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Abstract 
There are many DOA estimation methods based on different signal features, 
and these methods are often evaluated by experimental results, but lack the 
necessary theoretical basis. Therefore, a direction of arrival (DOA) estimation 
system based on self-organizing map (SOM) and designed for arbitrarily dis-
tributed sensor array is proposed. The essential principle of this method is 
that the map from distance difference of arrival (DDOA) to DOA is Lipschitz 
continuity, it indicates the similar topology between them, and thus Kohonen 
SOM is a suitable network to classify DOA through DDOA. The simulation 
results show that the DOA estimation errors are less than 1˚ for most signals 
between 0˚ to 180˚. Compared to MUSIC, Root-MUSIC, ESPRIT, and RBF, 
the errors of signals under signal-to-noise ratios (SNR) declines from 20 dB 
to 2 dB are robust, SOM is better than RBF and almost close to MUSIC. Fur-
ther, the network can be trained in advance, which makes it possible to be 
implemented in real-time. 
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1. Introduction 

Array signal processing is an important branch in the field of modern signal 
processing, one of the important issues in array signal processing is the estima-
tion of the direction of arrival (DOA). In recent years, many different DOA es-
timation algorithms have been proposed, including subspace decomposition, 
sparse decomposition, maximum likelihood parameter estimation, and mapping 
approximation, etc. 

Subspace decomposition i.e. eigenspace spectral decomposition is an impor-
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tant method for estimation of DOA. It includes several algorithms represented 
by multiple signal classification algorithm (MUSIC) [1] and Estimation of Signal 
Parameters via Rotational Invariance Technique (ESPRIT) [2]. In the last few 
years, many algorithms based on these two algorithms have been proposed [3] [4] 
[5] [6]. Such as short-time fourier transform-based MUSIC (STFT-MUSIC) [7], 
real-valued root-MUSIC (RV-root-MUSIC) [8], time-frequency spatial spectral 
decom-position [9], discrete fourier transform ESPRIT (DFT-ESPRIT) [10], Time- 
Frequency Multi-Invariance ESPRIT (t-f MI-ESPRIT) [11], neuro-evolution of 
augmenting topologies MUSIC (RNEAT-MUSIC) [12], and combining ESPRIT 
with MUSIC [13], etc. These algorithms mainly decompose the signal in obser-
vation space into signal subspace and noise subspace using the spectral decom-
position of covariance array, and obtain the spectral function based on the prop-
erty of orthogonality of the two, thus predicting the DOA. The spectral decom-
position operation involves the covariance array, which makes this type of algo-
rithm quite computationally intensive, thus is limited from the feasibility of 
real-time applications. 

The sparse representation (SR) and compressive sensing (CS) have become 
hot spots of research on DOA estimation recently [14] [15]. The theory is origi-
nally proposed by Donoho [16] and Candes [17] in 2006. Following that, many 
DOA estimation algorithms based on sparse algorithms have been proposed, 
such as matching pursuit (MP) [18], orchogonal matching pursuit (OMP) [19], 
etc. The initial sparse decomposition method is limited by the density size of the 
grid, and to solve this limitation, many sparse decomposition methods on 
off-grid have been proposed [20] [21] [22]. However, this class of algorithms still 
suffers from practical problems such as large computational effort. 

Maximum likelihood parameter estimation uses Gaussian white noise as the 
noise background, and the maximum value of the likelihood function as the goal 
for the optimal solution for DOA estimation. The maximum likelihood estima-
tion method is classified into deterministic maximum likelihood (DML) [23] 
and stochastic maximum likelihood (SML) [24]. Many studies are still being fo-
cused on the maximum likelihood estimation algorithm [25] [26]. This method 
is superior to the subspace decomposition method in the case of low signal- 
to-noise ratio and small number of snapshots. While the solving process requires 
a nonlinear multidimensional search, so it suffers from practical problems of 
high computational effort. 

Another type of DOA estimation method is the mapping approximation me-
thod. It aims to establish a mapping relationship between the signal observation 
space and the DOA space, and is typically represented by various neural net-
works [27] [28], among them the Radial Basis Function Neural Network 
(RBFNN) [29] and Convolutional Neural Network (CNN) [30] [31] are the rep-
resentatives. By establishing a nonlinear mapping between the received signal 
feature vector and the DOA space through a neural network, such methods 
avoid complex calculations with spectral decomposition. However, there are li-
mitations to the training data. To get the exact mapping from the signal observa-
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tion space to the DOA space is a difficult task, so a new solution idea is proposed 
and initially discussed in the issues of DOA estimation of communication sig-
nals [32]. Further, the method is applied to hydroacoustic DOA estimation un-
der a uniform line array [33]. This method discretizes the continuous mapping 
by finding the mapping relationship between the topological ordering of the ar-
ray signal time difference of arrival (TDOA) feature space and the topological 
ordering of the DOA space, so as to build a dictionary with look-up function for 
estimation of direction of arrival [33]. While it only investigates TDOA features 
under a specific uniform linear array and fails to provide further discussion on 
the topological ordering of TDOA features under other types of arrays as well as 
random arrays, the established mapping matching principles are rough and the 
estimation results are overly dependent on the density of the training grid. 

According to Lipschitz condition, the topological order of the time difference 
of arrival (TDOA) or distance difference of arrival (DDOA) and the DOA of 
signals are similar, therefore we propose a discrete DOA estimation system by 
setting up a two-level SOM neural network. The SOM performs a nonlinear 
mapping between TDOA and the DOA of signals. It is shown that the system 
has the advantage of high accuracy, robustness, and implementations. The rest 
of this paper are organized as following. In section 2, we introduce the arbitrarily 
distributed sensor array data model, and then we introduce the structure of Ko-
honen self-organizing map, set up a two-level SOM neural network for the esti-
mation of DOA, and analyze the topological order relationship between DDOA 
vectors and DOAs in Section 3. In section 4, a simulation study of the proposed 
system is implemented, the accuracy and feasibility of the proposed method is 
discussed. Finally, we discuss and conclude the paper in Section 4 and 5. 

2. Background Material 

Assume that there is a sensor array of M sensors in the 2-D plane as shown in 
Figure 1, the distance between each two adjacent sensors i and i + 1 is i∆ , and 
 

 
Figure 1. Sensor array and signal source. 
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i λ∆ ≤ , ( )1,2, , 1i M= − .                    (1) 

where λ  is the wave length of sound source, and c fλ = , where c is the 
speed of sound wave propagation in a medium, f is the frequency of sound 
source. Establish rectangular coordinate system, let sensor 1 and M placed on 
the x-axis, and sensor 1 located at the origin. Suppose that there is a single sound 
source located at point ( ),x y  in the plane, and the location of sensor i is 
( ),i ix y ( )1,2, ,i M=  . 

In this paper, the direction of arrival to estimated is the inclination angle of 
point ( ),x y  respect to ( )0,0 , write as 

  
arctan 0, 0,

π arctan 0, 0.

y x y
x

y x y
x

θ

 ≥ ≥= 
 + ≤ ≥


                    (2) 

Let the observations of sensor i be 

  ( ) ( ) ( )i i iu t s t t n t= + + ( )1,2, ,i M=  .               (3) 

where ( )s t  is the signal radiating from the signal source, it  is the time delay 
to sensor i, and ( )in t  is the additive noise. We assume that the signal and 
noises are mutually independent and the noises distribution is Gaussian with 
zero means, variance of 2σ . The distance from signal source ( ),x y  to sensor 
i ( )1,2, ,i M=   is written as 

  ( ) ( ) ( )2 2 , 1,2, ,i i ir x x y y i M= − + − =  .               (4) 

And the distance difference to sensor i and i + 1 is  

 
( ) ( ) ( ) ( ) ( )

1 1

2 2 2 2
1 1 , 0,1, , 1

i,i+ i i

i i i i

r r r

x x y y x x y y i M

+

+ +

= −

= − + − − − + − = −

  (5) 

Then the time difference between sensor i and i + 1 is 

 ( ), 1 , 1 , 0,1, , 1i i i it r c i M+ +∆ = = − .                  (6) 

Thus, TDOA vector noise free is 

  T 1
0 1,2 2,3 1,, , , M

M MT c t t t R −
− = = ∆ ∆ ∆ ∈ r 

,              (7) 

where T
1,2 2,3 1,, , , M Mr r r − =  r 

 is the distance difference vector, and the TDOA 
vector will be 

  0T T= + n .                            (8) 

where n  represents the noise, which is delay estimation error, and 
T

1,2 2,3 1,, , , M Mn n n − =  n 
, 

 , 1 1i i i in n n+ += − , ( )0,1, , 1i M= − .                (9) 

The central question is to set up a map 1 1: MF R R− → , from TDOA vector 

0T  to DOA θ , i.e. 

  ( )0F Tθ = ,                          (10) 
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And the estimated parameters θ  is to approximate the function 

  ( )0
ˆ F̂ Tθ = .                         (11) 

where F̂  denotes an estimation of F using neural network. 

3. Data Preprocessing by Self-Organizing Map 
3.1. Self-Organizing Map 

In this paper, we set up a Kohonen self-organizing map, which is also called 
Kohonen feature map. SOM is a feed-forward neural network, which is an unsu-
pervised and competitive learning algorithm [16]. SOM represent high-dimensional 
input data as low-dimensional (one- or two-dimensional) data, and keep the 
same topological order as original data do, thus the features of the input data 
will be visualizing in an order fashion. The other hand, SOM can be used for 
feature extraction and dimensionality reduction, too. 

A SOM network is composed of two layers: input layer and output layer 
(competitive layer). As shown in Figure 2, there are identical numbers of input 
layer node to the input vector dimensions, the neurons of competitive layer are 
usually placed into a two-dimensional grid, which is usually arranged as rectan-
gle or hexagonal. The variable weight connects the input nodes and output node 
i is written as [ ]T1 2, , ,i i i imω ω ω ω=  , where m is the dimension of the input 
vector. 

Kohonen SOM’s training principle is as follows. When an input sample vector 
is put into the network, the Euclidean distance between neurons weights  

( )1,2, ,i i Kω =   and the input sample vector are calculated, the one who has 
the minimum distance will be the winning neuron. Then adjust the weights of 
the winning neuron and its neighboring neurons, to make them similar to the 
input sample vector. As a result, all neurons’ connected weights have a certain 
distribution by the training process. 

The network training process consists of four steps: 
 

 
Figure 2. Structure of Kohonen self-organizing map. 
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Step 1: Initialize the network. Assume that there are N sample vectors 
( )0,1, ,k k N=x  , normalize as 

 2
1 2

1

m

k k k k kj
j=

 
= =  

 
∑x x x x x .                  (12) 

where [ ]T1 2, , , m
k k k kmx x x R= ∈x  . And then give neuron weights iω  equal to 

part of the normalized input vector as the initial weights of the network: 

 ( )1,2, ,
ii k i Kω = =x  .                     (13) 

Step2: Calculate the Euclidean distance between the normalized input vector 

kx  and each neuron weight iω , find the winning neuron cω  subject to 

 ( ) ( ), min ,k c k ii
D Dω ω=x x  .                   (14) 

where 

 ( ) ( )2

1
,

m

k i kj ij
j

D ω ω
=

= −∑x x  .                  (15) 

Step 3: Adjust the weights of winning neuron c. Adjust nodes i in neighbor-
hood of winning node c, the adjustment is linear combination of input vector 
and current weight vector: 

( ) ( ) ( ) ( )1ij ij kj ijt t t tω ω η ω + = + − x  

 ( )ci N t∈ , ( )0,1, ,j m=  .                    (16) 

where ( )tη  is a decreasing learning rate function of training epoch t, and 
( )cN t  is the neighborhood kernel with Gaussian function: 

 ( ) ( ) ( )2 2exp 2c j cU t r r tσ η= − .                (17) 

where r is the location of neurons on the two-dimensional grids, and σ  is the 
smoothing factor. 

Step 4: Repeat steps 2 and 3 until the convergence criterion is satisfied. 

3.2. Lipschitz Condition 

If function ( )xϕ  satisfy the following conditions on interval [ ],a b : 
1) When [ ],x a b∈ , ( ) [ ],x a bϕ ∈ , i.e., ( )a x bϕ≤ ≤ ; 
2) For any [ ]1 2, ,x x a b∈ , ( ) ( )1 2 1 2x x x xLϕ ϕ− ≤ − . 
It is said that function ( )xϕ  satisfies Lipschitz condition on [ ],a b , and 
( )xϕ  is Lipschitz continuity, The least constant L for which the previous in-

equality holds, is called the Lipschitz constant of ϕ . Lipschitz continuity is a 
more smoothness condition than uniform continuity. Intuitively, Lipschitz con-
tinuous function limits the speed of function change. The slope of a function 
that meets Lipschitz condition must be less than a real Lipschitz constant, which 
depends on function ϕ . 

3.3. DOA Estimation with SOM 

In this paper, N points in the two-dimensional plane are used to generate train-
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ing data. The N points represent the locations of N sound sources, each point 
corresponds to a distance difference vector r  (which is given as Equation (7)) 
respect to the sensor array. Consider that there is only a constant factor c differ-
ence between the DOA vectors 0T  and the distance difference vector r , we use 
r  as an alternative input vector to 0T  as training samples in this issue. 

A two-level SOM neural network is set up. As shown in Figure 3, the first lev-
el of SOM is a mapping from 1MR −  to 2R , the mapping makes the topological 
order of training samples visualized in the two-dimensional space. The input 
vectors are the normalized vectors r  in the 1MR −  space, they are mapped into 
the K ( K N≤ ) nodes on the two-dimensional space. The connection weights are 
adjusted continuously through automatic competition, and each activated node 
represents the center of one cluster, the sample vectors which is close enough on 
Euclidean distance are mapped onto one cluster. At the same time, the adjacent 
extent of neighboring nodes also reflects the degree of proximity between the 
input vectors r . It is shown that the two-dimensional map keeps the same to-
pological order with the distance difference vector r . 

The second level of SOM we set up is a 1-1 mapping process. It is from the 
trained two-dimensional space to another two-dimensional space, obviously, 
they have the same structure and number of nodes. Each node of the second 
map represents a cluster of angles of arrival, which is obtained according to the 
location of the signal source that activates the node. Assumed that node i in the 
first layer is activated by in  ( in n=∑ ) sample vectors, and the coordinates for 
the corresponding signal source are ( ),i ix y , the direction of arrival corres-
ponding to ( ),i ix y  is iθ . Consider that the node of the first level may be acti-
vated by one, several or none training vectors; the output of second level is con-
structed as the following rules (Figure 4): 

1) If node i has been activated by one training input vector, the angle of the 
corresponding training signal source will be the output, and ˆ

iθ θ= . 
2) If node i has been activated by not only one training input vector, then the 

average angles of the corresponding signal sources will be the output as this 
node stands for, then 

 
1

1ˆ in

k
kin

θ θ
=

= ∑ .                          (18) 

 

 
Figure 3. Two-level SOM. 
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Figure 4. Flowchart of DOA estimation by the two-level SOM. 

 
3) If node i has not been activated by any training input vector, the node will 

be considered as a null node. When it is activated by a new input vector, the 
output will be substituted with the value of the nearest one in Euclidean. 

The process of DOA estimation we proposed is shown in Figure 4. The 
process is divided into two parts, the train part and test part. The network is 
trained by a large number of TDOA vectors from a large number of DOAs, 
through the Kohonen SOM the training vectors are grid up on an two dimen-
sional level in theirs topological order. The DOAs level are arranged directly 
connected with level one, and keep the same topological order, thus the two level 
SOM are set up as an labelled network. When there is a new TDOA vector is put 
into the SOM, an optimal matching node will give the estimation of AOA. 

3.4. Analysis of Reliability under Lipschitz Condition 

The validity of the proposed method is based on whether the topological order 
of DOA is the same as (or similar to) vector of DDOA’s. In another word, if the 
Euclidean distance between vectors of DDOA of two signals is small, then the 
corresponding Euclidean distance between DOAs will be small as well. This is 
the theoretical basis of our estimation of DOA. Next, we will analysis the condi-
tions it needs to meet. 

Let ( ),x y  be the location of a signal source, another sound source’s coordi-
nate is ( ),x x y y+ ∆ + ∆ , where x∆  and y∆  are small variations. Thus the 
distance difference vectors of the two signal sources are r  and 1 = + ∆r r r , the 
DOAs of them are θ  and 1θ θ θ= + ∆  respectively. According to Equation (4) 
and Equation (5), the increment is obtained, 
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T
1,2 2,3 1,, , , M Mr r r − ∆ = ∆ ∆ ∆ r 

.                  (19) 

Obviously that function 1i,ir +  is an elementary function and it is differentiable at 
point ( ) 2,x y R∈ , thus 

 ( )( ), 1 , 1
, 1 ,i i i i

i i i

r r
r x y A x y x x y y

x y
+ +

+

∂ ∂
∆ ≈ ∆ + ∆ = ∆ + ∆

∂ ∂
.          (20) 

And the Euclidean distance between r  and 1r  is 

 ( )
1

1 22
1

1
,

M

i
i

A x y x x y y
−

=

 − = ∆ + ∆ 
 
∑r r .               (21) 

Since function θ  is an elementary function and it is differentiable at point
( ) 2,x y R∈ ( )0x ≠ , then 

 ( )( ),x y B x y y x x y
x y
θ θθ ∂ ∂

∆ ≈ ⋅∆ + ⋅∆ = − ∆ + ∆
∂ ∂

.           (22) 

The ratio of the two distances is 

( )1

1

, y x x yD x y
x x y y

θ θ− − ∆ + ∆
= ⋅

− ∆ + ∆r r
.                  (23) 

when point ( ),x y  is fixed, ( ),D x y  is a constant, let  

( ) ( ), , , , y x x yR x y x y D x y
x x y y
− ∆ + ∆

∆ ∆ = ⋅
∆ + ∆

. 

There are three kinds of conditions on R with the changes of x∆  and y∆  
around zero: 

1) R is a constant function; assume that 0R R= , where 0R  is a constant. 
Equation 27 will be 

 1
0

1

R
θ θ−

=
−r r

,                          (24) 

And then 

 1 0 1Rθ θ− = −r r .                       (25) 

That is to say the Euclidean distance between DDOA vectors is in proportion to 
the corresponding Euclidean distance between DOA, 1 −r r  will change as 

1θ θ− . In this condition, the SOM we set up is absolutely valid to DOA estima-
tion. 

2) R is a bounded function; there exists a positive constant L subject to 

 ( ) ( ] ( ], , 0, 0,R L x y a b≤ ∆ ∆ ∈ × .                 (26) 

where ,a b  is a positive constant, that is 

 1
1

1

L
θ θ−

≤ ⋅ −
−

r r
r r

.                      (27) 

Then 

 1 1Lθ θ− ≤ −r r .                      (28) 
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Take the SOM we set up as a function 1 1: MF R R− → , i.e. ( )Fθ = r , then 

 ( ) ( )1 1F F L− ≤ −r r r r .                 (29) 

It shows that function F satisfies Lipschitz conditions, F is uniformly continuous, 
then for 0ε∀ > , there 0δ∃ > , if only 1 δ− <r r , then ( ) ( )1F F ε− <r r . 
When the Euclidean distance between DDOA vectors was small enough, the 
corresponding Euclidean distance between DOA must be very small, too. So, the 
SOM we set up is also valid to DOA estimation in this condition. 

3) R is an unbounded function, in this condition, there are no definitive rela-
tionship between 1 −r r  and 1θ θ− , and the SOM we set up will be invalid 
in estimation of DOA. 

In short, when ( ), , ,R x y x y∆ ∆  is bounded, TDOA vectors and DOAs will 
have a similar topological order and distribution, and the SOM we setup can be 
used in DOA estimation reliably. 

4. Simulation Results 
4.1. Without Noise 

In this section, to verify the effectiveness of the two-level SOM network we setup, 
simulations are carried out as follow. In the simulations, we assume a sensor ar-
ray with four sensors, the frequency of sound source is 2 kHzf = , the speed of 
sound wave propagation in water is 1500 m sc = , and the distance of each two 
adjacent sensors is set to be 0.375i∆ = , which is half of the wave length. The sen-
sor positions are ( )11 0, 0x y= = , ( )22 0.3, 0.225yx = = , ( )33 0.5, 0.0922x y= = − , 
( )44 0.6, 0.2692x y= = . To get training vectors, 60 × 30 uniform distribution 
points are taken in rectangular region [ ] [ ] 220,20 0,20 R− × ∈  as the positions of 
1800 signal sources (Figure 6, black points), and then 1800 distance difference 
vectors r  are got as training sample vectors. Calculate ( )max ,R x y  value, 

( ) ( )

( ) [ ] [ ]

max 0.05 1
0.05 1

, max , , , ,

, 100,100 100,100

x
y

R x y R x y x y

x y

≤∆ ≤
≤∆ ≤

= ∆ ∆

∈ − × −
                (30) 

where ( ), , ,R x y x y∆ ∆  is definite as Equation (27). As shown in Figure 5, there 
are a common upper bound for most points (except a few points near ( )0,0 ), 
belongs the second case, the method we propose is valid.  

To test the trained network by signals in different distance and different an-
gles, the locations of 180 test signals are chosen to be on the spiral of Archi-
medes: 

 50 , 0 ,180ρ θ θ  = ∈ 
  .                    (31) 

On which the DOA changes from 0˚ to 180˚, and the distance changes from 0 
to 62.83 (Figure 6, green points). The nodes of feature map and DOA map are 
arranged as 50 × 50, which is a few more than the training data in number. Put 
the distance difference vectors of test signals into the trained network, and then 
get the estimation of DOAs. Figure 7 is the error of estimation; except several 
signals most of the error are within 1 ,1 − 

  .  
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Figure 5. Value of ( )max ,R x y . 

 

 
Figure 6. Training data and test data. 

 

 
Figure 7. Estimation errors with rectangular region training data. 

 
To test the trained network by signals in different distance and different an-

gles, the locations of 180 test signals are chosen to be on the spiral of Archi-
medes: 

 50 , 0 ,180ρ θ θ  = ∈ 
  .                   (32) 
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On which the DOA changes from 0˚ to 180˚, and the distance changes from 0 
to 62.83 (Figure 6, green points). The nodes of feature map and DOA map are 
arranged as 50 × 50, which is a few more than the training data in number. Put 
the distance difference vectors of test signals into the trained network, and then 
get the estimation of DOAs. Figure 7 is the error of estimation, except several 
signals most of the error are within 1 ,1 − 

  .  
From the result above we can see that the results of DOA estimation are 

mainly associated to the angles of training signals, but little to the localizations. 
Thus, we chose another group of training data for contrast, a set of signals on 
circle 

 30, 0 ,180ρ θ  = ∈ 
  .                    (33) 

1800 uniform distribution points are taken from the circle (Figure 6, red 
points). The test signals are the same with above.  

At the same time, to study the factor of nodes arrangement, 8 kinds of nodes 
distributions are evaluated. The average absolute values of estimation error are 
shown as Table 1. It can be seen that the circle training data performs better 
than rectangular region, the network with 40 × 40 nodes get better accuracy in 
DOA estimation, which is a type of n × n and the number of nodes are a few less 
than training data, while the other structures performs poor relatively. 

4.2. With Gaussian Noise 

In practice, there are always additive noises with the signal received by sensor 
array; therefore, a practical method needs to be robust when noise exists. Take a 
simulate sinusoidal signal as a sound source, assume that the sound source are 
located in the direction of 30˚ for example, additive Gaussian noise are added to 
the signal from a ratio of signal to noise (SNR) of 20 dB to a SNR of 0 dB as Eq-
uation (3), then take the DDOA vectors of the 21 noisy signals as test data for 
the trained network (rectangular region trained). To test the performance of 
SOM network, we take MUSIC, Root-MUSIC, ESPRIT, and RBF for contrast,  
 
Table 1. Results of DOA estimation by SOM neural network with different nodes ar-
rangement and training data (degree). 

Nodes Rectangular region Circle 

20 × 20 0.74 0.48 

25 × 25 0.52 0.56 

30 × 30 0.54 0.35 

40 × 40 0.49 0.31 

30 × 60 0.57 0.46 

40 × 50 0.60 0.54 

45 × 45 0.63 0.37 

50 × 50 0.68 0.45 
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Figure 8. Comparison of DOA estimation errors for SOM, MUSIC, Root-MUSIC, ESPRIT, 
and RBF. 
 
where the RBF neural network take the rectangular region signals’ DDOA vec-
tors as input data, and the corresponding DOAs as output to train the network. 
The DOA estimation errors are as shown in Figure 8. When the SNR is higher 
than 2 dB, the errors of SOM are within 1˚, and change little with the SNR de-
creases from 20 dB to 2 dB. Compared to MUSIC, Root-MUSIC, ESPRIT, and 
RBF, SOM performs better than RBF and slightly worse than MUSIC in anti- 
interference, and almost similar with Root-MUSIC and ESPRIT. Consider that 
the noises are added to features directly by SOM, in fact, usually the SNR of fea-
tures should be much high after the process of de-noising, thus the performance 
of SOM will be much better than as shown in Figure 8. It indicates that the sys-
tem of two-level SOM has the advantages of stability and accuracy and avoids 
the disadvantage of large calculation in addition.  

5. Discussion 

The proposed method in this study is an exploratory study of the relationship 
between characters of signals and DOA, there are many approaches designed for 
DOA estimation that try different methods of extracting features, and then vali-
date the effectiveness of the accuracy of predicting DOA through different expe-
rimental solutions. The basis of this type of research is often supported by data 
results only, but lacks further deep theoretical discussion. 

In this work, we attempt to discussion of the theoretical basis by using Lip-
schitz condition. When a mapping is Lipschitz continuous, the closer the origi-
nal images of the mapping are to each other, the closer the images are to each 
other. For a variety of reasons, the analytic formula for the mapping between 
some features and DOA cannot be written directly, thus a variety of research 
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methods for approximating the map based on a finite number of discrete data 
for fitting are proposed. In this study, we take a direct approach to estimate the 
Lipschitz coefficients from discrete features through Equation (30). When the 
maximum value of Lipschitz coefficients in a region is within an acceptable 
range, then the mapping between features and DOA is considered to be ap-
proximately Lipschitz continuous, and DOA estimation can be performed using 
the principle that similar features correspond to similar DOAs. The next prob-
lem comes to how to topologically sort the features, and it can be done by Ko-
honen self-organizing neural networks. In this work, we estimate DOA by build-
ing a two-layer Kohonen self-organizing neural network to perform the tasks 
used for approximate mapping and query dictionaries. 

However, the Lipschitz coefficient estimated using equation 30 in this paper 
has two limitations. First, this estimation is limited to the sparsity of the sampled 
signal grid, which is closer to the true value when the grid is more dense and rel-
atively rough when the grid is less dense. Second, the values of the Lipschitz 
coefficients in the local neighborhoods of different sampling points may vary 
widely, so the matching estimation DOA errors based on the Kohonen neural 
network will have a different. As shown in Figure 7, although the global error 
can be controlled within a certain range, the error range varies widely for differ-
ent areas of the test points.  

6. Conclusion 

A two-level SOM system to estimate the DOA based on DDOA vectors was 
proposed and demonstrated experimentally. The system implements a classifier 
for DOA through the classification of DDOA vector, which is based on the 
theory of Lipchitz condition. The error on DOA varied within 1˚ for the noise 
free signals from 0˚ to 180˚. The system is robust to noise when the SNR de-
creased from 20 dB to 2 dB, compared to MUSIC Root-MUSIC, ESPRIT, and 
RBF, most error of SOM are lower than 1˚, and are stable relatively. The me-
thodology avoids calculating the covariance matrix and decomposition, when 
estimating the DOA, the network can be trained in advance, which makes it 
feasible to carry out in real-time processing. 
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