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Abstract 
In this paper, an actuator fault diagnosis scheme based on the backstepping 
method is proposed for a class of nonlinear heat equations. The fault diagno-
sis scheme includes fault detection, fault estimation and time to failure (TTF) 
prediction. Firstly, we achieve fault detection by comparing the detection re-
sidual with a predetermined threshold, where the detection residual is defined 
as the difference between the observer output and the system measurement 
output. Then, we estimate the fault function through the fault parameter up-
date law and calculate the TTF using only limited measurements. Finally, the 
numerical simulation is performed on a nonlinear heat equation to verify the 
effectiveness of the proposed fault diagnosis scheme. 
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1. Introduction 

As the production and life of mechanization and intelligence, the partial diffe-
rential equation (PDE) control systems are widely used in the chemical industry 
[1] [2], transportation systems [3], aerospace [4] and other fields [5] [6] [7]. 
With the expansion of system scale and the increase of system complexity, once 
the system fails, it will cause incalculable losses and seriously threaten the safety 
of people’s lives and property. Therefore, how to effectively improve the security 
and stability of the system is particularly important. The design of the fault di-
agnosis (FD) scheme is the key to improving the system’s stability and reliability 
[8]-[12]. 
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Considering the characteristic of the system state changing with time and 
space, the ordinary differential equation (ODE) model based on the lumped pa-
rameter representation of the distributed parameter system (DPS) is not suitable 
for simulating the dynamic behavior of the actual system [13]-[18]. On the con-
trary, the dynamic behavior of DPS is more suitable to be described by PDE. The 
existing fault diagnosis method of DPS is mainly divided into two categories. 
The first kind is to approximate DPS using finite dimensional ODE, which is 
known as the early lumped design. However, due to the model reduction in the 
modeling process, this diagnosis scheme may produce false alarms and missed 
alarms [19] [20]. Feng, Li and Yang provided estimates for the parabolic DPS 
distributed fault problem [21] through the tedious early lumped design. Another 
kind of fault diagnosis is to design directly on the basis of the original PDE sys-
tem, which is called the later lumped design. In recent years, significant achieve-
ments have been made in fault diagnosis based on DPS. Ghantasala and El-Farra 
studied the actuator fault diagnosis of a parabolic PDE system [22]. Ferdowsi et al. 
designed a fault detection observer using the PDE direct representation of the 
original system [23]. Similarly, the fault detection method by designing observ-
ers in linear DPS systems has been widely used [24] [25] [26]. Dey, Perez and 
Moura studied the problem of robust fault detection in a linear parabolic system 
with uncertainties [27]. Cai, Ferdowsi and Sarangapani proposed a fault para-
meter update law and the display expression of TTF [28]. Feng et al. [29] utilized 
the backstepping method [30] [31] to achieve the distribution anomaly localiza-
tion of linear parabolic DPS through a limited number of measurements. Kwan 
et al. [32] approximated the fault by building a stochastic model and proposed 
the remaining useful life (RUL) or failure time (TTF). 

The existing research results mentioned above are mainly aimed at linear sys-
tems, but most practical systems are complex nonlinear systems. Compared with 
the research results of linear DPSs fault diagnosis, the research results in the field 
of nonlinear DPSs are relatively insufficient. Ferdowsi, Cai and Jagannathan rea-
lized the fault diagnosis of nonlinear DPS by making reasonable assumptions 
about the nonlinear terms in the system [33]. 

Inspired by this, we propose a new backstepping-based fault detection, fault 
estimation and TTF prediction scheme for a class of nonlinear heat equations. 
Based on the effectiveness of the backstepping method in observer design [30] 
[31] [34] [35] [36], we apply this method to observer design as well. Firstly, we 
design an observer to estimate the state and output of the system in the absence 
of a system fault. The estimated system output is compared with the measured 
output to obtain the detection residual. The detection residual is bounded when 
there is a bounded uncertainty or disturbance in the system. In particular, the 
detection residual converges to zero exponentially when the nonlinear term sa-
tisfies some conditions and there is no disturbance or uncertainty in the system. 
However, once a system fault occurs, the actual measured output will deviate 
from the estimated output, resulting in an increase in the residual. If the detec-
tion residual of the system exceeds the predefined threshold, we determine that 
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the system has detected a fault. Once a fault is detected in the system, we add an 
adaptive term estimation term to the original observer to learn the dynamic be-
havior of the fault. Next, we give the estimation of the fault by the parameter 
update law and the error of the fault estimation is bounded. Finally, with only a 
limited number of measurements, we propose an explicit expression for the es-
timation of TTF. 

Compared with the traditional early lumped design that utilizes finite dimen-
sional ODE to approximate DPS, the fault diagnosis scheme proposed in this pa-
per is directly based on DPS modeling, avoiding false alarms and missed alarms in 
the fault diagnosis process caused by model reduction during the modeling process. 
In addition, we use the Lyapunov function method instead of the operator theory, 
which effectively reduces the amount of computation and is more conducive to the 
application of practical engineering production. 

In summary, this paper proposes a backstepping-based nonlinear heat equa-
tions fault diagnosis scheme. The main contributions of this paper are as follows: 

1) A nonlinear heat equation fault diagnosis scheme is proposed by making 
rational assumptions about the nonlinear term;  

2) The fault parameters are estimated through the designed fault parameter 
updating law;  

3) Once a fault is detected in the system, an adaptive term is added to the ex-
isting observer to provide an online estimate of the TTF of the system.  

The remaining sections of this paper are arranged as follows. We introduce 
the relevant preparatory knowledge and give a brief description of the system in 
Section 2. In Section 3, fault detection, fault estimation and TTF prediction schemes 
are proposed. To verify the effectiveness of the proposed scheme, we conduct nu-
merical simulations in Section 4. In the end, we briefly conclude this paper in Sec-
tion 5. 

2. Preliminary Knowledge and Problem Statement 

In this paper, the mathematical symbols we used are standard. ν  is the absolute 
value of ν  for any ν ∈ , where   represents the set of all real numbers. The 
function ( )sν  is square integrable on the Hilbert space  

[ ]( ) [ ]( )2 20,1 0,1 ;=    with the 2  norm  

( ) ( )1 2
2 0

d .s sν ν⋅ = ∫     
 

At the beginning, we will briefly review several common inequalities that may 
be used in this paper.  
• Young’s inequality:  

2 2 2 21 1, ,
2 2 2 2

ab a b ab a bη η
η η

≤ + ≥ − −  

where , ,a b η∈  and 0η > .  
• Cauchy-Schwarz inequality:  
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( ) ( ) ( ) ( )1
1 2 1 22 20

d ,s s s s sϑ ϑ ϑ ϑ≤∫  

where ( ) ( ) [ ]( )2
1 2, 0,1s sϑ ϑ ∈ .  

• Agmon’s inequality:  

[ ]
( ) ( )2 2

2 20,1
max 0 2 ,ss

sυ υ υ υ
∈

≤ +  

[ ]
( ) ( )2 2

2 20,1
max 1 2 ,ss

sυ υ υ υ
∈

≤ +  

where ( ) [ ]( )2 0,1sυ ∈ .  
In this paper, we consider a class of one-dimensional nonlinear heat equations 

that can be described by  

( ) ( ) ( ) ( ) [ ]
( )

, , , , , 0,1 , 0,
0, , 0

t sss t s t s s t s t
y t t
ν ν φ ν ψ

ν
 = + + ∈ >
 = ≥

       (2.1) 

with the boundary conditions  

( )
( ) ( )

0, 0, 0,
1, , 0,

s t t
t U t t

ν
ν θ
 = ≥
 = ≥

                    (2.2) 

and initial condition  

( ) ( ) [ ]0,0 , 0,1 ,s s sν ν= ∈                   (2.3) 

where ( ) [ ]( )2, 0,1tν ⋅ ∈  is the state variable; ( ) [ ]( )2, 0,1sφ ν ∈  is Lipschitz 
continuous function; ( ),s tψ  indicates the system uncertainty or disturbance; 
θ  represents an actuator fault which is bounded by min maxθ θ θ≤ ≤ ; ( )U t  is 
the boundary control input. y represents the output of the system, which can be 
obtained by measurement. 

Assumption 2.1. For the nonlinear function ( ), sφ ν , we make the following 
assumptions:  
• ( ), sφ ν  is Lipschitz continuous with respect to ν  and ( ) [ ]( )2 0,1sν ∈ , 

[ ]0,1s∈ , 0t ≥ .  
• ( ), sφ ν  satisfies  

( ) ( ) ( ) ( )
,

, , , ,
s

s s s tφ

φ ν
φ ν ν φ ν ν ε

ν
∂

+ ∆ − = ∆ +
∂

           (2.4) 

where ν∆  denotes a small variation of ν , ( ),s tφε  is the approximation er-
ror satisfying 

2,nφ φε ε≤  and φε  is a positive constant. 
In particular, when the approximation error ( ), 0s tφε = , for the nonlinear 

function ( ), sφ ν  we can get  

( ) ( ) ( ),
, , .

s
s s

φ ν
φ ν ν φ ν ν

ν
∂

+ ∆ − = ∆
∂

               (2.5) 

Assumption 2.2. The distributed uncertainty or disturbance ( ),s tψ  in the 
system is bounded, i.e.  

( )
2

, ,tψ ψ⋅ ≤
  

 

where 0ψ >  is a known constant.  

https://doi.org/10.4236/ojapps.2023.138099


L. Chen 
 

 

DOI: 10.4236/ojapps.2023.138099 1261 Open Journal of Applied Sciences 
 

Assumption 2.3. In this article, we assume that there is a stable control such 
that the system under the condition of the healthy state is bounded.  

3. Fault Diagnosis Scheme 

In this section, we first consider the case where there is no disturbance or uncer-
tainty in the system, i.e. ( ), 0s tψ = . On this basis, an observer is designed in the 
healthy state of the system. The estimated output of the system obtained through 
the observer will converge to the actual measured value under the healthy condi-
tion when there is no disturbance or uncertainty in the system through selecting 
the observer gain reasonably. We define the detection residual as the difference 
between the estimated output and the measured output. However, once a system 
fault occurs, the actual measured output will deviate from the estimated output 
given by the observer, resulting in an increase in the residual error. Thus, we can 
compare the detection residual with the predefined threshold to complete the 
fault detection. 

Remark 3.1. In this paper, we consider that the required measurement results 
are noise-free. Moreover, the detection residuals are bounded rather than con-
verging to zero due to bounded uncertainties and disturbances in the system.  

3.1. Fault Detection Observer 

First of all, we design an observer for system (2.1) as follows  

( ) ( ) ( ) ( ) ( ) ( )( ) [ ]
( ) ( ) ( )( )
( ) ( )

1

10

ˆ ˆ ˆ ˆ, , , 0, 0, , 0,1 , 0,
ˆ ˆ0, 0, 0, , 0,
ˆ 1, , 0,

t ss

s

s t s t s p s t t s t

t p t t t

t U t t

ν ν φ ν ν ν

ν ν ν

ν

 = + + − ∈ >
 = − ≥
 = ≥

   (3.1) 

where ( )ˆ ,s tν  represents the estimated system state, ( ) ( )ˆˆ 0,y t tν=  is estimated 
output of the system, ( )1p s  and 10p  denote the observer gains that we need to 
determine in the following. The detection residual ( )r t  is defined by  

( ) ( ) ( )ˆ0, 0, , 0.r t t t tν ν= − ≥                   (3.2) 

Next, we define the system state residual or system state estimation error as  

( ) ( ) ( )ˆ, , , ,s t s t s tν ν ν= −  

from which the observer performance can be analyzed. If the state residual is 
used for fault detection, the availability of the entire state of the system is re-
quired, which is relatively difficult. However, that is unnecessary because the 
PDE in (2.1) transfers the influence of faults in the system to the output. There-
fore, we can complete the fault detection with the aid of the output residual error 
( )r t . 
When there is no fault in the system, i.e. 1θ = , the state residual dynamical 

system can be expressed as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) ( )
( )

1

10

ˆ, , , , , 0, , 0,1 , 0,
0, 0, , 0,

1, 0, 0,

t ss

s

s t s t s s s t p s t s t
t p t t

t t

ν ν φ ν φ ν ψ ν
ν ν
ν

 = + − + − ∈ >
 = − ≥
 = ≥

  

 



 (3.3) 
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combined with (2.1), (2.2) and (3.1). 

From Assumption 2.2, we can get ( ) ( )
ˆ

,
,

s
A s t

ν ν

φ ν
ν

=

∂
=

∂
 through  

( ) ( ) ( ) ( ) ( )
ˆ

,
ˆ, , , ,

s
s s s t s tφ

ν ν

φ ν
φ ν φ ν ν ε

ν
=

∂
− = +

∂
 . So we can write the error system 

(3.3) as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) ( )
( )

1

10

, , , , , , 0, , 0,1 , 0,
0, 0, , 0,

1, 0, 0.

t ss

s

s t s t A s t s t s t s t p s t s t
t p t t

t t

φν ν ν ε ψ ν
ν ν
ν

 = + + + − ∈ >
 = − ≥
 = ≥

   

 



  

(3.4) 

It should be noted that when the term ( ) ( ), ,A s t s tν  in (3.4) is sufficiently large, 
the system will become unstable. 

For the above problem, we can eliminate the influence of ( ) ( ), ,A s t s tν  through 
the Volterra integral transformation [34], and the observer gain can be obtained 
through the following Lemma 3.1. 

Lemma 3.1. ([34]) With the help of the following integral transformation  

( ) ( ) ( ) ( )
0

, , , , , d ,
s

s t s t s t tν ξ σ ξ σ σ= − Γ∫               (3.5) 

where ( ), ,s tσΓ  is the unique solution of (3.7), we can convert the original error 
system (3.4) to the target ξ  system  

( ) ( ) ( ) ( ) ( ) [ ]
( )
( )

, , , , , , 0,1 , 0,
0, 0, 0,

1, 0, 0,

t ss M M

s

s t s t d s t s t s t s t
t t

t t

φξ ξ ξ ψ ε
ξ
ξ

 = − + + ∈ >
 = ≥
 = ≥

    (3.6) 

where d is a positive constant; ( ),s tψ  and ( ),s tφε  satisfy  

( ) ( ) ( ) ( )
0

, , , , , d ,
s

M Ms t s t s t tψ ψ σ ψ σ σ= − Γ∫  

( ) ( ) ( ) ( )
0

, , , , , d .
s

M Ms t s t s t tφ φ φε ε σ ε σ σ= − Γ∫  

Lemma 3.2. ([34]) The gain kernel function ( ), ,s tσΓ  satisfies  

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

2 2

2 2

, , , , , ,
, , , ,

1, , 0,
1, , , ,

2

s t s t s t
A s t d s t

t s
t

ss s t A s t d

σ σ σ
σ

σ
σ

∂Γ ∂ Γ ∂ Γ
 = + Γ + −  ∂ ∂ ∂Γ =

 −  Γ = + 

   (3.7) 

where d is a positive constant and ( ) ( )
ˆ

,
,

s
A s t

ν ν

φ ν
ν

=

∂
=

∂
. The observer gains are  

given by  

( ) ( )

( ) ( )
1

10

,0,
, ,

0,0, .

s t
p s t

p t t
σ

 ∂Γ
=

∂
 = Γ

                     (3.8) 
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Lemma 3.3. ([34]) The kernel function ( ), ,M s tη  of the inverse transforma-
tion of ( ), ,s x tΓ  satisfies  

( ) ( ) ( ) ( )
0

, , , , , d .
s

s t s t M s t tξ ν η ν η η= + ∫   

Remark 3.2. Through the Lemma 3.3, we can get Mψ  and Mφε  as follows:  

( ) ( ) ( ) ( )
0

, , , , , d ,
s

M s t s t M s t tψ ψ η ψ η η= + ∫  

( ) ( ) ( ) ( )
0

, , , , , d .
s

M s t s t M s t tφ φ φε ε η ε η η= + ∫  

With the aid of the trigonometric inequality, we have estimations of ( ),M s tψ  
and ( ),M s tφε  as  

( ) ( ) ( ) ( ) ( )2 2 0 2
, , , , , d 1 ,

s
M s t s t M s t t Mψ ψ η ψ η η ψ≤ + ≤ +∫  

( ) ( ) ( ) ( ) ( )02 2 2
, , , , , d 1 ,

s
M s t s t M s t t Mφ φ φ φε ε η ε η η ε≤ + ≤ +∫  

where ( )
20 1

max , ,
s

M M s tη
≤ ≤

= , ( )
20 1

max ,
s

s tψ ψ
≤ ≤

= , ( )
20 1

max ,
s

s tφ φε ε
≤ ≤

= .  

Lemma 3.4. ([37]) For real functions ( )G t  and ( )f t , if  

( ) ( ) ( ) , 0,G t G t f t tα≤ − + ∀ ≥  

then  

( ) ( ) ( ) ( )
0

e 0 e d , 0,
t ttG t G f tα ηα η η− −−≤ + ∀ ≥∫  

where 0α >  is a constant.  
Through the following two theorems, we respectively provide the stability 

proof of the detection residual under the condition of healthy operation of the 
system and the criteria for the fault detection. 

Theorem 3.1. For the error dynamics system (3.6), we have the following sta-
bility analysis:  

1) the error system ξ  is bounded when there is no disturbance or uncer-
tainty, i.e. ( ), 0M s tψ = . In particular, the error system ξ  converges exponen-
tially to zero when the nonlinear term ( ), sφ υ  satisfies (2.5), i.e. ( ), 0s tφε = ;  

2) the error system ξ  is bounded when there is a disturbance or uncertainty 
in the system, i.e. ( ), 0M s tψ ≠ .  

The bound of ( ),s tξ  can be written as  

( ) ( ), ,ms t tξ ξ
∞
≤  

where  

( ) ( ) ( ) ( ) ( )

( ) ( )

22 1 2
1

2 2
1 0 02 2

12e 0 1 ,
1

10
2

d t
m

s

t W M D
d

W

ξ
α

ξ ξ

− −
= + + −


 = +

           (3.9) 

with 0 1α≤ ≤  and  

( )
( )

, , 0,
, , 0.

M

M

s t
D

s t
φ

φ

ε ψ
ψ ε ψ
 ==  + ≠

                  (3.10) 
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Proof. First of all, we choose the following Lyapunov function for system (3.6),  

( ) ( ) ( )1 12 2
1 0 0

1 1, d , d .
2 2 sW t s t s s t sξ ξ= +∫ ∫              (3.11) 

Then, taking the derivative of ( )1W t  yields  

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

1 1 12 2 2
0 0 0

1 1

0 0

1 , d , d , d

, , , d , , , d

s ss

M M M M ss

W t d s t s d s t s s t s

s t s t s t s s t s t s t sφ φ

ξ ξ ξ

ψ ε ξ ψ ε ξ

= − + − −

+ + − +

∫ ∫ ∫

∫ ∫



  

(3.12) 

through the integration by parts and the error dynamic system (3.6). 
We can see that the fourth and fifth terms in the right of (3.12) both contain 

M Mφψ ε+  which is bounded. Considering that ( ),M s tψ  is not always zero, we 
first consider the existence of the uncertainty and disturbance in the system, i.e. 

( ), 0M s tψ ≠ . 
With the aid of the Cauchy-Schwarz inequality and Young’s inequality, we 

can get an upper bound of the fourth term in the right of (3.12),  

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1

0
1 1

0 0
1 1 1 1

1 1 1 12 2 2 22 2 2 2
0 0 0 0

2 2 22

22 2

2 22

, , , d

, , d , , d

, d , d , d , d

, , , ,

1 , , , ,
2

M M

M M

M M

M M

M M

s t s t s t s

s t s t s s t s t s

s t s s t s s t s s t s

s t s t s t s t

s t s t s t

φ

φ

φ

φ

φ

ψ ε ξ

ψ ξ ε ξ

ψ ξ ε ξ

ψ ξ ε ξ

ψ ε α ξ
α

+

= +

≤ +

= +

 ≤ + +  

∫

∫ ∫

∫ ∫ ∫ ∫  (3.13) 

where α  is a positive constant. Using the same method for the fifth item in the 
right of (3.12), we can get  

( ) ( )( ) ( )

( ) ( ) ( )

1

0

22 2

2 22

, , , d

1 , , , .
2

M M ss

M M ss

s t s t s t s

s t s t s t

φ

φ

ψ ε ξ

ψ ε α ξ
α

+

 ≤ + +  

∫
          (3.14) 

By substituting (3.13) and (3.14) into (3.12), the upper bound of ( )1W t  can 
be expressed as  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2
1 2 2 2

22

2 2

1 , , 1 ,

1 , , .

s ss

M M

W t d s t d s t s t

s t s tφ

ξ α ξ α ξ

ψ ε
α

≤ − + + − + −

 + +  



   (3.15) 

Let α  satisfy 0 1α< ≤ , then the upper bound of ( )1W t  is further represented 
as  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22 2 2
1 2 2 2 2

22 2 2

2 2 2 2

22
1 2 2

11 , 1 , , ,

11 , 1 , , ,

12 1 ( ) , , .

s M M

s M M

M M

W t d s t d s t s t s t

d s t d s t s t s t

d W t s t s t

φ

φ

φ

ξ ξ ψ ε
α

ξ ξ ψ ε
α

ψ ε
α

 ≤ − + + − + +  

 ≤ − + − + +  

 ≤ − + +  



 (3.16) 
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Considering 1d >  and combining the Remark 3.1 and Lemma 3.4, we get  

( ) ( ) ( ) ( ) ( )22 1 2
1 1

1e 0 1 ,
2 1

d tW t W M D
dα

− −≤ + +
−

          (3.17) 

where D φψ ε= + . 
Moreover, for the state of system (3.6) we have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2

2 2 2 2

22 1 2
1 1

, 2 , , , ,

12 2e 0 1
1

s s

d t

s t s t s t s t s t

W t W M D
d

ξ ξ ξ ξ ξ

α

∞

− −

≤ ≤ +

= ≤ + +
−

     (3.18) 

by applying the Young’s inequality and Agmon’s inequality and combining (3.17). 
Finally, combining (3.17) and (3.18), we can get the upper bound of ξ ,  

( ) ( ) ( ) ( ) ( )22 1 2
1

1, 2e 0 1 ,
1

d ts t W M D
d

ξ
α

− −

∞
≤ + +

−
        (3.19) 

where D φψ ε= + . From this, it can be seen that (2) holds. 
In the other case, when there is no uncertainty or disturbance in the system, 

i.e. ( ), 0M s tψ = , the same conclusion can be obtained, except that D φψ ε= +  
is replaced by D φε=  in (3.19). In particular, when the nonlinear term in the 
system satisfies (2.1), i.e. 0φε = , we can obtain that ξ  exponential converges 
to zero. Thus, (1) is also proved. 

Remark 3.3. According to (3.2) and (3.5), ( ) ( )0,r t tξ= . Therefore, based on 
the above discussion, we can define the upper bound of the residual system ob-
tained in the healthy state as the threshold ( )R t  for fault detection, i.e.  

( ) ( ) ( ) ( ) ( )22 1 2
1

12e 0 1 .
1

d tR t W M D
dα

− −= + +
−

         (3.20) 

Note that the predefined threshold is “time-varying” and the “time-varying” is 
determined by the exponential term ( ) ( )2 1

1e 0d tW− −  of (3.20).  
Considering the above, we can give the fault detection logic as follows. 
Theorem 3.2. Comparing the residual function ( )r t  with the threshold 

function ( )R t , we present the following fault detection logic,  

( ) ( )
( ) ( )

fault at time ,

fault-free at time .

r t R t t

r t R t t

> ⇒


≤ ⇒
               (3.21) 

3.2. Fault Estimation 

Once the system is detected to have a fault, it is necessary to further estimate the 
fault parameters. For the better fault estimation, an adaptive estimation term θ̂  
which is activated only when the fault in the system is detected is added to the 
original observer. 

Thus, the original observer (3.1) becomes the following observer  
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( ) ( ) ( ) ( ) ( ) ( )( ) [ ]
( ) ( ) ( )( )
( ) ( )
( ) ( )

1

10

ˆ ˆ ˆ ˆ, , , 0, 0, , 0,1 , 0,
ˆ ˆ0, 0, 0, , 0,

ˆˆ 1, , 0,
ˆˆ 0, , 0.

t ss

s

s t s t s p s t t s t

t p t t t

t U t t
y t t t

ν ν φ ν ν ν

ν ν ν

ν θ
ν

 = + + − ∈ >


= − ≥


= ≥
 = ≥

  (3.22) 

By making the difference between the original system (2.1)-(2.3) and the newly 
constructed observer (3.22), a new system state residual dynamic system can be 
written as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) ( )
( ) ( ) ( )
( ) ( )

1

10

ˆ, , , , , 0, , 0,1 , 0,
0, 0, , 0,

1, , 0,
0, , 0,

t ss

s

s t s t s s s t p s t s t
t p t t

t t U t t
y t t t

ν ν φ ν φ ν ψ ν
ν ν
ν θ

ν

 = + − + − ∈ >
 = − ≥
 = ≥
 = ≥

  

 







  

(3.23) 

where ( ) ˆtθ θ θ= −  is defined as the fault parameter estimation error. 
Next, the performance of the newly designed observer is analyzed and the fault 

estimation is given by the following theorem.  
Theorem 3.3. (Fault Estimation) Once the fault is detected in the system, the 

parameter update law,  

( ) ( ) ( ) ( ) ( )( ) ( )1

0
ˆ ˆ1, 1, , , ds st U t t M t t tθ γ ν η ν η η ρθ= + −∫


          (3.24) 

will be activated to provide an estimate of the fault parameter, where 0γ >  is 
the adaptation rate, 0ρ > , 0d η> >  and ( ), ,M s tη  is given by Lemma 3.3.  

Proof. The proof and derivation process of the above theorem is roughly sim-
ilar to the previous Theorem 3.2. First of all, we apply the transformation (3.5) to 
the residual system (3.22) to get the new target ξ  system,  

( ) ( ) ( ) ( ) ( ) [ ]
( )
( ) ( ) ( )

, , , , , , 0,1 , 0,
0, 0, 0,

1, , 0,

t ss M M

s

s t s t d s t s t s t s t
t t

t t U t t

φξ ξ ξ ψ ε
ξ
ξ θ

 = − + + ∈ >
 = ≥
 = ≥



   (3.25) 

where d is a positive constant and the specific expression of ( ),M s tψ  and 
( ),M s tφε  can be found in Remark 3.2. It is noted that the boundary condition 

( )1,tξ  is changed between the (3.6) and the original system (3.25). 
Then, we choose the following Lyapunov function for system (3.25),  

( ) ( ) ( )1 2 2
2 0

1 1, d .
2 2

W t s t s tξ θ
γ

= +∫                  (3.26) 

Similarly, by taking the derivative of ( )2W t , we can get  

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 12 2
2 0 0 0

, d , d , , , d

1,

s M M

s

W t s t s d s t s s t s t s t s

t t
t t U t

φξ ξ ψ ε ξ

θ θ
ξ θ

γ

= − − + +

+ +

∫ ∫ ∫



 



  (3.27) 

through the integration by parts and (3.25). Note that ( ) ( )( ) ( )ˆ ˆt t tθ θ θ θ′= − = − 

 ,  

so (3.27) can be further written as  
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( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 12 2
2 0 0 0

, d , d , , , d

ˆ
1, .

s M M

s

W t s t s d s t s s t s t s t s

t t
t t U t

φξ ξ ψ ε ξ

θ θ
ξ θ

γ

= − − + +

+ −

∫ ∫ ∫







  (3.28) 

Then, we can take  

( ) ( ) ( ) ( )ˆ ˆ1,st U t t tθ γ ξ ρθ= −                   (3.29) 

to eliminate the effect of the positive term ( ) ( ) ( )1,s t t U tξ θ  in the right of (3.28). 
Substituting the above parameter updating law (3.29) into (3.28), we have  

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )

1 1 12 2
2 0 0 0

, d , d , , , d

ˆ
.

s M MW t s t s d s t s s t s t s t s

t t

φξ ξ ψ ε ξ

ρθ θ
γ

= − − + +

+

∫ ∫ ∫



  (3.30) 

Considering the boundedness of Mψ  and Mφε , we can adopt a similar pro-
cedure as the derivation of (3.13) for the third term in the right of (3.27) to get  

( ) ( )( ) ( )

( ) ( ) ( )

1

0

22 2

2 22

, , , d

1 , , , ,
2

M M

M M

s t s t s t s

s t s t s t

φ

φ

ψ ε ξ

ψ ε η ξ
η

+

 ≤ + +  

∫
          (3.31) 

where η  is a positive constant. For the term with the fault parameter, we have  

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

2

2 2 2 2
2

ˆ

.
2 2

t t t t t t

t t
t

θ θ θ θ θ θ θθ

θ θ θ θ
θ

= − = − +

+ −
≤ − + = −

    

 



          (3.32) 

Next, applying the Poincare inequality ( ) ( )1 12 2
20 0

4, d , dss t s s t sξ ξ
π

≤∫ ∫  to the  

first term of the right of (3.30) and combining (3.31) and (3.32), we can obtain 
the upper bound of ( )2W t  as  

( ) ( ) ( )

( ) ( )

( )

22
2 2 max

2 2

22

2 2

,
4 2 2

1 , ,
2

,

M M

W t d s t t

s t s t

AW t B

φ

ρθρη ξ θ
γ γ

ψ ε
η

 
≤ − − + − +

 + +  

≤ −

π
 
 

+



         (3.33) 

where 
2

min 2 ,
4

A d η ρ
   = + −  
  

π


, ( )

2
2 2max 1 1

2 2
B M Dρθ

γ η
= + + , D is defined  

in (3.10) and M  is defined in Remark 3.2. 
Since 0ρ >  and 0d η> > , (3.33) can be further written as  

( ) ( )2 2e 0 .At BW t W
A

−≤ +                     (3.34) 

Thus, by combining the Lyapunov function ( )2W t  and 0γ > , we have  

( ) ( )22

2, 2e 0 ,At Bs t W
A

ξ −≤ +                  (3.35) 
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( ) ( )22

22 e 0 ,At Bt W
A
γθ γ −≤ +                (3.36) 

where 
2

min 2 ,
4

A d η ρ
   = + −  
  

π


, ( )

2
2 2max 1 1

2 2
B M Dρθ

γ η
= + + , D φψ ε= + .  

    
Remark 3.4. For the convergence and boundedness of ( )

2
,tξ ⋅  and ( )

2
tθ , 

we give the following explanations:  
1) When no disturbance or uncertainty in the system, i.e. ( ), 0M s tψ = , and 

the nonlinear function ( ), sφ υ  satisfies (2.5), i.e. 0φε = , by adjusting parame-
ter γ , ρ , it can be obtained that for t →∞ , ( )

2
,tξ ⋅  is asymptotically stable 

and ( )
2

tθ  is bounded.  
2) When there is a disturbance or uncertainty in the system, i.e. ( ), 0s tψ ≠ , it 

can be seen from (3.35) and (3.36) that ( )
2

,tξ ⋅  and ( )
2

tθ  are bounded.  

3.3. Fault Prediction  

The system can maintain normal operation for a short period of time after a 
fault occurs. However, the system cannot always maintain normal operation af-
ter a failure, so it is necessary to estimate how long the system can remain opera-
tional after a system fault is detected. In this section, we use the fault estimation 
parameter update law to propose the TTF scheme, which is used to predict the 
time that the system can still maintain normal operation after a fault has been 
detected. The TTF is defined as the difference between the current time t and the 
system failure time ft , i.e. ( )TTF ft t t= − . In the following, we will give an ex-
plicit expression of TTF with the help of the parameter update law. 

Theorem 3.4. (TTF Prediction) When a fault is detected in the system, we can 
obtain the TTF as  

( ) ( ) ( ) ( )
( ) ( ) ( )

ˆ1TTF ln ,
f

t U t Q t
t

t U t Q t
ρθ γ

ρ ρθ γ
−

=
−

             (3.37) 

where fθ  is the falt limit for θ , ( ) ( ) ( ) ( )1

0
1, 1, , , ds sQ t t M t tν η ν η η= + ∫  .  

Proof. We consider ( )1,s tυ  and ( )1

0
, dtυ η η∫   as known measurement signals  

that remain in the interval , ft t   . The following estimate of the fault parame-
ters can be obtained by solving the parameter update law (3.24),  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1

0
ˆ ˆe e 1, 1, , , d d , ,ff ftt t t x

f s s ft
t t U x x M x t tρ ρθ θ γ ν η τ ν η τ η− − − −

= + + >∫ ∫    

(3.38) 

where t is the current time after the system detected the fault and ft  is the time 
of system breakdown or failure. We assume that the criterion for discriminating a 
system breakdown or failure is that the estimated fault parameter ( )ˆ tθ  reaches 
an artificially imposed upper bound on the fault parameter fθ . 

Next, we set ft  as the time for the fault estimate θ̂  reaches the fault limit fθ , 
from which we can obtain  
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( )

( ) ( )
( ) ( )( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )( ) ( )

1

0

ˆ

1 e 1, 1, , , d
ˆe

1 e
ˆe ,

f

f

f

f

f f

t t
s st t

t t

t t

t

U t t M t t
t

U t Q t
t

ρ

ρ

ρ

ρ

θ θ

γ ν η ν η η
θ

ρ

γ
θ

ρ

− −

− −

− −

− −

=

− +
= +

−
= +

∫ 

  (3.39) 

where ( ) ( ) ( ) ( )1

0
1, 1, , , ds sQ t t M t tν η ν η η= + ∫  . Finally, substituting TTF ft t= −  

into (3.39) and solving it, we can obtain the explicit expression (3.37) of TTF. 
  

4. Numerical Simulations 

To verify the effectiveness of the fault diagnosis scheme proposed in this paper, 
we conduct numerical simulations on the original system (2.1) and (2.2). 

The functions in the original system and parameters in the numerical simula-
tion process are defined as ( ), sins s tφ υ = , ( ) ( )20.5 0.3, 0.05e sinss t tψ − −= , 2d =   

and 1
2

α = . 

The fault parameter θ  is selected as the piecewise function  

( ) ( )0.3 18

0, 18,
1 0.5 18 ,

1 e , 18,t

t
t

t
θ

− −

<= − Θ − Θ = 
− ≥

 

and from the piecewise function Θ , we can observe that the system is subjected 
to a fault at 18 seconds. 

We used the finite element method (FDM) to numerically simulate the 
scheme studied in this paper. It can be seen from Figure 1(a) that in a healthy 
state where there is no fault in the system, error system ( ),s tξ  is bounded 
without disturbance or uncertainty in the system. In particular, when the nonli-
near term in the system satisfies 0φε = , it can be seen from Figure 1(b) that the 
error system ( ),s tξ  in Figure 1(c) can exponentially converge to zero. When 
there is a disturbance or uncertainty in the system, the error system ( ),s tξ  is 
also bounded in the healthy state, as shown in Figure 0. However, when we im-
pose a fault in the system, the error system ( ),s tξ  is also ultimately bounded 
as shown in Figure 1(d). 

From Figure 2(a), it can be seen that when 18 st = , the detection residual 
( )r t  exceeds the threshold ( )R t , which means that a fault has been detected. 

Special attention should be paid to that the fault detection scheme proposed in 
this paper adopts a time-varying threshold. To better illustrate its advantages, we 
compared the detection residual ( )r t  with the constant threshold cR  used in 
traditional fault detection methods. From Figure 2(b), it can be seen that when 

18 st > , the detection residual ( )r t  exceeds the constant threshold cR , which 
means that the system is detected to have a fault. However, it can be observed 
from Figure 2(b) that there are still some cases where the detection residual 
( )r t  exceeds the constant threshold cR  before the actual time of the fault  
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Figure 1. The performance of the error system ( ),s tξ . 

 

 
Figure 2. Fault detection results. 
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occurrence, i.e. 18 st ≤ , and these situations will lead to false alarms of the fault 
detection. 

The fault parameter update law (3.24) proposed in this paper is used to esti-
mate the fault parameters, where the parameters are set as 0.05γ =  and 

0.15ρ = . The actual fault parameter θ  and the estimated fault parameter θ̂  
are shown in Figure 3. 

Finally, we can further obtain the estimated TTF through the estimated fault 
parameters and the explicit expression (3.37) of TTF, where the failure limit of 
the the fault parameter we choose as 0.5fθ = . It can be seen from Figure 4 that  
 

 

Figure 3. Estimated fault θ̂  and actual fault θ . 
 

 
Figure 4. Estimated TTF. 
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when the system is at time 21.5 st = , TTF = 0, indicating that the system crashes 
and cannot operate normally anymore. 

5. Conclusion 

In this paper, we propose an actuator fault diagnosis scheme for a class of nonli-
near heat equations. The fault detection is completed by comparing the detec-
tion residual with the time-varying threshold. Once a fault is detected in the sys-
tem, the updated law of the estimated fault parameters is given by adding an 
adaptive estimation term to the original observer. In addition, we use limited 
measurements to predict TTF. Finally, the effectiveness and feasibility of the 
proposed scheme are verified through numerical simulation results. The future 
research will extend to the fields of fault isolation and other partial differential 
equations. 
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