
Open Journal of Applied Sciences, 2023, 13, 1581-1587 
https://www.scirp.org/journal/ojapps 

ISSN Online: 2165-3925 
ISSN Print: 2165-3917 

 

DOI: 10.4236/ojapps.2023.139125  Sep. 26, 2023 1581 Open Journal of Applied Sciences 
 

 
 
 

Numeric Identifier Transmission Algorithm 
Using Hash Functions 

Vladyslav Kutsman 

Computer Sciences Department, Information Technologies and Computer Engineering Faculty, Vinnytsia National Technical 
University, Vinnytsia, Ukraine 

 
 
 

Abstract 
When developing programs or websites, it is very convenient to use relational 
databases, which contain powerful and convenient tools that allow to work 
with data very flexibly and get the necessary information in a matter of milli-
seconds. A relational database consists of tables and records in these tables, 
each table must have a primary key, in particular, it can be a number of 
BIGINT type, which is a unique index of a record in the table, which allows to 
fetch operation with maximum speed and O (1) complexity. After the opera-
tion of writing a row to the table of database, the program receives the row 
identifier ID in the form of a number, and in the future this ID can be used to 
obtain this record. In the case of a website, this could be the GET method of 
the http protocol with the entry ID in the request. But very often it happens 
that the transmission of an identifier in the clear form is not safe, both for 
business reasons and for security reasons of access to information. And in 
this case, it is necessary to create additional functionality for checking access 
rights and come up with a way to encode data in such a way that it would be 
impossible to determine the record identifier, and this, in turn, leads to the 
fact that the program code becomes much more complicated and also in-
creases the amount of data, necessary to ensure the operation of the program. 
This article presents an algorithm that solves these problems “on the fly” 
without complicating the application logic and does not require resources to 
store additional information. Also, this algorithm is very reliable since it is 
based on the use of hash functions and synthesized as a result of many years 
of work related to writing complex systems that require an increased level of 
data security and program performance. 
 

Keywords 
Cryptography, Security, Coding, Hash Functions, Algorithms, Fintech,  
Banking, Golang, PostgreSQL 

How to cite this paper: Kutsman, V. 
(2023) Numeric Identifier Transmission Al-
gorithm Using Hash Functions. Open Journal 
of Applied Sciences, 13, 1581-1587. 
https://doi.org/10.4236/ojapps.2023.139125 
 
Received: August 30, 2023 
Accepted: September 23, 2023 
Published: September 26, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2023.139125
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2023.139125
http://creativecommons.org/licenses/by/4.0/


V. Kutsman 
 

 

DOI: 10.4236/ojapps.2023.139125 1582 Open Journal of Applied Sciences 
 

1. Introduction 

When working with data in relational databases, the fastest data access is guar-
anteed when the primary key PK is a unique number. In this case, the complexi-
ty will always be O (1), which in turn guarantees the maximum speed of obtain-
ing data on a specific record from the table. In most of the existing databases, 
this value is auto increment, that is, it automatically increases by one each time 
than, in fact, uniqueness is guaranteed. For example, if this is a website database, 
then when creating a product in the database, it is assigned a unique record 
identifier (ID) and to obtain data on the product, its identifier must be passed. 
But the situation is different when it comes to a resource where some kind of 
information security or distributed access is needed. That is, when a certain ob-
ject should be accessed only by a certain group of users or by a single user, or in 
the case of a site on the order page, arise need to hide the order number that the 
competitor could not determine the turnover of the online store per day. In this 
case, the transmission of the identifier in the clear form is not suitable, it is ne-
cessary to exclude the possibility of random selection of the key or deliberate se-
lection by an attacker. Or a bank client’s web-site, when the client enters the 
web-page and sees the data on his agreements and for detailed information he 
needs to go to the agreement page, in this case, if the program operates with an 
identifier in clear form, then the ability to access the entity (in this case, the ent-
ity will be client agreement) will be unsafe because by substituting a different 
number, it possible to see information about the agreement that is assigned to 
another client. But in order to avoid such situation, needs checks access rights 
on the server side, which in a certain sense complicates the application code, or 
encode identifiers in such a way that it would be impossible to pick up a contract 
identifier. As a matter of fact, these problems are solved by the algorithm pro-
posed in this article, namely, the task of checking access rights to the object and 
the task of encrypting the key so that it would be impossible to select the value of 
the key and that, upon receipt of the key, its values could be obtained without 
searching for matches in the database, which in turn eliminates the need for un-
necessary queries to the database, in the case of creating tables responsible for 
aliases of these identifiers to records or cache in RAM, and this, significantly in-
creases the performance of the program. It is also very important that this me-
thod is based on the use of hash functions [1], which make it possible to calculate 
the hash sum and create a unique identifier that can be represented as a string that 
consists of digits from the hexadecimal number system, which is a very convenient 
and time-tested cryptographic way to obtain a checksum. Within the framework 
of this article, the sha1 encoding algorithm is used, based on the convenience of 
representing the hash code, presented as a string, it has a length of 40 characters, 
but also possible to choose a newer encoding algorithm, the algorithm does not 
depend on a specific cryptographic algorithm.  

2. Description of the Algorithm 

In this section described the algorithm for generating an encrypted string from a 

https://doi.org/10.4236/ojapps.2023.139125


V. Kutsman 
 

 

DOI: 10.4236/ojapps.2023.139125 1583 Open Journal of Applied Sciences 
 

number and the algorithm for obtaining a number from an encrypted string. 
The idea and implementation is quite simple, which makes this method very re-
liable. For example, need to get a cipher for the number 123012. To do this, must 
be an array of digit positions of the original number, for example [3] int{1,1,2}, 
shift values and a special string that acting as a salt, this can be a string like “hash 
^& _= +!2wes”. The number itself is also represented as a string, then the hash 
of the string is calculated using the sha1 cryptographic algorithm, that is, in this 
case it will be sha1 (“123012” + “hash^& _= +!2wes”) =  
de2c68e64ac5f0d194ac50e2450052ddb54266e3, then this hash is added the initial 
number at the positions that are specified in the array of positions, taking into 
account the shift, which indicates the number of characters to be skipped. In the 
case of this example, the following string will be obtained:  
de2c1628e36041ac25f0d194ac50e2450052ddb54266e3 having a length of 46 cha-
racters, that is, 40 characters is the length of the hash string itself (if it is encoded 
by the sha1 algorithm) and 6 characters is the length of the number character by 
character, the positions of the digits of the encoded number are marked in red, 
the important thing is that the first digit of the number is inserted after 1 cha-
racter, taking into account the shift value, the second counts 1 from the last in-
serted third 2 from the last inserted and the fourth is already 1 and so on in a 
circle until the whole number is written to the hash string, after the encoded 
value of the number is formed, it can be transmitted as a value an identifier for a 
specific object on a browser web page. To get a number from a hash string, the 
program works in the following way in a loop concatenates the characters lo-
cated at the positions specified in the array of positions, taking into account the 
shift value, until the length of the string is equal to the length, which is equal to 
the length of the incoming hash code minus the length of the string of the algo-
rithm itself, as written earlier in the case of sha1, this is 40 characters. Then the 
resulting string is passed through the encoding function and checked for a 
match in the hash values, and in case of replacing/deleting/adding at least one 
character, the function will return an error. Program 1 implemented in the pro-
gramming language Golang [2] implements the algorithm described above, 
which allows to more clearly understand the essence. 

Program 1. Basic algorithm for creating a hash string from number and get-
ting a number from a string 

In this program, the NumberDecoder structure has 4 fields. Salt is a field that 
stores a string that acts as a salt, HashLength is a field indicating how long the 
value is generated by the hash algorithm, Sequence is an array of digit positions 
of the number to be encrypted and transmitted, Shift is the initial shift value af-
ter which the calculation of positions for writing digits begins the original num-
ber into a hash string. As shown in the main function, the getCode method re-
turns a string for the number 123012 which is then decoded into a number using 
the getId method to get the original value. 

type NumberDecoder struct { 

https://doi.org/10.4236/ojapps.2023.139125


V. Kutsman 
 

 

DOI: 10.4236/ojapps.2023.139125 1584 Open Journal of Applied Sciences 
 

  Salt string 
  Shift int 
  HashLength int 
  Sequence []int 
} 
func (N *NumberDecoder) getCode(value string) string { 
  h := sha1.New() 
  h.Write([]byte(value + N.Salt)) 
  b := h.Sum(nil) 
  hash := fmt.Sprintf(“%x”, b) 
  Res := hash[:N.Shift] 
  j, k, i := 0, 0, 0 
  for _, v := range hash[N.Shift:] { 
   Res += string(v) 
   k++ 
   if i < len(value) && k == N.Sequence[j] { 
    Res += string(value[i]) 
    i++ 
    k = 0 
    if j+1 < len(N.Sequence) { 
     j++ 
    } else { 
     j = 0 
    } 
   } 
  } 
  return Res 
} 
func (N *NumberDecoder) getId(value string) int64 { 
  LN := len(value) 
  if LN <= N.HashLength { 
   return 0 
  } 
  Res := ““ 
  j := 0 
  i := N.Shift + N.Sequence[j] 
  for i < LN && len(Res) < LN-N.HashLength { 
   Res += string(value[i]) 
   if j+1 < len(N.Sequence) { 
    j++ 
   } else { 
    j = 0 
   } 

https://doi.org/10.4236/ojapps.2023.139125


V. Kutsman 
 

 

DOI: 10.4236/ojapps.2023.139125 1585 Open Journal of Applied Sciences 
 

   i += N.Sequence[j] + 1 
  } 
  if value != N.getCode(Res) { 
   return 0 
  } 
  number, err := strconv.ParseInt(Res, 10, 64) 
  if err != nil { 
   return 0 
  } 
  return number 
} 
func main() { 
  var NumberDecodeEncode NumberDecoder 
  NumberDecodeEncode.Salt = “ hash^& _= +!2wes” 
  NumberDecodeEncode.HashLength = 40 
  NumberDecodeEncode.Shift = 3 
  NumberDecodeEncode.Sequence = []int{1, 1, 2} 
  // result is de2c1628e36041ac25f0d194ac50e2450052ddb54266e3 
  fmt.Println(NumberDecodeEncode.getCode(fmt.Sprintf(“%v”, 

123012)))  
  // result is 123012 

fmt.Println(NumberDecodeEncode.getId(“de2c1628e36041ac25f0d194
ac50e2450052ddb54266e3”))  

} 

3. Discussion 

This algorithm allows to transfer numeric identifiers in clear form with a check-
sum calculated for a specific identifier. An example could be the following link 
https://[examples-domen.com]/acts/de2c1628e36041ac25f0d194ac50e2450052dd
b54266e3 pointing to a contract or a file or any other object. The link can be on 
the site page itself in the href attributes of the “a” tag or the src attributes of the 
“img” tag in the site’s html markup. The main advantage of this algorithm is its 
simplicity and high reliability, as well as a significant increase in the speed of the 
program. For the purpose of this article, the sha1 cryptographic algorithm is 
used to obtain the hash code, but as mentioned earlier, newer cryptography al-
gorithms can be used. It is also very important that at any time possible change 
the value of the Salt field and, accordingly, the value of the hash code will already 
be completely different. In the same way, possible create a positional array to 
accommodate the digits of the original number, which makes it difficult for an 
attacker to decode, also its possible change the value of the initial shift. Also, 
with this method of data transfer, as it was written earlier, alias tables for objects 
in the database or a special cache in RAM are not required. Another very im-
portant aspect is that references to the same object can be change very often by 
changing the value of the Salt field, changing the value of the initial shift, or 

https://doi.org/10.4236/ojapps.2023.139125
https://%5Bexamples-domen.com%5D/acts/de2c1628e36041ac25f0d194ac50e2450052ddb54266e3
https://%5Bexamples-domen.com%5D/acts/de2c1628e36041ac25f0d194ac50e2450052ddb54266e3


V. Kutsman 
 

 

DOI: 10.4236/ojapps.2023.139125 1586 Open Journal of Applied Sciences 
 

changing the values of the Sequence positional array, but not necessary to over-
write the values in the database or the values in the cache, because that encoding 
and decoding going on directly on the fly. An example of this can be a client ac-
count in a bank, implemented as a website where each user should have access 
only to the resources to which he has access (contracts, files). And when using 
this algorithm, and the server receives the object identifier, the need for an addi-
tional check of access rights to the object is eliminated, because it is impossible 
to generate a link to the identifier without information about what shift, posi-
tional array value and salt. Another example of the application of this algorithm 
can be an order page on an online store website, where each site visitor should 
have access only to his orders, and when generating a link to an order, the pro-
posed algorithm eliminates the need for additional verification of access rights to 
view an object when it is requested. It is also very important that the program op-
erates exclusively with numeric identifiers for objects, which guarantees the fastest 
selection operations by the primary key from the database. Another not unimpor-
tant thing is the simplification of the logic of building an application, because such 
tasks as checking access rights to an object and storing additional data do not even 
arise, they are solved at the stage of generating an identifier from a code line. 
Also, this algorithm can be modified by adding a suffix or prefix to the input 
string, which can confuse when trying to crack. It is possible add information 
bytes directly to the hash string (adding it to the salt first) itself, which signifi-
cantly expands the information which can be crypted and safely transmit. 

4. Results 

This chapter presents the results of applying the algorithm in a real application 
(CRM system of a leasing company) requiring separate access to data and 
changing the value of a numeric identifier.  

CRM system Table 1 stores aliases for task identifiers for office employees. 
The indexed code field contains hash values obtained by the sha1 function that 
identify the entry. To store table and index data, 186 Mb is used for 1 million 
records, and when checking the existence of a value in a table, at best, 31,007,000 
nanoseconds of time are needed. When using the algorithm, there is no need to 
allocate space for storing data, since the value is formed “on the fly” and the 
numeric value of the identifier is written to the hash string, and the time needed 
to check the received code for validity is 0 nanoseconds. The situation is slightly 
different when using a cache in RAM and put data for 1 million records in RAM, 
then in this case the time to check the value will be 0 nanoseconds, as in the case 
of using the algorithm, but data storage will require 24,000,016 bytes for 1 mil-
lion records. It is very important that in the given examples the memory values 
are specified for the sha1 cryptographic algorithm, and in the case of using 
cryptographic algorithms that form longer string keys, the memory consump-
tion will increase, and in the case of using the algorithm, the length of the hash 
string does not matter. The reliability of the algorithm is guaranteed and de-
pends on the cryptographic algorithm that is used to form the hash string.  

https://doi.org/10.4236/ojapps.2023.139125


V. Kutsman 
 

 

DOI: 10.4236/ojapps.2023.139125 1587 Open Journal of Applied Sciences 
 

Table 1. Aliases for linking an object with its identifier.  

Column Description 

Id Bigint PK 

Code Character varying (40) - token 

5. Conclusions  

The advantages of this algorithm are as follows: 
1) No need to store aliases in the database or in the cache storage of RAM. 
2) Ability to frequently change object references, which improves reliability. 
3) No need to check access rights to an object if the program must provide 

separate access to certain objects. 
4) Easy to implement. 
5) Use of time-tested cryptographic algorithms, which guarantees the reliabil-

ity of the algorithm. 
6) Ability to use various cryptographic algorithms, no dependence on a spe-

cific cryptographic algorithm. 
7) A significant increase in the performance of the program/site due to the 

absence of the need to check access rights and the absence of a match search.  

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Rescorla, E. (2011) US Secure Hash Algorithms (SHA and SHA-Based HMAC and 

HKDF). RFC 6234. 

[2] Donovan, A.A.A. and Kernighan, B.W. (2015) The GO Programming Language. 
Addison-Wesley, Boston, 380 p. 

 
 

https://doi.org/10.4236/ojapps.2023.139125

	Numeric Identifier Transmission Algorithm Using Hash Functions
	Abstract
	Keywords
	1. Introduction
	2. Description of the Algorithm
	3. Discussion
	4. Results
	5. Conclusions 
	Conflicts of Interest
	References

