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Abstract 
In this paper, our objective is to explore novel solitary wave solutions of the 
Burgers-Fisher equation, which characterizes the interplay between diffusion 
and reaction phenomena. Understanding this equation is crucial for address-
ing challenges in fluid, chemical kinetics and population dynamics. We tackle 
this task by employing the Riccati equation and employing various function 
transformations to solve the Burgers-Fisher equation. By adopting different 
coefficients in the Riccati equation, we obtain a wide range of exact solutions, 
many of which have not been previously documented. These abundant soli-
tary wave solutions serve as valuable tools for comprehending the Burgers- 
Fisher equation and contribute to expanding our knowledge in this field. 
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1. Introduction 

Currently, the investigation into solitary waves and solitons is a prominent topic 
in the field of nonlinear physics, encompassing diverse areas such as chemical 
kinetics, population dynamics, plasma, optics, and biology [1]-[6]. By means of 
experimental evidence and physical mechanisms, the existence of solitons has 
been comprehended. Mathematical models based on reasonable assumptions 
have been established to describe the governing laws of numerous physical phe-
nomena. In these studies, nonlinear evolution equations play a crucial role, and 
the discovery of exact solutions, particularly solitary wave solutions, is essential 
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for understanding nonlinear problems and their characteristics. These solutions 
have practical implications in fields such as chemical kinetics and population 
dynamics. 

Throughout the centuries, numerous scientists have dedicated their efforts to 
obtaining exact solutions for nonlinear evolution equations. Several effective and 
powerful methods have been proposed in previous works, including the tanh- 
sech method, extended tanh-coth method [7] [8], F-expansion method [9] [10], 
Jacobi elliptic function expansion method [11] [12], auxiliary equation method 
[13] [14] [15] [16], and others. However, while some of these methods have 
achieved success, not all of them are suitable for obtaining exact solutions for the 
Burgers-Fisher equation [16], which describes the interaction between diffusion 
and reaction processes. This equation arises in chemical kinetics and population 
dynamics, involving phenomena such as the nonlinear evolution of one- dimen-
sional conventional neutron populations in nuclear reactions. In Ref. [17], the ex-
tended tanh-coth method was employed to solve the Burgers-Fisher equation, 
leading to the discovery of numerous new solitary wave solutions. 

This paper proposes the utilization of the Riccati equation as an auxiliary equ-
ation to solve the Burgers-Fisher equation, offering the potential for new find-
ings. The Burgers-Fisher equation is a highly nonlinear equation that combines 
reaction, convection, and diffusion mechanisms. It has extensive applications in 
fluid dynamics, gas dynamics, chemical dynamics, population dynamics, and 
other fields. This paper proposes an extended Riccati method, which not only 
simplifies the solving process of the Burgers-Fisher equation but also reveals new 
solitary wave solutions to the equation. 

The structure of this paper is organized as follows: Section 2 introduces the 
methodology for constructing abundant exact solutions of the Riccati equation. 
Section 3 demonstrates the application of this method to derive new solitary 
wave solutions for the Burgers-Fisher equation. Finally, Section 4 presents the 
conclusion of the paper. 

2. Abundant Exact Solutions of Riccati Equation 

The Riccati equation method is very simple but very effective. Hence, it is an ideal 
method to solve constant coefficient, variable coefficient and high-dimensional 
nonlinear evolution equations. In the paper, it first comes to our mind that we 
can use the Racatti equation to solve the problems in the following form: 

( ) ( )2
1 1f p f qξ ξ′ = +                         (1) 

where p1 and q1 are constants and can be determined later. To find out new exact 
solutions of Equation (1), a new auxiliary function ( )g ξ  is introduced, which 
satisfies the following form: 

( ) ( )2 2
2 2g p g qξ ξ′  = +                        (2) 

where p2 and q2 are constants. Equation (2) has the following hyperbolic func-
tion solution: 
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( ) ( )1 sinhg ξ ξ= , ( 2 21, 1p q= = )                   (3) 

( ) ( )2 coshg ξ ξ= , ( 2 21, 1p q= = − )                 (4) 

( ) ( ) ( )2 2
3

1 1cosh sinh
2 2

g ξ ξ ξ= − = + , ( 2 24, 1p q= = − )        (5) 

( ) ( )4 coshg ξ ξ ε= + , ( 2
2 2

1 1, , 1
4 2

p q ε ε= = − = )         (6) 

Then we assume ( )f ξ  and ( )g ξ  have the following formal solution: 

( ) ( )
( )
g

f
g r

ξ
ξ

ξ
′

=
+

                        (7) 

where r is a constant. Substituting Equation (7) into Equation (1) and using Eq-
uation (2), we can obtain 

1 2 1

2 1
2

2 1 2 1

0,
2 ,

.

p p q
p r q r

q p q q r

 + =


=
− = +

                       (8) 

Solving this system, we can obtain 

1

1 2

0,
1,
,

r
p
q p

=
 = −
 =

 or 

2

2

1

2
1

,

1 ,
2

.
2

qr
p

p

pq


= ± −



 = −


 =


                   (9) 

So, we have the following exact solutions of Equation (1): 

( ) ( )
( )1

cosh
sinh

f
ξ

ξ
ξ

= , ( 1 11, 1p q= − = )               (10) 

( ) ( )
( )2

sinh
cosh

f
ξ

ξ
ξ

= , ( 1 11, 1p q= − = )               (11) 

( ) ( ) ( )
( )

3
2

2sinh cosh
1cosh
2

f
ξ ξ

ξ
ξ

=
−

, ( 1 11, 4p q= − = )           (12) 

( ) ( )
( )4

sinh
cosh

f
ξ

ξ
ξ ε

=
+

, ( 2
1 1

1 1, , 1
2 2

p q ε= − = = )          (13) 

( ) ( )
( )5

cosh
sinh

f
ξ

ξ
ξ ε

=
+

, ( 2
1 1

1 1, , 1
2 2

p q ε= − = = − )         (14) 

( )
( )

( ) ( )6

1 sinh
2

cosh 2 cosh
f

ξ
ξ

ξ ε ε ξ ε
=

+ ± +
, ( 2

1 1
1 1, , 1
2 8

p q ε= − = = )  (15) 

Next, we use the following another formal solution to solve Equation (1): 

( ) ( ) ( )
( )2

g g
f

g r
ξ ξ

ξ
ξ
′

=
+

                        (16) 
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where 0r ≠ . Substituting Equation (16) into Equation (1) and using Equation 
(2), we can obtain  

1 2 1

2 2 1 2 1
2

2 1

0,
2 2 ,

.

p p q
q p r p q q r

rq q r

 + =

− + = +
 =

                     (17) 

Solving this system, we can obtain 

2

2

1

1 2

,
2

2,
2 .

qr
p

p
q p

 =

 = −
 =

                           (18) 

So, we can have the following exact solutions 

( ) ( ) ( ) ( ) ( )

( )

3

7 2
2

2sinh cosh sinh cosh

1 1cosh
2 8

f
ξ ξ ξ ξ

ξ
ξ

−
=

 − −  

, ( 1 12, 8p q= − = )    (19) 

It is easy to know that ( ) ( )1h fξ ξ=  can also satisfy Equation (1) in the 
condition of 1 1p q′ = − , 1 1q p′ = − . Equations (10) and (11) are a pair of solutions 
on this condition. Therefore, the following equations are also the solutions of 
Equation (1): 

( )
( )

( ) ( )

2

8

1cosh
2

2sinh cosh
f

ξ
ξ

ξ ξ

−
= , ( 1 14, 1p q= − = )            (20) 

( ) ( )
( )9

cosh
sinh

f
ξ ε

ξ
ξ
+

= , ( 2
1 1

1 1, , 1
2 2

p q ε= − = = )           (21) 

( ) ( )
( )10

sinh
cosh

f
ξ ε

ξ
ξ
+

= , ( 2
1 1

1 1, , 1
2 2

p q ε= − = = − )          (22) 

( )
( ) ( )

( )
11

cosh 2 cosh
1 sinh
2

f
ξ ε ε ξ ε

ξ
ξ

+ ± +
= , ( 2

1 1
1 1, , 1
8 2

p q ε= − = = )   (23) 

( )
( )

( ) ( ) ( ) ( )

2
2

12 3

1 1cosh
2 8

2sinh cosh sinh cosh
f

ξ
ξ

ξ ξ ξ ξ

 
 

− −

−
= , ( 1 18, 2p q= − = )   (24) 

( )6f ξ , ( )7f ξ , ( )11f ξ  and ( )12f ξ  are the new types of exact solutions of 
Equation (1), which are rarely found in the other documents. Then, we use the 
Equation (1) and its solutions (10)-(15), (19) and (20)-(24) to solve the Burg-
ers-Fisher equation, and the solving process can be greatly simplified. 

3. Application of the Method 

The following Burgers-Fisher equation [16] [17] is considered: 

( )1 0t x xxu uu u u u+ + + − =                      (25) 
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Then suppose Equation (25) has the traveling wave solution: 

( ) ( ), ,u x t u x ctξ ξ µ= = +                      (26) 

where μ and c are travelling wave parameters. Substituting the traveling wave 
equations into Equation (25), the following equation can be obtained: 

( )2 1 0cu uu u u uµ µ′ ′ ′′+ + + − =                   (27) 

We assume that Equation (27) has the following formal solution: 

( ) ( ) ( )0 1
n ni i

i ii iu a f b fξ ξ ξ−
= =

= +∑ ∑                (28) 

where ia  and ib  are constants to be determined and ( )if ξ  is the solutions 
of Equation (1) and n can be determined by the homogeneous balance method. 
In Equation (27), it is easy to know n = 1, so that the solution can be expressed 
as: 

( ) ( ) ( )1
0 1 1u a a f b fξ ξ ξ−= + +                  (29) 

We bring the above equation into Equation (27) and use Equation (1), result-
ing in a series of equations a set of algebraic equations about a0, a1, a2, b1, b2, μ 
and c. Then we collect all the terms with the same power of ( )f ξ , and set each 
coefficient to zero. Finally, we can obtain: 

Case 1  

1
0 1 1

1 1 1 1 1

1 1 1 5, , 0, ,
2 2 4 4

pa a b c
q p q p q

µ= = ± − = = = ±
− −

     (30) 

Case 2  

1
0 1 1

1 1 1 1 1

1 1 1 5, 0, , ,
2 2 4 4

qa a b c
p p q p q

µ= = = ± − = ± =
− −

     (31) 

Case 3  

1 1
0 1 1

1 1 1 1 1 1

1 1 1 1 5, , , ,
2 4 4 8 16

p qa a b c
q p p q p q

µ= = ± − = − = = ±
− −

   (32) 

According to Case 1, we have the following solitary wave solutions of the 
Burgers-Fisher equation: 

( ) ( )1
1 1 coth
2 2

u ξ ξ= ±                     (33) 

where 
1 5, ,
4 4

x ct cξ µ µ= + = = ± . Figure 1(a) shows the three-dimensional  

diagrams of Equation (33), which represents the travelling wave solution with 
singularities. Figure 1(b) shows that the amplitude and velocity of this travelling 
wave remain unchanged during propagation. 

( ) ( )2
1 1 tanh
2 2

u ξ ξ= ±                    (34) 

where 
1 5, ,
4 4

x ct cξ µ µ= + = = ± . Figure 2(a) shows the three-dimensional  
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Figure 1. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (33), when ± sign takes – and   sign takes 
+. 
 

 
Figure 2. (a) Three dimensional and (b) two dimensional plots represent the anti-kink 
solitary wave solution of Equation (34), when ± sign takes – and   sign takes +. 
 
diagrams of Equation (34), which represents the ani-kink solitary wave solution. 
Figure 2(b) shows that the amplitude and velocity of this ani-kink solitary wave 
remain unchanged during propagation. 

( ) ( ) ( )
( )

3
2

sinh cosh1 1
12 2 cosh
2

u
ξ ξ

ξ
ξ

= ±
−

                  (35) 

where 
1 5, ,
8 8

x ct cξ µ µ= + = = ± . This solution, like Equation (34), also repre- 

sents kinked solitary wave solution (see Figure 3). 

( ) ( )
( )4

sinh1
2 cosh

u
ξ

ξ
ξ ε

= ±
+

                    (36) 

where 21 5, , , 1
2 2

x ct cξ µ µ ε= + = = ± = . This solution, like Equation (34), also  

represents kinked solitary wave solution (see Figure 4). 
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Figure 3. (a) Three dimensional and (b) two dimensional plots represent the ani-kink so-
litary wave solution of Equation (35), when ± sign takes – and   sign takes +. 
 

 
Figure 4. (a) Three dimensional and (b) two dimensional plots represent the ani-kink so-
litary wave solution of Equation (36), when ± sign takes –,   sign takes + and 1ε = . 
 

( ) ( )
( )5

cosh1
2 sinh

u
ξ

ξ
ξ ε

= ±
+

                       (37) 

where 21 5, , , 1
2 2

x ct cξ µ µ ε= + = = ± = − . The solution of Equation (37) repre- 

sents the traveling wave solutions of Equation (27) in complex space. 

( ) ( )
( ) ( )6

sinh1 1
2 2 cosh 2 cosh

u
ξ

ξ
ξ ε ε ξ ε

= ±
+ ± +

           (38) 

where 2, 1, 5, 1x ct cξ µ µ ε= + = = ± = . This solution, like Equation (34), also 
represents kinked solitary wave solution (see Figure 5). 

( ) ( ) ( ) ( ) ( )

( )

3

7 2
2

2sinh cosh sinh cosh1 1
2 4 1 1cosh

2 8

u
ξ ξ ξ ξ

ξ
ξ 

  

−
= ±

− −

        (39) 

where 
1 5, ,

16 16
x ct cξ µ µ= + = = ± . Figure 6(a) shows the three-dimensional  

diagrams of Equation (39), which represents the kink solitary wave solution.  
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Figure 5. (a) Three dimensional and (b) two dimensional plots represent the ani-kink so-
litary wave solution of Equation (38), when ± sign takes –,   sign takes + and 1ε = . 
 

 
Figure 6. (a) Three dimensional and (b) two dimensional plots represent thekink solitary 
wave solution of Equation (39), when ± sign takes – and   sign takes +. 
 
Figure 6(b) shows that the amplitude and velocity of this kink solitary wave re-
main unchanged during propagation. 

( )
( )

( ) ( )

2

8

1cosh1 2
2 2sinh cosh

u
ξ

ξ
ξ ξ

−
= ±                    (40) 

where 
1 5, ,
8 8

x ct cξ µ µ= + = = ± . This solution, like Equation (33), represents  

the travelling wave solution with singularities (see Figure 7). 

( ) ( )
( )9

cosh1 1
2 2 sinh

u
ξ ε

ξ
ξ
+

= ±                     (41) 

where 21 5, , , 1
2 2

x ct cξ µ µ ε= + = = ± = . This solution, like Equation (33), 

represents the travelling wave solution with singularities (see Figure 8). 

( ) ( )
( )10

sinh1 1
2 2 cosh

u
ξ ε

ξ
ξ
+

= ±                    (42) 
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Figure 7. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (40), when ± sign takes – and   sign takes 
+. 
 

 
Figure 8. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (41), when ± sign takes –,   sign takes + 
and 1ε = . 
 

where 21 5, , , 1
2 2

x ct cξ µ µ ε= + = = ± = − . The solution of Equation (42) repre- 

sents the traveling wave solutions of Equation (27) in complex space. 

( )
( ) ( )

( )11

cosh 2 cosh1 1
2 2 sinh

u
ξ ε ε ξ ε

ξ
ξ

+ ± +
= ±            (43) 

where 2, 1, 5, 1x ct cξ µ µ ε= + = = ± = . This solution, like Equation (33), repre- 
sents the travelling wave solution with singularities (see Figure 9). 

( )
( )

( ) ( ) ( ) ( )

2
2

12 3

1 1cosh
1 2 8
2 2sinh cosh sinh cosh

u
ξ

ξ
ξ ξ ξ ξ

 
 = 

− −
±

−
         (44) 

where 
1 5, ,

16 16
x ct cξ µ µ= + = = ± . This solution, like Equation (33), repre- 

sents the travelling wave solution with singularities (see Figure 10). 
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Figure 9. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (43), when ± sign takes –,   sign takes + 
and 1ε = . 
 

Because the solutions ( ) ( )1 12f fξ ξ−  of Equation (1) contain that corres-
ponding to ( ) ( )1h fξ ξ= , the solitary wave solutions of the Burgers-Fisher 
equation in Case 2 are the same as in Case 1. Corresponding to case 3, we ex-
press the solitary wave solution of the Burgers-Fisher equation as 

( ) ( ) ( )13
1 1 1coth tanh
2 4 4

u ξ ξ ξ= ±                   (45) 

where 
1 5, ,
8 16

x ct cξ µ µ= + = = ± . This solution, like Equation (33), represents  

the travelling wave solution with singularities (see Figure 11). 

( ) ( ) ( )
( )

( )
( ) ( )

2

14
2

1coshsinh cosh1 1 1 2
12 4 4 sinh coshcosh
2

u
ξξ ξ

ξ
ξ ξξ

−
= ±

−
         (46) 

where 
1 5, ,

16 32
x ct cξ µ µ= + = = ± . This solution represents another travelling  

wave solution with singularities (see Figure 12). 

( ) ( )
( )

( )
( )15

sinh cosh1 1 1
2 4 cosh 4 sinh

u
ξ ξ ε

ξ
ξ ε ξ

+
= ±

+
            (47) 

where 21 5, , , 1
4 8

x ct cξ µ µ ε= + = = ± = . This solution, like Equation (33), 

represents the travelling wave solution with singularities (see Figure 13). 

( ) ( )
( )

( )
( )16

cosh sinh1 1 1
2 4 sinh 4 cosh

u
ξ ξ ε

ξ
ξ ε ξ

+
= ±

+
            (48) 

where 21 5, , , 1
4 8

x ct cξ µ µ ε= + = = ± = − . The solution of Equation (48) repre- 

sents the traveling wave solutions of Equation (27) in complex space. 

https://doi.org/10.4236/ojapps.2023.138112


Y. X. N. Liu, H. Y. Pan 
 

 

DOI: 10.4236/ojapps.2023.138112 1428 Open Journal of Applied Sciences 
 

 
Figure 10. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (44), when ± sign takes – and   sign takes 
+. 
 

 
Figure 11. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (45), when ± sign takes – and   sign takes 
+. 
 

 
Figure 12. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (46), when ± sign takes – and   sign takes 
+. 
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( ) ( )
( ) ( )

( ) ( )
( )

17

sinh1 1
2 4 cosh 2 cosh

cosh 2 cosh1
4 sinh

u
ξ

ξ
ξ ε ε ξ ε

ξ ε ε ξ ε
ξ

= ±
+ ± +

+ ± +


            (49) 

where 21 5, , , 1
2 4

x ct cξ µ µ ε= + = = ± = . This solution, like Equation (33), 

represents the travelling wave solution with singularities (see Figure 14). 

( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )

3

18 2
2

2
2

3

2sinh cosh sinh cosh1 1
2 8 1 1cosh

2 8

1 1cosh
1 2 8
2 2sinh cosh sinh cosh

u
ξ ξ ξ ξ

ξ
ξ

ξ

ξ ξ ξ ξ

 
  

 
 

−
= ±

− −

−

−

−


         (50) 

 

 
Figure 13. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (47), when ± sign takes –,   sign takes + 
and 1ε = . 
 

 
Figure 14. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (49), when ± sign takes –,   sign takes + 
and 1ε = . 
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Figure 15. (a) Three dimensional and (b) two dimensional plots represent the travelling 
wave solution with singularities of Equation (50), when ± sign takes – and   sign takes 
+. 
 

where 
1 5, ,
2 4

x ct cξ µ µ= + = = ± . This solution represents the new type of 

travelling wave solution with singularities (see Figure 15). 

4. Conclusion  

In this paper, we apply a new method to deal with the Burgers-Fisher equation 
to find more solitary wave solutions. The rich hyperbolic functions solutions of 
the Riccati equation are constructed through the hyperbolic functions equation, 
and then the Riccati equation is used as an auxiliary equation to solve the Burg-
ers-Fisher equation so that many new exact solutions are obtained. With the 
formal solution of Equation (29), we have constructed abundant solitary wave 
solutions for the Burgers-Fisher equation. The solitary wave solutions expressed 
by Equations (38), (39), (43), (44), (49) and (50) are rarely found in other docu-
ments. The numerical images show that although the new expressions of many 
solutions are different, the solitary waves represented by them, including ampli-
tude, wave velocity and space-time width, are the same. These solitary wave so-
lutions exhibit characteristics such as kinks, anti-kinks, and singularities. Fur-
ther research is needed on the application of these solitary wave solutions in 
specific research fields such as chemical kinetics and population dynamics. This 
method can greatly simplify the calculation process, especially suitable for solv-
ing more complex nonlinear systems. 
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