, which reflects the size of the average losses of VaR risk measure 
and better reflects the potential risk value. Finally, VaR risk measure is a special 
case of TVaR risk measure. The mathematical definition of TVaR risk measure 
and the expressions are given as follows. 

Definition 2.2. TVaR of random variable X with confidence level ( )0,1p∈  
is defined as 

( ) ( )11: d .
1p qp

TVaR X VaR X q
p

=
− ∫                (2.3) 

Note that ( )pTVaR X  can also be written as 

( ) ( ) ( )( )1: .
1p p pTVaR X VaR X E X VaR X

p +
 = + − −

       (2.4) 

TVaR is translation invariant. For any C R∈ ,  
( ) ( )p pTVaR X C TVaR X C+ = +  

TVaR is homologous additive. If 1 2,Z Z  are non decreasing functions of 
common random variables in the sense of homology, then  

( ) ( ) ( )1 2 1 2p p pTVaR Z Z TVaR Z TVaR Z+ = + . 
Most of the previous studies on optimal reinsurance problem are restricted to 

a specific reinsurance premium principle. For example, it is very common to as-
sume that the reinsurance premium is calculated according to the expected value 
premium principle. However, this paper uses a more general premium principle, 
the TVaR premium principle. Specifically, the expected premium principle is a 
special case of the TVaR premium principle. TVaR premium principle is defined 
as follows. 

Definition 2.3. For random variable X, TVaR premium principle is defined as 
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follows 

( ) ( )1 ,XP TVaR Xγδ= +                    (2.5) 

where 0δ ≥  is the relative safety loading. 
In this paper, we assume that the premium principle is the TVaR premium 

principle and derive the optimal form of ceded loss function. Thus, we transform 
the infinite dimensional optimal reinsurance problem into a finite dimensional 
optimal reinsurance problem and derive the explicit expressions for the optimal 
reinsurance treaties. To take into account the interests of both the insurer and 
the reinsurer, it is assumed that the insurer and the reinsurer use TVaRα  and 
TVaRβ  to measure risk, where ( ), 0,1α β ∈  and generally γ α< , γ β< . Gen-
erally, an approach to identify Pareto-optimal reinsurance treaties is to minimize 
the convex combination of both the insurer’s loss and the reinsurer’s loss. Thus, 
we obtain a Pareto-optimal reinsurance treaty by minimizing the convex com-
bination of the TVaRs of the insurer and the reinsurer. Next, we state the optim-
al reinsurance problem that is the focus of this paper. 

( ) ( )( ) ( ) ( ) ( )( )min 1f X f Xf
TVaR X f X P TVaR f X Pα βλ λ

∈
− + + − −

C  
where [ ]0,1λ ∈  is the weight factor. Based on the properties of the TVaR risk 
measure and the definition of the TVaR premium, the optimization problem 
becomes the following 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

min 1

2 1 1 .
f

TVaR X TVaR f X TVaR f X

TVaR f X

α α β

γ

λ λ λ

λ δ
∈

− + −

+ − +

C

 
Denote ( )p pv VaR X=  for ( )0,1p∈  and 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

1

2 1 1 ,

Q f TVaR f X TVaR f X

TVaR f X
α β

γ

λ λ

λ δ

= − + −

+ − +
 

then the optimization problem becomes 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

min 1

2 1 1
f

Q f TVaR f X TVaR f X

TVaR f X

α β

γ

λ λ

λ δ
∈

= − + −

+ − +

C        (2.6) 

With the expression (2.4) for TVaR, we have 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )

1
1

11
1

12 1 1
1

Q f VaR f X E f X VaR f X

VaR f X E f X VaR f X

VaR f X E f X VaR f X

α α

β β

γ γ

λ
α

λ
β

λ δ
γ

+

+

+

  = − + −  − 
  + − + −  − 

  + − + + −  − 

 (2.7) 

3. Pareto-Optimal Reinsurance Strategy 

In the case of 1
2

λ = , the optimal reinsurance treaty have been studied by Cai et 

al. [8]. Next, we give the optimal reinsurance strategy of problem (2.6), where 
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the weight factor 
1 10, ,1
2 2

λ    ∈ ∪     
. This paper only provides the proof of  

Theorem 3.1, while the proof of the other theorems are provided in the supple-
mentary materials. For mathematical convenience, we define the following nota-
tion. Let 

( )( )
0 0 0

0

2 1 1 1, , ,
1 1 1 1

1 , 1 ,
1

m m m n m

s m
s

λ δ λ λ λ
γ β α α

λ λ
β

− + −
= = + − = −

− − − −
−

= + ∆ = −
−  

( )2 2 1 ,t vβλ δ= −  
( )( ) ( )3 2 1 1 1 ,t v v vγ β αλ δ λ λ= − + + − −  
( )( ) ( )4 2 1 1 1 .t v v vγ βλ δ λ λ ∆= − + + − −  

Theorem 3.1. Under the conditions of 1 1
2

λ< ≤  and 0 1β α< ≤ < , the op-

timal ceded loss functions of the optimal reinsurance model (2.6) are given as 
follows. 

(a) If 0m ≥  and 1 0c > , the optimal ceded loss function is ( )* 0f x = . The 
parameter 1 0θ =  is optimal. That is, no reinsurance is the optimal reinsurance 
strategy. The insurer bears all risks themselves and does not sign a reinsurance 
contract. 

(b) If 0m ≥  and 1 0c < , the optimal ceded loss function is ( )*f x x= . The 
parameter 1 1θ =  is optimal. That is, full reinsurance is the optimal reinsurance 
strategy. The insurer does not bear the risk and transfers all risks to the reinsurer. 

(c) If 0m ≥  and 1 0c = , the optimal ceded loss function is ( )*
1f x xθ= , 

where 1θ  can be any constant in [ ]0,1 . That is, quota-share reinsurance is the 
optimal reinsurance strategy. The insurer cedes the risk to the reinsurer in pro-
portion. The proportion depends on parameter 1θ . 

(d) If 0m < , the optimal ceded loss function is ( )
( )
( )

*
, 0

, 0

x v s
f x

x v s
α

β

+

+

 − ≥=  − <
. 

That is, stop-loss reinsurance is the optimal reinsurance strategy. Note that 

( )1 dXv
c m S t t v

α
αλ

∞
= −∫ . Under the condition of 0s ≥ , when risks x vα< , the 

insurer bears all risks themselves and does not sign a reinsurance contract. When 
risk x vα≥ , the insurer only bears risks vα  and divides out remaining risks. 
Under the condition of 0s < , when risks x vβ< , the insurer bears all risks 

themselves and does not sign a reinsurance contract. When risk x vβ≥ , the in-
surer only bears risks vβ  and divides out remaining risks. 

Proof. 

Under the conditions of 1 1
2

λ< ≤  and 0 1β α< ≤ < , recall the definition of 

m0, m, and s, equality (2.7) reduces to 

( ) ( )( ) ( )( ) ( )( )1
0= d d d .t t tQ f m f v X t s f v X t m f v X t

β α

γ β α
+ +∫ ∫ ∫    (3.1) 
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Clearly ( ) ( )f v f vα β≥  and ( ) ( )v f v v f vα α β β− ≥ − , as ( )f x  and  
( )fR x  are nondecreasing for all 0x ≥  and α β≥ . Note that ( )0 v f vα α≤ ≤  

and ( )0 v f vβ β≤ ≤  since ( )0 f x x≤ ≤  for all 0x ≥ . Recall the definition of 
m in (3.2). Equality (2.7) reduces to 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
0 d d d

1 2 1 1 .

f v f v

f X f X f Xf v f v f v
Q f m S t t s S t t m S t t

f v f v f v

β α

γ β α

α β γλ λ λ δ

∞
= + +

− + − + − +

∫ ∫ ∫   (3.2) 

(i) If 0m > , then 0s > . For the above f ∈C , define 

( )

( )
( ) ( )

( )

0, 0 ,
,

, .

x v f v
x v f v v f v x v

J X
f v

x x v
v

α α

α α α α α

α
α

α

 ≤ < −
 − + − ≤ <= 
 ≥

          (3.3) 

Denote 
( )

1

f v
v

α

α

θ = , ( )1d v f vα α= − , we have 

( )
1

1 1

1

0, 0 ,
, ,

, .

x d
J X x d d x v

x x v
α

αθ

≤ <
= − ≤ <
 ≥

                 (3.4) 

where 10 1θ≤ ≤ , 10 d vα≤ ≤ . 
The relationship between ( )f x  and ( )J x  is illustrated by Figure 1. One 

can show that ( )J x ∈C  and ( ) ( )Q f Q J>  for any f ∈C . Indeed, from 
Figure 1, we conclude that for 0x ≥ , ( ) ( )f x J x> . Moreover, since 0m ≥ , 
we have 

 

 

Figure 1. Relationship between ( )f x  and ( )J x  in case (i). 
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( )( ) ( )( )0 0d d ,t tm f v X t m J v X t
β β

γ γ
>∫ ∫  

( )( ) ( )( )d d ,t ts f v X t s J v X t
α α

β β
>∫ ∫  

( )( ) ( )( )1 1
d d .t tm f v X t m J v X t

α α
>∫ ∫  

Hence, it follows immediately from (3.1) that ( ) ( )Q f Q J> , where the in-
equality is strictly hold. If f and J are not identical almost everywhere, which 
means that the optimal reinsurance contract can only take the form of (3.3) in 
case (i). The equivalence of (3.1) implies that ( ) ( )min minf Q f Q J∈ =C . The 
expression of ( )Q J  is as follows. 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )( )

1 0

1 1 1 1

1d d d
1 1

d 1 2 1 1 .

X X Xv v v

Xv

Q J S t t S t t m S t t

S t t v v d v d

α β γ

α

α

α β γ

λ λθ
α β

θ λθ λ λ δ

∞ ∞

∞

− = − + + − −

+ − + − − + − + −

∫ ∫ ∫

∫
(3.5) 

Taking the derivative of ( )Q J  with respect to 1d , we have 

( ) ( ) ( )( )
1

1 2 1 1 0.
Q J

d
λ λ δ

∂
= − − − − + <

∂  
We can imply that ( )Q J  is decreasing in [ ]1 0,d vα∈ , thus, 

( ) ( ) ( )1 1 d .Xv
Q J Q J m S t t v

α
αθ λ

∞ ≥ = −  ∫
 

Taking the derivative of ( )1Q J  with respect to 1θ , we have 

( )1
1

1

.
Q J

c
θ

∂
=

∂  
If 1 0c > , ( )1Q J  is increasing in [ ]1 0,1θ ∈ . In other words, the optimal 

ceded function is ( )* 0f x =  in this situation. 
If 1 0c < , ( )1Q J  is decreasing in [ ]1 0,1θ ∈ . In other words, the optimal 

ceded function is ( )*f x x=  in this situation. 
If 1 0c = , the optimal ceded function is ( )*

1f x xθ= , where 1θ  can be any 
constant in [ ]0,1 . 

(ii) If 0m <  and 0s < , for the above f ∈C , define 

( )
( )

( )( ) ( )
0, 0 ,

, .

x v f v
J X

x v f v x v f v

β β

β β β β

 ≤ < −= 
− − ≥ −

          (3.6) 

Denote ( )1d v f vβ β= − , we have 

( ) 1

1 1

0, 0 ,
, .

x d
J X

x d x d
≤ <

=  − ≥
                  (3.7) 

where 10 d vβ≤ ≤ . 
The relationship between ( )f x  and ( )J x  is illustrated by Figure 2. One 

can show that ( )J x ∈C  and ( ) ( )Q f Q J>  for any f ∈C . Indeed, from 
Figure 2, we conclude that for 0 x vβ≤ ≤ , ( ) ( )f x J x> , and for x vβ> , 
( ) ( )f x J x< . Moreover, since 0m <  and 0s < , we have 
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Figure 2. Relationship between ( )f x  and ( )J x  in case (ii). 

 

( )( ) ( )( )0 0d dt tm f v X t m J v X t
β β

γ γ
>∫ ∫  

( )( ) ( )( )d dt ts f v X t s J v X t
α α

β β
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m J v X t

α α
>∫ ∫  

Hence, it follows immediately from (3.1) that ( ) ( )Q f Q J> , where the in-
equality is strict if f and J are not identical almost everywhere, which means that 
the optimal reinsurance contract can only take the form of (3.6) in case (ii). The 
equivalence of (3.1) implies that ( ) ( )min minf Q f Q J∈ =C . The expression of 
Q(J) is as follows. 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )( )
0

1 1 1

1d d d
1 1

1 2 1 1 .

X X Xv v v
Q J S t t S t t m S t t

v d v d v d

α β γ

α β γ

λ λ
α β

λ λ λ δ

∞ ∞ ∞−
= − + +

− −

− − + − − + − + −

∫ ∫ ∫
(3.8) 

Taking the derivative of ( )Q J  with respect to 1d , we have 

( ) ( )
1

2 1 0
Q J

d
δ λ

∂
= − − <

∂  
We can imply that ( )Q J  is decreasing in 1 0,d vβ ∈   , thus, the optimal 

ceded function is ( ) ( )*f x x vβ +
= −  in this situation. 

(iii) If 0m <  and 0s ≥ , for the above f ∈C , define 

( ) ( )
( )( ) ( )

0, 0 < ,
, .

x v f v
J X

x v f v x v f v
α α

α α α α

 ≤ −=  − − ≥ −
         (3.9) 

Denote ( )1d v f vα α= − , we have 
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( ) 1

1 1

0, 0 ,
, .

x d
J X

x d x d
≤ <

=  − ≥
                 (3.10) 

where 10 d vα≤ ≤ . 
The relationship between ( )f x  and ( )J x  is illustrated by Figure 3. One 

can show that ( )J x ∈C  and ( ) ( )Q f Q J>  for any f ∈C . Indeed, from 
Figure 2, we conclude that for 0 x vα≤ ≤ , ( ) ( )f x J x> , and for x vα> , 
( ) ( )f x J x< . Moreover, since 0m <  and 0s ≥ , we have 

( )( ) ( )( )0 0d dt tm f v X t m J v X t
β β

γ γ
>∫ ∫  

( )( ) ( )( )d dt ts f v X t s J v X t
α α

β β
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m J v X t

α α
>∫ ∫  

Hence, it follows immediately from (3.1) that ( ) ( )Q f Q J> , where the in-
equality is strict if f and J are not identical almost everywhere, which means that 
the optimal reinsurance contract can only take the form of (3.10) in case (iii). 
The equivalence of (3.1) implies that ( ) ( )min minf Q f Q J∈ =C . The expression 
of Q(J) is as follows. 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )( )
0

1 1 1

1d d d
1 1

1 2 1 1 .

X X Xv v v
Q J S t t S t t m S t t

v d v d v d

α β γ

α β γ

λ λ
α β

λ λ λ δ

∞ ∞ ∞−
= − + +

− −

− − + − − + − + −

∫ ∫ ∫   (3.11) 

Taking the derivative of ( )Q J  with respect to 1d , we have 

( ) ( )
1

2 1 0
Q J

d
δ λ

∂
= − − <

∂  
 

 
Figure 3. Relationship between ( )f x  and ( )J x  in case (iii). 
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We can imply that ( )Q J  is decreasing in [ ]1 0,d vα∈ , thus, the optimal 
ceded function is ( ) ( )*f x x vα +

= −  in this situation. The proof of Theorem 3.1 
is completed.   

Theorem 3.2. Under the conditions of 1 1
2

λ< ≤  and 0 1α β< ≤ < , the op-

timal ceded loss functions of the optimal reinsurance model 6 are given as fol-
lows. 

(a) If 0m ≤ , the optimal ceded loss function is ( ) ( )*f x x vα +
= − . The pa-

rameter 1 1θ =  is optimal. That is, stop-loss reinsurance is the optimal reinsur-
ance strategy. When risks x vα< , the insurer bears all risks themselves and does 
not sign a reinsurance contract. When risk x vα≥ , the insurer only bears risks 
vα  and divides out remaining risks. 

(b) If 0m > , 0n ≥ , or 0m > , 0n < , 1 0t >  and 2 0c > , the optimal ceded 
loss function is ( )* 0f x = . The parameter 1 0θ =  is optimal. That is, no rein-
surance is the optimal reinsurance strategy. The insurer bears all risks them-
selves and does not sign a reinsurance contract. 

(c) If 0m > , 0n < , 1 0t >  and 2 0c < , the optimal ceded loss function is 
( )*f x x= . The parameter 1 1θ =  is optimal. That is, full reinsurance is the op-

timal reinsurance strategy. The insurer does not bear the risk and transfers all 
risks to the reinsurer. 

(d) If 0m > , 0n < , 1 0t >  and 2 0c = , the optimal ceded loss function is 

( )
( )( )1*

1

1 , ,

, ,

x v x v
f x

x x v
β β

β

θ

θ
+

 − − <= 
≥  

where 1θ  can be any constant in [ ]0,1 . That is, two-layer reinsurance is the 
optimal reinsurance strategy. When risks ( )11x vβθ< − , the insurer bears all 
risks themselves and does not sign a reinsurance contract. When risk  
( )11 v x vβ βθ− ≤ ≤ , the insurer only bears risks ( )11 vβθ−  and divides out re-
maining risks. When risk x vβ> , the insurer cedes the risk to the reinsurer in 
proportion. The proportion depends on parameter 1θ . 

(e) If 0m > , 0n < , and 1 0t ≤ , then the optimal ceded loss function is 

( )
( ) *

1*

*
1 *

1

, ,
1

, ,
1

vx v x
f x

vx x

α
α

α

θ

θ
θ

+

 − < −= 
 ≥
 −  

where [ ] ( ){ }
1

*
1 10,1arg min Q Jθθ ∈= . That is, two-layer reinsurance is the optimal 

reinsurance strategy. When risks x vα< , the insurer bears all risks themselves 

and does not sign a reinsurance contract. When risk *
11

v
v x α
α θ
≤ ≤

−
, the insurer 

only bears risks vα  and divides out remaining risks. When risk *
11

v
x α

θ
>

−
, The 

insurer cedes the risk to the reinsurer in proportion. The proportion depends on 
parameter *

1θ . 
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Note that ( )( )1 2 1 1t λ λ δ= − − + , ( ) ( )2 0 3d d
v

X Xv v
c m S t t m S t t tα

β γ

∞
= − +∫ ∫ . 

Theorem 3.3. Under the conditions of 10
2

λ≤ <  and 0 1β α< ≤ < , the 

optimal ceded loss functions of the optimal reinsurance model (2.6) are given as 
follows. 

(a) If 0m > , 0s > , and 3 0c > , the optimal ceded loss function is 
( )* 0f x = . The parameter 1 0θ =  is optimal. That is, no reinsurance is the op-

timal reinsurance strategy. The insurer bears all risks themselves and does not 
sign a reinsurance contract. 

(b) If 0m > , 0s > , and 3 0c < , or 0m ≤ , 0 s λ≤ ≤ , and 4 0c < , or 
0m ≤ , s λ> , and 5 0c < , or 0m ≤  and 0s < , the optimal ceded loss func-

tion is ( )*f x x= . The parameter 1 1θ =  is optimal. That is, full reinsurance is 
the optimal reinsurance strategy. The insurer does not bear the risk and transfers 
all risks to the reinsurer. 

(c) If 0m > , 0s > , and 3 0c = , then the optimal ceded function is 
( )*

1f x xθ= , where 1θ  can be any constant in [ ]0,1 . That is, quota-share 
reinsurance is the optimal reinsurance strategy. The insurer cedes the risk to the 
reinsurer in proportion. The proportion depends on parameter 1θ . 

(d) If 0m ≤ , 0 s λ≤ ≤ , and 4 0c > , then the optimal ceded loss function is 
( ) ( )*f x x vβ +

= − . The parameter 1 1θ =  is optimal. That is, stop-loss reinsur-
ance is the optimal reinsurance strategy. When risks x vβ< , the insurer bears 
all risks themselves and does not sign a reinsurance contract. When risk x vβ≥ , 
the insurer only bears risks vβ  and divides out remaining risks. 

(e) If 0m ≤ , s λ> , and 5 0c > , then the optimal ceded loss function is 
( ) ( )*f x x v∆ +

= − . The parameter 1 1θ =  is optimal. That is, stop-loss reinsur-
ance is the optimal reinsurance strategy. When risks x v∆< , the insurer bears all 
risks themselves and does not sign a reinsurance contract. When risk x v∆≥ , 
the insurer only bears risks v∆  and divides out remaining risks. 

(f) If 0m ≤ , 0 s λ≤ ≤ , and 4 0c = , then the optimal ceded loss function is 

( ) ( )
1*

1

, 0 ,
1 , ,

x x v
f x

x v x v
β

β β

θ
θ

≤ <=  − − ≥  
where 1θ  can be any constant in [ ]0,1 . That is, two-layer reinsurance is the 
optimal reinsurance strategy. When risks x vβ< , the insurer cedes the risk to 
the reinsurer in proportion. The proportion depends on parameter 1θ . When 
risk x vβ≥ , the insurer only bears risks ( )11 vβθ−  and divides out remaining 
risks. 

(g) If 0m ≤ , s λ> , and 5 0c = , then the optimal ceded loss function is 

( ) ( )
1*

1

, 0 ,
1 , ,

x x v
f x

x v x v
θ

θ
∆

∆ ∆

≤ <
=  − − ≥  

where 1θ  can be any constant in [ ]0,1 . That is, two-layer reinsurance is the 
optimal reinsurance strategy. When risks x v∆< , the insurer cedes the risk to 
the reinsurer in proportion. The proportion depends on parameter 1θ . When 
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risk x v∆≥ , the insurer only bears risks ( )11 vθ ∆−  and divides out remaining 
risks. 

Note that ( ) ( ) ( )3 0 3
1d d d
1 1X X Xv v v

c m S t t S t t S t t t
γ β α

λ λ
β α

∞ ∞ ∞−
= + − +

− −∫ ∫ ∫ ,  

( ) ( ) ( )( )4 0 d 1 2 2 1 1
v

Xv
c m S t t v vβ

γ
β γλ λ δ= + − + − +∫  and  

( ) ( )5 0 4
1d d
1

v v
X Xv v

c m S t t S t t t
γ β

λ
β

∆ ∆−
= + +

−∫ ∫ . 

Theorem 3.4. Under the conditions of 10
2

λ≤ <  and 0 1α β< ≤ < , the 

optimal ceded loss functions of the optimal reinsurance model (2.6) are given as 
follows. 

(a) If 0m >  and 6 0c > , the optimal ceded loss function is ( )* 0f x = . The 
parameter 1 0θ =  is optimal. That is, no reinsurance is the optimal reinsurance 
strategy. The insurer bears all risks themselves and does not sign a reinsurance 
contract. 

(b) If 0m >  and 6 0c < , or 0m ≤  and 7 0c < , the optimal ceded loss 
function is ( )*f x x= . The parameter 1 1θ =  is optimal. That is, full reinsur-
ance is the optimal reinsurance strategy. The insurer does not bear the risk and 
transfers all risks to the reinsurer. 

(c) If 0m >  and 6 0c = , the optimal ceded loss function is ( )*
1f x xθ= , 

where 1θ  can be any constant in [ ]0,1 . That is, quota-share reinsurance is the 
optimal reinsurance strategy. The insurer cedes the risk to the reinsurer in pro-
portion. The proportion depends on parameter 1θ . 

(d) If 0m ≤  and 7 0c > , the optimal ceded loss function is ( ) ( )*f x x vβ +
= − . 

The parameter 1 1θ =  is optimal. That is, stop-loss reinsurance is the optimal 
reinsurance strategy. When risks x vβ< , the insurer bears all risks themselves 
and does not sign a reinsurance contract. When risk x vβ≥ , the insurer only 
bears risks vβ  and divides out remaining risks. 

(e) If 0m ≤  and 7 0c = , the optimal ceded loss function is  

( )
( )

1*

1

, 0

1 ,

x x v
f x

x v x v
β

β β

θ

θ

≤ <= 
− − ≥

, where 1θ  can be any constant in [ ]0,1 . That is, 

two-layer reinsurance is the optimal reinsurance strategy. When risks x vβ< , 
the insurer cedes the risk to the reinsurer in proportion. The proportion depends 
on parameter 1θ . When risk x vβ≥ , the insurer only bears risks ( )11 vβθ−  
and divides out remaining risks. 

Note that ( ) ( )6 0 3d d
v v

X Xv v
c m S t t m S t t tα

γ β

∞= + +∫ ∫ ,  

( ) ( )7 0 3d d
1

v v
X Xv v

c m S t t S t t tβ β

γ α

λ
α

= − +
−∫ ∫ . 

4. Numerical Examples 

This section presents some examples to analyze the conclusions of section 3. We 
will analyze the impact of the weighting factor λ  on optimal reinsurance. As-
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sume that 0.2δ =  and ( ) 0.001e x
XS x −=  for 0x ≥ . 

Example 4.1. We analyze the influence of the weighting factor λ  on optimal 
reinsurance by choosing 0.99α = , 0.95β =  and 0.9γ = . Then 4605.17vα = , 

2995.73vβ =  and 2302.59vγ = . By choosing 0.2,0.3,0.4,0.6λ = , different op-
timal ceded loss functions are obtained and the results are reported in Table 1. 

(i) If 0.2λ = , we have 0 0.8 0m = − < , 4.8 0m = − < , 15.2s λ= >  and 

5 203.36 0c = − < . Hence, from part (b) of Theorem 3.3, it follows that 
( )*f x x=  is the optimal ceded loss function. That is, full reinsurance is the op-

timal reinsurance strategy. 
(ii) If 0.3λ = , we have 0 4.8 0m = − < , 20.8 0m = − < , 9.2s λ= >  and 

5 316.89 0c = > . Hence, from part (e) of Theorem 3.3, it follows that  
( ) ( )* 3423.18f x x

+
= −  is the optimal ceded loss function. That is, stop-loss 

reinsurance is the optimal reinsurance strategy. 
(iii) If 0.4λ = , we have 0 2.4 0m = − < , 30.4 0m = − < , 0.6s λ= >  and 

5 560.18 0c = > . Hence, from part (e) of Theorem 3.3, it follows that  
( ) ( )* 3170.09f x x

+
= −  is the optimal ceded loss function. That is, stop-loss 

reinsurance is the optimal reinsurance strategy. 
(iv) If 0.6λ = , we have 0 2.4 0m = > , 49.6 0m = − <  and 10.4 0s = > . 

Hence, from part (d) of Theorem 3.1, it follows that ( ) ( )* 4605.17f x x
+

= −  is 
the optimal ceded loss function. That is, stop-loss reinsurance is the optimal 
reinsurance strategy. 

Example 4.2. We analyze the influence of the weighting factor λ  on optimal 
reinsurance by choosing 0.95α = , 0.99β =  and 0.9γ = . Then 2995.73vα = , 

4605.17vβ =  and 2302.59vγ = . By choosing 0.4,0.7,0.8,0.99λ = , different 
optimal ceded loss functions are obtained and the results are reported in Table 2. 

 
Table 1. ( )*f x  under different λ . 

λ  ( )*f x
 

0.2λ =  ( )*f x x=
 

0.3λ =  ( ) ( )* 3423.18f x x
+

= −
 

0.4λ =  ( ) ( )* 3170.09f x x
+

= −
 

0.6λ =  ( ) ( )* 4605.17f x x
+

= −
 

 
Table 2. ( )*f x  under dual premium principle. 

λ  ( )*f x
 

0.4λ =  ( )* 0f x =
 

0.7λ =  ( )*f x x=
 

0.8λ =  ( )* 0f x =
 

0.99λ =  ( ) ( )* 2995.73f x x
+

= −
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(i) If 0.4λ = , we have 0 2.4 0m = − < , 49.6 0m = > , 3 1012.19t =  and 

6 1388.19 0c = > . Hence, from part (a) of Theorem 3.4, it follows that ( )* 0f x =  
is the optimal ceded loss function. That is, no reinsurance is the optimal rein-
surance strategy. 

(ii) If 0.7λ = , we have 0 4.8 0m = > , 20.8 0m = > , 3 390.08t = −  and 

2 566.08 0c = − < . Hence, from part (c) of Theorem 3.2, it follows that 
( )*f x x=  is the optimal ceded loss function. That is, full reinsurance is the op-

timal reinsurance strategy. 
(iii) If 0.8λ = , we have 0 7.2 0m = > , 11.2 0m = > , 8.8 0n = − < , 

1 0.08t =  and 2 304.62 0c = > . Hence, from part (b) of Theorem 3.2, it follows 
that ( )* 0f x =  is the optimal ceded loss function. That is, no reinsurance is the 
optimal reinsurance strategy. 

(iv) If 0.99λ = , we have 0 11.76 0m = >  and 7.04 0m = − < . Hence, from 
part (a) of Theorem 3.2, it follows that ( ) ( )* 2995.73f x x

+
= −  is the optimal 

ceded loss function. That is, stop-loss reinsurance is the optimal reinsurance 
strategy. 

From Table 1 and Table 2, it follows that the optimal ceded loss functions are 
changing as the weighting factor λ  changes. Thus, we know that the weighting 
factor λ  influence the optimal reinsurance strategy. However, the optimal 
ceded loss function does not monotonically increase or decrease with the in-
creasing monotonicity of λ . 

5. Conclusion 

From the perspective of both insurers and reinsurers, we study the optimal 
reinsurance strategy under the TVaR risk measure and the TVaR premium prin-
ciple. To prevent moral hazard and reflect the spirit of reinsurance, the set of 
admissible ceded loss functions is assumed to satisfy Vajda condition, that is the 
insurer’s retained loss and the proportion paid by the reinsurer are increasing in 
indemnity. We get the explicit expression of the optimal reinsurance strategy 
and give the optimal parameters. Our results show that the optimal loss function 
is piecewise linear. Finally, we analyze the impact of the weighting factor λ  on 
optimal reinsurance. Further research can discuss the optimal reinsurance strat-
egy under heterogenous beliefs and asymmetric information. We could assume 
the insurers who faced different types of risks are allowed to apply different pre-
ference measures and different probability measures, and the reinsurer is subject 
to adverse selection issue. By adding these two conditions, the model will be-
come more complex but more in line with the real insurance market. In the fu-
ture, we can further study the optimal reinsurance problem under this model 
with more constraints. 
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Appendix 

Proof of Theorem 3.2 

Under the condition of 1 1
2

λ< ≤  and 0 1α β< ≤ < , recall the definition of 

m0, m, and n, equality (2.7) reduces to 

( ) ( )( ) ( )( ) ( )( )1
0 d d dt t tQ f m f v X t n f v X t m f v X t

β β

γ α β
= + +∫ ∫ ∫      (1) 

Clearly ( ) ( )f v f vα β≤  and ( ) ( )v f v v f vα α β β− ≤ − , as ( )f x  and  
( )fR x  are nondecreasing for all 0x ≥  and α β≤ . Note that ( )0 v f vα α≤ ≤  

and ( )0 v f vβ β≤ ≤  since ( )0 f x x≤ ≤  for all 0x ≥ . Recall the definition of 
m in (3.2). Equality (1) reduces to 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )
0 d d d 2 1

1 2 1 1

f v f v

f X f X f Xf v f v f v
Q f m S t t n S t t m S t t f v

f v f v f v

β β

γ α β
α

β α γ

λ

λ λ γ

∞
= + + − −

 + − − + − + 

∫ ∫ ∫
 

(2) 

(i) If 0m >  and 0n < . For the above f ∈C , define 

( )

( )

( ) ( ) ( )
( )

( ) ( )
( )

0, 0 ,

,

, .

x v f v
v f v

x v f v v f v x v
v f vJ X

f v v f v
x x v

v v f v

α α

α α
α α α α β

β β

β α α
β

β β β

 ≤ < −


− − − − ≤ < −= 


− ≥ −

       (3) 

Denote ( )1d v f vα α= −  and 
( )

1

f v
v

β

β

θ = , we have 

( )

1

1
1 1

1

1
1

1

0, 0 ,

,
1

, .
1

x d
dx d d x

J X
dx x

θ

θ
θ

≤ <

 − ≤ < −= 

 ≥

−

                  (4) 

where 10 1θ≤ ≤ , ( )1 11 v d vβ αθ− ≤ ≤ . 
The relationship between ( )f x  and ( )J x  is illustrated by Figure A1. One 

can show that ( )J x ∈C  and ( ) ( )Q f Q J>  for any f ∈C . Indeed, from 
Figure A1, we conclude that for 0 x vα≤ ≤  and x vβ≥ , ( ) ( )f x J x> . More-
over, since 0m ≥ , we have 

( )( ) ( )( )0 0d dt tm f v X t m J v X t
α α

γ γ
>∫ ∫  

( )( ) ( )( )d dt tn f v X t n J v X t
β β

α α
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m J v X t

β β
>∫ ∫  

Hence, it follows immediately from (24) that ( ) ( )Q f Q J> , where the in-
equality is strict if f and J are not identical almost everywhere, which means that  
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Figure A1. Relationship between ( )f x  and ( )J x  in case (i). 

 
the optimal reinsurance contract can only take the form of (3) in case (i). The 
equivalence of (24) implies that ( ) ( )min minf Q f Q J∈ =C . The expression of 

( )Q J  is as follows. 
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∫ ∫ ∫

∫ ∫    (5) 

Taking the derivative of ( )Q J  with respect to 1d , we have 

( ) 1
1

1 11X
Q J dnS t

d θ
∂  

= + ∂ −   

We next consider the minimum value of ( )Q J  in the case of 1 0t ≤  and 

1 0t > . 

Case 1. Assume that 1 0t ≤  
Note that ( )Q J  is decreasing in ( )1 11 ,d v vβ αθ ∈ −  , thus, 
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−
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≥
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 
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 

∫ ∫ ∫

∫ ∫
 

Hence, ( )1Q J  obtains its minimum at 1 1θ θ ∗= . That is, 
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( )
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, .
1
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α
α α

α
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θ
θ

 − ≤ < −= 

 −  

where [ ] ( ){ }
1

*
1 10,1arg min Q Jθθ ∈= . 

Case 2. Assume that 1 0t >  
Note that ( )Q J  is increasing in ( )1 11 ,d v vβ αθ ∈ −  , thus, 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
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 + + − − −  

+ − + − + − −

∫ ∫ ∫

∫ ∫

 
Taking the derivative of ( )1Q J  with respect to 1θ , we have 

( )1
2

1

.
Q J

c
θ

∂
=

∂  
If 2 0c > , ( )1Q J  is increasing in [ ]1 0,1θ ∈ . In other words, the optimal 

ceded function is ( )* 0f x =  in this situation. 
If 2 0c < , ( )1Q J  is decreasing in [ ]1 0,1θ ∈ . In other words, the optimal 

ceded function is ( )*f x x=  in this situation. 
If 2 0c = , the optimal ceded function is 

( )
( ) ( )1 1*

1

1 , 1 ,
, .

x v v x v
f x

x x v
β β β

β

θ θ

θ

− − − ≤ <= 
≥  

where 1θ  can be any constant in [ ]0,1 . 
(ii) If 0m > , and 0n ≥ , for the above f ∈C , define 

( )

( )
( )( ) ( )

( )

0, 0 ,
, ,

, .

x v f v
x v f v v f v x v

J X
f v

x x v
v

α α

α α α α α

α
α

α

 ≤ < −
 − − − ≤ <= 
 ≥


          (6) 

Denote ( )1d v f vα α= −  and 
( )

1

f v
v

α

α

θ = , we have 

( )

1

1
1 1

1

1
1

1

0, 0 ,

, ,
1

, .
1

x d
dx d d x

J X
dx x

θ

θ
θ

≤ <

 − ≤ < −= 

 ≥

−

                 (7) 

where 10 1θ≤ ≤ , 10 d vα≤ ≤ . 
The relationship between ( )f x  and ( )J x  is illustrated by Figure A2. One 

can show that ( )J x ∈C  and ( ) ( )Q f Q J>  for any f ∈C . Indeed, from 
Figure A2, we conclude that for 0x ≥ , ( ) ( )f x J x> . Moreover, since 0m >   
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Figure A2. Relationship between ( )f x  and ( )J x  in case (ii). 

 
and 0n ≥ , we have 

( )( ) ( )( )0 0d dt tm f v X t m J v X t
α α

γ γ
>∫ ∫  

( )( ) ( )( )d dt tn f v X t n J v X t
β β

α α
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m J v X t

β β
>∫ ∫  

Hence, it follows immediately from (24) that ( ) ( )Q f Q J> , where the in-
equality is strict if f and J are not identical almost everywhere, which means that 
the optimal reinsurance contract can only take the form of (6) in case (ii). The 
equivalence of (24) implies that ( ) ( )min minf Q f Q J∈ =C . The expression of 
( )Q J  is as follows. 

( ) ( ) ( ) ( )
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∫ ∫ ∫

∫
  (8) 

Taking the derivative of ( )Q J  with respect to 1d , we have 

( ) ( ) ( )
1

2 1 1 0
Q J

d
λ δ

∂
= − − + <

∂  
We can imply that ( )Q J  is decreasing in [ ]1 0,d vα∈ , thus, 
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−
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− −∫ ∫ ∫
 

Taking the derivative of ( )1Q J  with respect to 1θ , we have 
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1d d 1 0
1X Xv v

Q J
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λ λ
θ β

∞ ∞∂ −
= + + − >

∂ −∫ ∫
 

We can imply that ( )1Q J  is increasing in [ ]1 0,1θ ∈ , thus, the optimal 
ceded function is ( )* 0f x =  in this situation. 

(iii) If 0m < , then 0n < . For the above f ∈C , define 

( )

( )

( )( ) ( ) ( )
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( ) ( )
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      (9) 

Denote ( ) ( )1 2,d v f v d v f vα α β β= − = −  and 
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θ = , we have 
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 −= 
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 −


− ≥

                (10) 

where ( ) ( )1 1 2 10 , 1 1d v v d vα α βθ θ≤ ≤ − ≤ ≤ −  and 10 1θ≤ ≤ . 
The relationship between ( )f x  and ( )J x  is illustrated by Figure A3. One 

can show that ( )J x ∈C  and ( ) ( )Q f Q J>  for any f ∈C . Moreover, since  
 

 

Figure A3. Relationship between ( )f x  and ( )J x  in case (iii). 
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0m <  and 0s ≥ , we have 

( )( ) ( )( )0 0d dt tm f v X t m J v X t
α α

γ γ
>∫ ∫  

( )( ) ( )( )d dt tn f v X t n J v X t
β β

α α
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m J v X t

β β
>∫ ∫  

Hence, it follows immediately from (24) that ( ) ( )Q f Q J> , where the in-
equality is strict if f and J are not identical almost everywhere, which means that 
the optimal reinsurance contract can only take the form of (9) in case (iii). The 
equivalence of (24) implies that ( ) ( )min minf Q f Q J∈ =C . The expression of 
( )Q J  is as follows. 
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∫ ∫ ∫ ∫

∫ ∫ ∫

(11) 

Taking the derivative of ( )Q J  with respect to 1θ , we have 

( ) ( )1
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1 1

11 1 1

d 0
1 1 dX X
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θθ θ θ
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 ∂  
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∫
 

We can imply that ( )Q J  is decreasing in [ ]1 0,1θ ∈ , thus, 

( ) ( )
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∫ ∫ ∫

 
Taking the derivative of ( )1Q J  with respect to 1d , we have 

( ) ( )1

1

2 1 0
Q J

d
δ λ

∂
= − − <

∂  
We can imply that ( )Q J  is decreasing in [ ]1 0,d vα∈ , thus, the optimal 

ceded function is ( ) ( )*f x x vα +
= −  in this situation. The proof of Theorem 3.2 

is completed.   
Proof of Theorem 3.3. 

Under the condition of 10
2

λ≤ <  and 0 1β α< ≤ < , recall the definition of 

m0, m, and s, equality (2.7) reduces to 

( ) ( )( ) ( )( ) ( )( )1
0 d d dt t tQ f m f v X t s f v X t m f v X t

β α

γ β α
= + +∫ ∫ ∫     (12) 

Clearly ( ) ( )f v f vα β≥  and ( ) ( )v f v v f vα α β β− ≥ − , as ( )f x  and  
( )fR x  are nondecreasing for all 0x ≥  and α β≥ . Note that ( )0 v f vα α≤ ≤  
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and ( )0 v f vβ β≤ ≤  since ( )0 f x x≤ ≤  for all 0x ≥ . Recall the definition of 
m in (3.2). Equality (12) reduces to 

( ) ( )
( )

( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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∫ ∫ ∫    (13) 

(i) If 0m > , then 0s > . For the above f ∈C , define 
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                 (15) 

where 1 2 10 1,0 d vαθ θ≤ ≤ ≤ ≤ ≤ . 
The relationship between ( )f x  and ( )L x  is illustrated by Figure A4. One  

 

 

Figure A4. Relationship between ( )f x  and ( )L x  in case (i). 
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can show that ( )L x ∈C  and ( ) ( )Q f Q L>  for any f ∈C . Indeed, from 
Figure A4, we conclude that for 0x ≥ , ( ) ( )f x L x> . Moreover, since 0m ≥ , 
we have 

( )( ) ( )( )0 0d dt tm f v X t m L v X t
β β

γ γ
>∫ ∫  

( )( ) ( )( )d dt ts f v X t s L v X t
α α

β β
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m L v X t

α α
>∫ ∫  

Hence, it follows immediately from (24) that ( ) ( )Q f Q L> , where the in-
equality is strict if f and L are not identical almost everywhere, which means that 
the optimal reinsurance contract can only take the form of (15) in case (i). The 
equivalence of (24) implies that ( ) ( )min minf Q f Q L∈ =C . The expression of 
( )Q J  is as follows. 
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(16) 

Taking the derivative of ( )Q L  with respect to 2θ , we have 
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2

d 0.Xv
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We can imply that ( )Q L  is decreasing in [ ]2 1,1θ θ∈ , thus, 
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Taking the derivative of ( )1Q L  with respect to 1θ , we have 

( )1
3

1

.
Q L

c
θ

∂
=

∂  

If 3 0c > , ( )1Q L  is increasing in [ ]1 0,1θ ∈ . In other words, the optimal 
ceded function is ( )* 0f x =  in this situation. 

If 3 0c < , ( )1Q L  is decreasing in [ ]1 0,1θ ∈ . In other words, the optimal 
ceded function is ( )*f x x=  in this situation. 

If 3 0c = , the optimal ceded function is 

( )*
1 .f x xθ=  

where 1θ  can be any constant in [ ]0,1 . 
(ii) If 0m ≤  and 0s > , for the above f ∈C , define 
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Denote 
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1

f v
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θ =  and ( )1d v f vα α= − , we have 
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             (18) 

where 10 1θ≤ ≤  and ( ) ( )1 1 11 1v d vβ αθ θ− ≤ ≤ − . 
The relationship between ( )f x  and ( )J x  is illustrated by Figure A5. One 

can show that ( )L x ∈C  and ( ) ( )Q f Q L>  for any f ∈C . Indeed, from 
Figure A5, we conclude that for 0 x vβ≤ ≤ , ( ) ( )f x L x> , and for x vβ> , 
( ) ( )f x L x< . Moreover, since 0m <  and 0s < , we have 

( )( ) ( )( )0 0d dt tm f v X t m L v X t
β β

γ γ
>∫ ∫  

( )( ) ( )( )d dt ts f v X t s L v X t
α α

β β
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m L v X t

α α
>∫ ∫  

Hence, it follows immediately from (24) that ( ) ( )Q f Q L> , where the in-
equality is strict if f and L are not identical almost everywhere, which means that  

 

 

Figure A5. Relationship between ( )f x  and ( )L x  in case (ii). 
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the optimal reinsurance contract can only take the form of (17) in case (ii). The 
equivalence of (24) implies that ( ) ( )min minf Q f Q L∈ =C . The expression of 
( )Q J  is as follows. 
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Taking the derivative of ( )Q J  with respect to 1d , we have 
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Case 1 assumes that s λ≤  
We can imply that ( )Q L  is increasing in ( ) ( )1 1 11 , 1d v vα βθ θ ∈ − −  , thus, 
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1 1

1 1 2 1 1

v
X X X Xv v v v

Q L Q L

S t t S t t m S t t S t t

v v v v
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α β γ β

α β β γ

λ λ θ
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λ θ λ θ λ δ θ

∞ ∞ ∞

≥

−  = − + + +  − −

− − − + − + − +

∫ ∫ ∫ ∫

 
Taking the derivative of ( )1Q L  with respect to 1θ , we have 

( )
4

1

.
Q L

c
θ

∂
=

∂  
If 4 0c > , ( )1Q L  is increasing in [ ]1 0,1θ ∈ . In other words, the optimal 

ceded function is ( ) ( )*f x x vβ +
= −  in this situation. 

If 4 0c < , ( )1Q L  is decreasing in [ ]1 0,1θ ∈ . In other words, the optimal 
ceded function is ( )*f x x=  in this situation. 

If 4 0c = , the optimal ceded function is 

( ) ( )
1*

1

, 0 ,
1 , .

x x v
f x

x v x v
β

β β

θ
θ

≤ <
=  − − ≥  

where 1θ  can be any constant in [ ]0,1 . 
Case 2 assumes that s λ>  

( ) 1

1 1

0
1

.

X

Q L dS v
d s

v v

α

α

λ
θ

∆

∂  
≤ ⇔ ≥ ∂ − 

⇔ ≤

                (20) 

Because 0m ≤ , we can imply that 0 α≤ ∆ ≤ , thus, ( )Q L  is decreasing in 
( ) ( )1 1 11 , 1d v vβθ θ ∆ ∈ − −   and increasing in ( ) ( )1 1 11 , 1d v vαθ θ∆∈ − −   .  

( )Q L  obtains its minimum at ( )1 11d vθ ∆= − . Thus, 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

1

1

0 1 1

1 1

1d d d
1 1

d d 1

1 2 1 1 .

v
X X Xv v v

v
X Xv v

Q L Q L

S t t S t t S t t

m S t t S t t v v

v v

α β

γ
α

β γ

λ λ θ
α β

θ λ θ

λ θ λ δ θ

∆

∆

∆

∆

∞ ∞

∞

∆

≥

−  = − + +  − −

 + + − − −  
+ − + − +

∫ ∫ ∫

∫ ∫

 
Taking the derivative of ( )1Q L  with respect to 1θ , we have 

1
5

1

( ) =Q L c
θ

∂
∂  

If 5 0c > , ( )1Q L  is increasing in [ ]1 0,1θ ∈ . In other words, the optimal 
ceded function is ( ) ( )*f x x v∆ +

= −  in this situation. 
If 5 0c < , ( )1Q L  is decreasing in [ ]1 0,1θ ∈ . In other words, the optimal 

ceded function is ( )*f x x=  in this situation. 
If 5 0c = , the optimal ceded function is 

( ) ( )
1*

1

, 0 ,
1 , .

x x v
f x

x v x v
θ

θ
∆

∆ ∆

≤ <
=  − − ≥  

where 1θ  can be any constant in [ ]0,1 . 
(iii) If 0m ≤  and 0s ≤ , for the above f ∈C , define 

( )
( )

( )( )

, 0 ,

, .

f v
x x v

vL x

x v f v x v

β
β

β

β β β


 ≤ <= 


− − ≥

              (21) 

Denote 
( )

1

f v
v

β

β

θ =  and ( )1d v f vβ β= − , we have 

( ) 1

1

, 0 ,
, .

x x v
L x

x d x v
β

β

θ ≤ <=  − ≥
                  (22) 

where 10 1θ≤ ≤  and 10 d vβ≤ ≤ . 
The relationship between ( )f x  and ( )L x  is illustrated by Figure A6. One 

can show that ( )J x ∈C  and ( ) ( )Q f Q L>  for any f ∈C . Indeed, from 
Figure A6, we conclude that for 0x ≥ , ( ) ( )f x L x< . Moreover, since 0m <  
and 0s ≤ , we have 

( )( ) ( )( )0 0d dt tm f v X t m L v X t
β β

γ γ
>∫ ∫  

( )( ) ( )( )d dt ts f v X t s L v X t
α α

β β
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m L v X t

α α
>∫ ∫  

Hence, it follows immediately from (24) that ( ) ( )Q f Q L> , where the in-
equality is strict if f and L are not identical almost everywhere, which means that 
the optimal reinsurance contract can only take the form of (22) in case (iii). The 
equivalence of (24) implies that ( ) ( )min minf Q f Q L∈ =C . The expression of  
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Figure A6. Relationship between ( )f x  and ( )J x  in case (iii). 

  
( )Q J  is as follows. 
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∫ ∫ ∫ ∫

(23) 

Taking the derivative of ( )Q L  with respect to 1d , we have 

( )
1

0
Q L

d
λ

∂
= >

∂
 

We can imply that ( )Q L  is increasing in 1 0,d vβ ∈   , thus, 
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( ) ( ) ( ) ( )

( ) ( ) ( )
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∫ ∫ ∫ ∫

 

Taking the derivative of ( )1Q L  with respect to 1θ , we have 

( ) ( ) ( ) ( )1
0

1

d 2 1 1 0.
v

Xv

Q L
m S t t vβ

γ
γλ δ

θ
∂

= + − + <
∂ ∫

 

( )1Q L  is decreasing in [ ]1 0,1θ ∈ . In other words, the optimal ceded func-
tion is ( )*f x x=  in this situation. The proof of Theorem 3.1 is completed.   

Proof of Theorem 3.4 

Under the condition of 10
2

λ≤ <  and 0 1α β< ≤ < , recall the definition of 

m0, m, and s, equality (2.7) reduces to 
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( ) ( )( ) ( )( ) ( )( )1
0 d d dt t tQ f m f v X t n f v X t m f v X t

α β

γ α β
= + +∫ ∫ ∫     (24) 

Clearly ( ) ( )f v f vα β≤  and ( ) ( )v f v v f vα α β β− ≤ − , as ( )f x  and  
( )fR x  are nondecreasing for all 0x ≥  and α β≤ . Note that ( )0 v f vα α≤ ≤  

and ( )0 v f vβ β≤ ≤  since ( )0 f x x≤ ≤  for all 0x ≥ . Recall the definition of 
m in (3.2). Equality (24) reduces to 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
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 (25) 

(i) If 0m > , for the above f ∈C , define 

( )

( )

( )
( )
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
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               (26) 

Denote ( ) ( )
1 2,

f vf v
v v

βα

α β

θ θ= =  and ( )1 11d vαθ= − , we have 

( ) ( )
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1

2
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1 , ,
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x x v
L x x v v x v

x x v

α

α α β

β

θ
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θ
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= − − ≤ <
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               (27) 

where 1 20 1θ θ≤ ≤ ≤  and 10 d vα≤ ≤ . 
The relationship between ( )f x  and ( )L x  is illustrated by Figure A7. One 

 

 
Figure A7. Relationship between ( )f x  and ( )L x  in case (i). 
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can show that ( )L x ∈C  and ( ) ( )Q f Q L>  for any f ∈C . Indeed, from 
Figure A7, we conclude that for 0 x vα≤ ≤  and x vβ≥ , ( ) ( )f x L x< . More-
over, since 0m > , we have 

( )( ) ( )( )0 0d dt tm f v X t m L v X t
β β

γ γ
>∫ ∫  

( )( ) ( )( )d dt ts f v X t s L v X t
α α

β β
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m L v X t

α α
>∫ ∫  

Hence, it follows immediately from (24) that ( ) ( )Q f Q L> , where the in-
equality is strict if f and L are not identical almost everywhere, which means that 
the optimal reinsurance contract can only take the form of (27) in case (i). The 
equivalence of (24) implies that ( ) ( )min minf Q f Q L∈ =C . The expression of 
( )Q J  is as follows. 
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1d d d

1 1
v

X X Xv v v
Q L S t t S t t S t tβ
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∫ ∫ ∫       (29) 

Taking the derivative of ( )Q L  with respect to 2θ , we have 

( ) ( ) ( )
2

d 1 0Xv

Q L
m S t t v

β
βλ

θ
∞∂

= + − >
∂ ∫

 

We can imply that ( )Q L  is increasing in [ ]2 1,1θ θ∈ , thus, 
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( ) ( ) ( )
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( ) ( ) ( )
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∫ ∫ ∫

∫ ∫ ∫

 

Taking the derivative of ( )1Q L  with respect to 1θ , we have 

( )1
6

1

.
Q L

c
θ

∂
=

∂  

If 6 0c > , ( )1Q L  is increasing in [ ]1 0,1θ ∈ . In other words, the optimal 
ceded function is ( )* 0f x =  in this situation. 

If 6 0c < , ( )1Q L  is decreasing in [ ]1 0,1θ ∈ . In other words, the optimal 
ceded function is ( )*f x x=  in this situation. 

If 6 0c = , the optimal ceded function is 

( )*
1 .f x xθ=  

where 1θ  can be any constant in [ ]0,1 . 
(ii) If 0m < , for the above f ∈C , define 

https://doi.org/10.4236/ojapps.2023.1310131


F. Z. Chang, Y. Fang 
 

 

DOI: 10.4236/ojapps.2023.1310131 1679 Open Journal of Applied Sciences 
 

( )
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L x v
x v x v
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β βθ


 ≤ <
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               (30) 

Denote 
( )

1

f v
v

β

β

θ =  and ( )1 11d vβθ= − , we have 

( ) 1

1

, 0 ,
, .

x x v
L x

x d x v
β

β

θ ≤ <=  − ≥
                  (31) 

where 10 1θ≤ ≤  and 10 d vα≤ ≤ . 
The relationship between ( )f x  and ( )L x  is illustrated by Figure A8. One 

can show that ( )L x ∈C  and ( ) ( )Q f Q L>  for any f ∈C . Indeed, from 
Figure A8, we conclude that for 0x ≥ , ( ) ( )f x L x< . Moreover, since 0m <  
and 0s < , we have 

( )( ) ( )( )0 0d dt tm f v X t m L v X t
α α

γ γ
>∫ ∫  

( )( ) ( )( )d dt tn f v X t n L v X t
β β

α α
>∫ ∫  

( )( ) ( )( )1 1
d dt tm f v X t m L v X t

β β
>∫ ∫  

Hence, it follows immediately from (24) that ( ) ( )Q f Q L> , where the in-
equality is strict if f and L are not identical almost everywhere, which means that 
the optimal reinsurance contract can only take the form of (17) in case (ii). The 
equivalence of (24) implies that ( ) ( )min minf Q f Q L∈ =C . The expression of 
( )Q J  is as follows. 

 

 

Figure A8. Relationship between ( )f x  and ( )L x  in case (ii). 
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∫ ∫ ∫

∫ ∫     (32) 

Taking the derivative of ( )Q L  with respect to 1θ , we have 

( )
7

1

.
Q L

c
θ

∂
=

∂  
If 7 0c > , ( )1Q L  is increasing in [ ]1 0,1θ ∈ . In other words, the optimal 

ceded function is ( ) ( )*f x x vβ +
= −  in this situation. 

If 7 0c < , ( )1Q L  is decreasing in [ ]1 0,1θ ∈ . In other words, the optimal 
ceded function is ( )*f x x=  in this situation. 

If 7 0c = , the optimal ceded function is 

( ) ( )
1*

1

, 0 ,
1 , .

x x v
f x

x v x v
β

β β

θ
θ

≤ <
=  − − ≥  

where 1θ  can be any constant in [ ]0,1 . The proof of Theorem 3.4 is com-
pleted.   
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