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Abstract 
In 2014, Vargas first defined a super-shuffle product and a cut-box coproduct 
on permutations. In 2020, Aval, Bergeron and Machacek introduced the su-
per-shuffle product and the cut-box coproduct on labeled simple graphs. In 
this paper, we generalize the super-shuffle product and the cut-box coproduct 
from labeled simple graphs to (0,1)-matrices. Then we prove that the vector 
space spanned by (0,1)-matrices with the super-shuffle product is a graded 
algebra and with the cut-box coproduct is a graded coalgebra. 
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1. Introduction 

In 1941, Hopf [1] first put forward the concept of both algebra structure and 
coalgebra structure in the study of cohomology algebra ( )* ,H G K  of Lie group 
G. After that, more and more interesting questions about algebras and coalge-
bras have attracted many mathematicians to work and study on them conti-
nuously. Among those questions, it is a hot topic how to construct algebras and 
coalgebras on combinatorial objects. 

In 2014, Vargas [2] defined a super-shuffle product ш  and a coproduct ◊∆ , 
called cut-box coproduct by Liu and Li [3] on permutations. In 2005, Aguiar and 
Sottile introduced the global descents of permutations in symmetric groups [4]. 
On this basis, Zhao and Li derived another shuffle product and deconcatenation 
coproduct from the classical one on permutations. Then they proved the vector 
space spanned by permutations with the shuffle product that is a graded algebra 
and with the deconcatenation coproduct that is a graded coalgebra [5] in 2020. 
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In the same year, Aval, Bergeron and Machacek introduced the super-shuffle 
product and the cut-box coproduct on labeled simple graphs without proof [6]. 
In 2023, Dong [7] proved the vector space spanned by labeled graphs with the 
super-shuffle product is a graded algebra and with the cut-box coproduct is a 
graded coalgebra. 

In fact, matrices are related to permutations and graphs closely. A (0,1)-matrix 
is a matrix whose entries are all 0 or 1, also called a binary matrix. It is widely used 
in graph theory [8] [9], combinatorics [10], linear programming [11] [12] [13] and 
computer science [14]. In this paper, we first generalize the super-shuffle product 
and the cut-box coproduct from labeled simple graphs to (0,1)-matrices, then we 
prove that the vector space with the super-shuffle product that is a graded algebra 
and with the cut-box coproduct that is a graded coalgebra. 

This paper is organized as follows. We start by recalling some notations on 
(0,1)-matrices and defining the vector space   spanned by (0,1)-matrices in 
Section 2. In Section 3, we define the cut-box coproduct ∆  on   and prove 
  with coproduct ∆  that is a graded coalgebra. In Section 4, we define the su-
per-shuffle product ∗  on   and prove   with product ∗  that is a graded 
algebra. Lastly, we summarize our main conclusions in Section 5. 

2. Basic Definitions 

An s n×  matrix ( )ij s n
A a

×
=  is called a (0,1)-matrix if 

111 12

221 22

1 2

,

n

n

s s sn s n

aa a
aa a

A

a a a
×

 
 
 =  
  
 





   



 

where ija  is either 0 or 1. In particular, the empty matrix is the matrix with no 
entries, denoted by ε . 

Define  

[ ] { }1,2, , , 0,
, 0,

n n
n

n
 >

= 
∅ =



 

and  

[ ] { }, 1, , , ,
,

, .
i i j i j

i j
i j

 + ≤
= 

∅ >



 

Let { } [ ]1 2, , , kI i i i s= ⊆  and { } [ ]1 2, , , qJ j j j n= ⊆ , where  

1 2 ki i i s< < < ≤  and 1 2 qj j j n< < < ≤ . For an s n×  (0,1)-matrix A, the 
restriction of A on I J×  is the submatrix formed by the entries, in the same 
relative positions, in both rows indexed by I and columns indexed by J, denoted 
by I JA × . In particular, if [ ]I s=  and [ ]J n= , I JA A× =  and if I or J is empty, 

I JA ε× = . For convenience, let IA  denote I IA ×  and call IA  the restriction of 
A on I. 

Example 1. The matrix  
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0 0 0 0
0 0 1 0

0 1 0 1 0 0 0
0 0 0 0 0 1 0

0 1 1
0 0 0

A

 
 
 =
 
 
 

 

is a 4 × 7 (0,1)-matrix. We have  

{ } { }1,2 1,2,7

0 1 1
0 0 0

A ×

 
=  
 

 

and  

[ ]3

0 1 0
0 0 0 .
0 1 0

A
 
 =  
 
 

 

Let ( ) ( ){ }| is an 0,1 -matrixn ijM A A a n n= = ×  and n  be the vector space 
spanned by nM  over field  , for any non-negative integer n. For example,  

2

0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0
, , , , , , , ,

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1
           , , , , , , , .

1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1

M
               =                
               

               
               
               

 

In particular, { }0M ε=  and 0 0M= . Denote  

00
   and   .n n

nn
M M

∞ ∞

==

= =⊕

   

If A and B are both non-empty matrices, then we denote 
A O

A B
O B
 

◊ =  
 

,  

where O’s are zero matrices. In particular, A A Aε ε◊ = ◊ =  for any (0,1)-matrix 
A. 

Example 2. For 
0 0
1 1

A  
=  
 

 and 
1 0 0
1 0 1
0 1 1

B
 
 =  
 
 

, we have  

1 0 0
1 0 1
0

0

1

0 0

1

0 0 0
.0 0

0 0

0 0
1 1

0 0

A B

 
 
 
 ◊ =
 
 
 
 

 

For A in nM , we call i a spilt of A, if  

[ ] [ ] [ ]]\ ,i n iA A A◊ =  

where 0 i n≤ ≤ . By the definition, 0 and n are always splits of a (0,1)-matrix in 

nM  when 1n ≥ , called trivial splits. Obviously, [ ] [ ] [ ]( ) [ ] [ ]( ) [ ]\ \i n i n i iA A ε× ×= =  when 
i is a trivial spilt of A; [ ] [ ] [ ]( ) ( )\ i n ii n iA O × −× =  and [ ] [ ]( ) [ ] ( )\ n i in i iA O − ×× =  when i is a 
non-trivial spilt of A. We call A indecomposible if it is non-empty and only has 
trivial splits. 

For A in nM , 1n ≥ , suppose that { }0 1, , , si i i  is the set of all splits of A, 
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where 0 10 si i i n= < < < = . We call [ ]1 1,k ki iA
− +  an atom of A, 1 k s≤ ≤ . Ob-

viously, there is no non-trivial split of [ ]1 1,k ki iA
− +  for 1 k s≤ ≤ . Let  

[ ]1 1, ,
k kk i iA A
− +=  

for 1 k s≤ ≤ . We define the decomposition of A by  

1 2 .sA A A A= ◊ ◊ ◊  

In particular, when A is indecomposable or empty, its decomposition is itself.  
Example 3. 1) The set of splits of  

1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 1 0 0

 
 
 
 
 
 
 
 
  

 

is { }0,1,3,6  and its decomposition is  

[ ]

1 0 0 0 0 0
0 1 1 0 0 0

1 1 1
0 0 1 0 0 0 1 1

1 0 1 0 .
0 0 0 1 1 1 0 1

1 0 0
0 0 0 0 1 0
0 0 0 1 0 0

 
 
   
     = ◊ ◊           
 
  

 

Its atoms are  

[ ]
1 1 1

1 1
1 ,    and  0 1 0 .

0 1
1 0 0

 
   
       

 

2) The set of splits of 
1 0 1
0 1 0
1 0 1

 
 
 
  

 is { }0,3 , so it is indecomposable. Its de-
composition is itself, and so is its atom.  

3. Cut-Box Coproduct and Coalgebra  

In this section, we define the cut-box coproduct on the vector space  . Then 
we prove the space with the cut-box coproduct is a graded coalgebra. 

Define the cut-box coproduct ∆  on   by  

( ) 1 1
0

s

j j s
j

A A A A A+
=

∆ = ◊ ◊ ⊗ ◊ ◊∑    

for non-empty matrix A in nM  with decomposition 1 2 sA A A A= ◊ ◊ ◊ , 
where 1 0 1s sA A A A ε+◊ ◊ = ◊ ◊ =  . In particular, define ( )ε ε ε∆ = ⊗ . 

Define the counit ν  from   to   by  

( ) 1, ,
0, otherwise,

A
A

ε
ν

=
= 


 

for A in M.  
Example 4. From Example 3 and the definition of the cut-box coproduct, we 
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have  

[ ]

[ ] [ ]

[ ]

1 0 0 0 0 0
0 1 1 0 0 0

1 1 1
0 0 1 0 0 0 1 1

1 0 1 0
0 0 0 1 1 1 0 1

1 0 0
0 0 0 0 1 0
0 0 0 1 0 0

1 1 1 1 1 1
1 1 1 1

1 0 1 0 1 0 1 0
0 1 0 1

1 0 0 1 0 0
1

1 1
1

0 1

ε

  
  
     
       ∆ = ∆ ◊ ◊                 
    

   
      = ⊗ ◊ ◊ + ⊗ ◊               

 + ◊ ⊗  
[ ]

[ ]

1 1 1 1 1
1 1

0 1 0 1 0 1 0
0 1

1 0 0 1 0 0
1 0 0 0 0 0

1 1 0 0 0
0 1 1 0 0 0

0 1 0 0 0
0 0 1 0 0 0

1 0 0 1 1 1
0 0 0 1 1 1

0 0 0 1 0
0 0 0 0 1 0

0 0 1 0 0
0 0 0 1 0 0

1 0 0 0 0

1 0 0 1 1 1
0 1 1 0 1 0
0 0 1 1 0 0

ε

ε

   
    + ◊ ◊ ⊗           

 
  
  
  = ⊗ + ⊗   
  
       

   
   + ⊗ +   
      

0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 1 0 0

ε

 
 
 
  ⊗ 
 
 
  

 

and  

1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0 .
1 0 1 1 0 1 1 0 1

ε ε
      
      ∆ = ⊗ + ⊗      
            

 

Theorem 1. ( ), ,ν∆  is a graded coalgebra. 
Proof. It is easy to verify that ν  is a counit. Obviously,  

( ) ( ) ( ) ( )id id .ε ε ε ε ε⊗∆ ∆ = ⊗ ⊗ = ∆⊗ ∆   

Suppose A in nM  with 1n ≥  and its decomposition is  

1 2 .sA A A A= ◊ ◊ ◊  

Then  

( ) ( )
( ) ( )

( )

1 2

1 1
0

1 1 1
0

id
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s

s

j j s
j

s s

j j k k s
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A A A A

A A A A A A

+
=

+ +
= =

⊗∆ ∆
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( )

( ) ( )

1 1 1
0

1 1 1
0 0

1 1
0

id

id ,

j j k k s
j k s

s k

j j k k s
k j

s

k k s
k

A A A A A A

A A A A A A

A A A A

A

+ +
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+ +
= =

+
=
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 = ∆⊗ ◊ ◊ ⊗ ◊ ◊ 
 

= ∆⊗ ∆

∑

∑ ∑

∑

  

  

 



 

where 1j jA A ε+ ◊ ◊ =  for 0 j s≤ ≤ . So ∆  satisfies the coassociative law. 
Obviously, by the definitions of ∆  and ν , we have ( )n i n i−∆ ⊆ ⊗⊕    

and ( ) 0nν =  for 0n > . Hence ( ), ,ν∆  is a graded coalgebra.  
□ 

4. Super-Shuffle Product and Algebra  

In this section, we define the super-shuffle product on the vector space  . 
Then we prove the space with the super-shuffle product is a graded algebra. 

Define the super-shuffle product ∗  on   by  

[ ], :
,

m n

I J

C M
I J I J m n

C A C B

A B C
+∈

∪ = +
= =

∗ = ∑                         (1) 

for A in mM  and B in nM , where C traverses all matrices in m nM +  with the 
restriction on I is A, on J is B, on I J×  and J I×  are arbitrary (0,1)-matrices. 
Obviously, the product ∗  is commutative and A A Aε ε∗ = ∗ = , for any A in 
M. Define the unit µ  from   to   by ( )1µ ε= .  

Example 5. For [ ]1 1
1

, 1
0

 A B 
= = 
 

 we have  

1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0 0 1 0 0 1

1 1 1 0 0

1 0 0 1 1

0 0 1 0 0

1 1 1

1 0 1 0 1 0 1 0 1

1 1 1 1 1

1 1 1 1 11 1 0 1

0

0

A B
         
         

∗ = + + + +         
         
         

         
        

+ + + + +        
        
         

0 1 1 1 0

0 1 1 0 1

1 1 1 0 0 1 1 1 1 1

1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1

1 1 1 1 1

1 1

0

1 0 0 0 0 1 01 10 1

1

1 1 1 1

1 0

1 0 1 0 1 0 1 00 0 011 0





         
         

+ + + + +         
         
         

         
        

+ + + + +        
        
         

0 1 1 1 0

0 0 1 0 0 1 0 0 1 1

1 0 0

1 1 1 1 1 1 1 1 1 1

1 1

1 0 1 0 1 0 1 01

1 1 1

1 00





         
         

+ + + + +         
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0 0 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1

1 0 0 1 1 1 1 0 0 1

1 1 0 1 1

0 1 0 0 1 0 0 1

1 1 1 1

0

1 1 1 1

1 1 1

1 1

0 0 0

1 1

1 1 1

1 0 1 0 1 0 1 0 1 0

1

0 0

1

1

0

         
         

+ + + + +         
         
         

         
         

+ + + + +         
         
         

0 0 0 0 1 1 1 0 1 0

1 0 0 1 0

0 1 0 0 1

0 1 0 1 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1

1 0 1 0 1

1 1 1 1 1

1 1 1

0 1 0

1

1 0 1 1 0

0 1 1 0 1 0

1 1

1

         
         

+ + + + +         
         
         

         
         

+ + + + +         
         
         

1 0 0 1 1 1

1 1 1 .

1 1 1

1 1

1 1 1 1 1 1

1

1

0 1 0 1 0

     
     

+ + +     
     
       

Here, we color the entries of C in A B∗  restricted to A red and to B blue,  

respectively. Although 1
0 1

0
1

1
1 1 0

 
 
 
  

 and 1
0 1

0
1

1
1 1 0

 
 
 
  

 are same matrices, we  

consider they are different. Then each term in A B∗  is unique. 
Let { }1 2, , , nW i i i=   be a set of positive integers where 1 2 ni i i< < < . De-

fine a mapping stW  from W to W    by ( )stW ai a=  for 1 a n≤ ≤ , and call 
it the standardization of W [6]. For a subset T of W, denote  

( ) ( ){ }st st |W WT i i T= ∈ . Obviously, stW  is a 1-1 mapping from the set of sub-
sets of W to the set of subsets of W   . Therefore, for any subset H of W   , 
there must exist a unique subset P of W such that ( )stWH P= . 

Remark 1. ([15]) Let W be a set of positive integers and P be a subset of W. 
Then there exists a unique subset H in W    such that  

( ) ( )( )st st st ,P H Wi i=  

for any i in P. Actually, ( )stWH P= .  
Example 6. For { }3,5,7,8,9W =  and { }3,7,8P = , ( )st 3 1P = , ( )st 7 2P = , 
( )st 8 3P = , ( )st 3 1W = , ( )st 7 3W =  and ( )st 8 4W = . Take  

( ) { }( ) { }st st 3,7,8 1,3,4W WH P= = = . Furthermore, ( )( )st st 3 1H W = ,  
( )( )st st 7 2H W = , ( )( )st st 8 3H W = .  

Next, in order to prove ( ), ,µ∗  is a graded algebra, we give one lemma. 
Lemma 2. Assume ( )ij n n

A a
×

=  is a (0,1)-matrix, [ ]W n⊆  and H W⊆    . 
Then there exists a subset P of W such that ( )P W H

A A= .  
Proof. By the definition of stW , there must exist a subset P of W such that 
( )stW P H= . Next, we prove ( )P W H

A A= . 
Let PA  be ( )ijB b= , WA  be ( )ijC c=  and ( )W H

A  be ( )ijD d= . Ob-
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viously, B and D are both P P×  (0,1)-matrices. We just need to show that 

ij ijb d=  for each ,i j  in P   . For ijb  in PB A= , there must exist i′  and 
j′  in P such that ( )stP i i′ = , ( )stP j j′ =  and i j ija b′ ′ = . Since P is a subset of 

W, there must exist i′′  and j′′  in W    such that ( )stW i i′ ′′= , ( )stW j j′ ′′=  
and i j i ja c′ ′ ′′ ′′= . On the other hand, we have ( )stW P H=  and stW  is a 1-1 map-
ping from the set of subsets of W to the set of subsets of W   , therefore i′′  and 
j′′  are in H. Then there must exist i′′′  and j′′′  in H    such that  

( )stH i i′′ ′′′= , ( )stH j j′′ ′′′=  and i j i jc d′′ ′′ ′′′ ′′′= . Hence, ij i jb d ′′′ ′′′= . By Remark 1, 
we have  

( ) ( )( ) ( )st st st stP H W Hi i i i i′ ′ ′′ ′′′= = = =  

and  

( ) ( )( ) ( )st st st st .P H W Hj j j j j′ ′ ′′ ′′′= = = =  

Thus, for each ,i j  in P   , ij ijb d= , i.e., ( )P W H
A A= .               □ 

Theorem 3. ( ), ,µ∗  is a graded algebra.  
Proof. It is easy to verify that µ  is a unit. For A in hM , B in kM  and C in 

lM , we have  

[ ], :
,

.
h k

H K

X M
H K H K h k

X A X B

A B X
+∈

∪ = +
= =

∗ = ∑  

Then for any term Y in ( )A B C∗ ∗ , there exist two disjoint subsets W and L of 
[ ]h k l+ +  with W h k= +  and L l=  such that WY  is a term in A B∗  and 

LY C= . It means  

( )
[ ] [ ], : , :

, ,

.
h k h k l

H K W L

X M Y M
H K H K h k W L W L h k l

X A X B Y X Y C

A B C Y
+ + +∈ ∈

∪ = + ∪ = + +
= = = =

∗ ∗ = ∑ ∑              (2) 

For a fixed W in [ ]h k l+ +  with cardinality h k+ , there exist two disjoint 
subsets H and K of [ ]h k+  with H h=  and K k=  such that  

( ) ( )   and   .W WH K
Y A Y B= =  

Since H is a subset of [ ]W h k  = +  , due to the Lemma 2, there exists a sub-
set P of W corresponding to H with P h=  such that ( )stWH P=  and  

( ) .P W H
Y Y A= =  

Similarly, there exists a subset Q of W with Q k=  corresponding to K such 
that ( )stWK Q=  and  

( ) .Q W K
Y Y B= =  

In (2), for a fixed subset W in [ ]h k l+ +  with cardinality h k+ , H traverses 
all subsets with cardinality h in [ ]h k+ , since WY  traverses all terms in A B∗ . 
Meanwhile, P traverses all subsets with cardinality h in W. Therefore, P traverses 
all subsets with cardinality h in [ ]h k l+ +  when W traverses all subsets with 
cardinality h k+  in [ ]h k l+ + . Similarly, Q traverses all subsets with candi-
nality k in [ ]h k l+ +  when W traverses all subsets with cardinality h k+  in 
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[ ]h k l+ +  from W P Q= ∪ . Thus (2) can be rewritten as  

( )
[ ], , :

, ,

.
h k l

P Q L

Y M
P Q L P Q L h k l

Y A Y B Y C

A B C Y
+ +∈

∪ ∪ = + +
= = =

∗ ∗ = ∑                 (3) 

Similarly, ( )A B C∗ ∗  can be rewritten as (3). Hence, ∗  satisfies the asso-
ciative law and ( ), ,µ∗  is an algebra. 

By the definitions of the product ∗  and µ , we have r s r s+∗ ⊆    and 
( ) 0µ ⊆  . So ( ), ,µ∗  is a graded algebra.                         □ 

5. Conclusion and Suggestion  

Let   be the vector space spanned by (0,1)-matrices. Firstly, we introduce 
splits and the decomposition of a (0,1)-matrix. Then we define the cut-box co-
product ∆  and the super-shuffle product ∗  on  . We prove the cut-box 
coproduct ∆  satisfies coassociativity and the super-shuffle product ∗  satisfies 
associativity, i.e., ( ), ,ν∆  is a graded coalgebra and ( ), ,µ∗  is a graded 
algebra. 
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