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Abstract 
In this paper, three smoothed empirical log-likelihood ratio functions for the 
parameters of nonlinear models with missing response are suggested. Under 
some regular conditions, the corresponding Wilks phenomena are obtained 
and the confidence regions for the parameter can be constructed easily. 
 

Keywords 
Nonlinear Model, Quantile Regression, Smoothed Empirical Likelihood, 
Missing at Random 

 

1. Introduction 

Quantile regression (QR) proposed by Koenker and Bassett [1] has become a 
popular alternative to least squares method for providing comprehensive de-
scription of the response distribution and robustness against heavy-tailed error 
distributions. Because of these significant advantages, QR has become an effec-
tive method for statistical research. There are many literatures on the estimation 
of quantile regression models; among them, Koenker [2] is a monograph worth 
studying. As for some papers, see for example Kim [3], Cai and Xu [4], Wu et al. 
[5], Cai and Xiao [6] and among others. 

In recent years, quantile regression with missing data has attracted scholars’ 
considerable attention. There are several methods, such as complete-case (CC) 
analysis method, inverse probability weighted method (IPW) and imputation 
method to handle the missing data. For example, Wei et al. [7] proposed a mul-
tiple imputation estimator for parameter estimation in linear QR with missing 
covariates. Sherwood et al. [8] suggested the inverse probability weighted (IPW) 
method for linear QR when the covariates are missing at random. Chen et al. [9] 
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also examined the estimation of linear QR model based on nonparametric in-
verse probability weighted, estimating equations projection, and a combination 
of both when observations are missing at random. Sherwood [10] investigated 
the variable selection for the additive partially linear quantile regression with miss-
ing covariates. Zhao et al. [11] studied several IPW estimators for parameters in 
QR when covariates or responses are subject to missing not at random. 

It is well known that empirical likelihood (EL) method, introduced by Owen 
[12] [13], has many advantages in constructing confidence intervals. For exam-
ple, it does not need to construct a pivot quantity, and the confidence regions 
shape and orientation are determined entirely by the data itself. Some scholars 
have used this method to QR, and some good theoretical results have been ob-
tained under this framework. See for example, Chen and Hall [14], Wang and 
Zhu [15], Tang and Leng [16], Zhao et al. [17], Zhao and Tang [18], Luo and 
Pang [19], Zhao and Zhou [20], Zhou et al. [21]. However, estimation equations 
based on quantile regression models are not differentiable at parameter points, 
such that EL method fails to achieve the higher order accuracy. To achieve the 
higher-order asymptotic refinements, Whang [22] proposed to smooth the esti-
mating equations for the empirical likelihood under the linear QR models. Later, 
Lv and Li [23] proposed the smoothed empirical likelihood (SEL) for partially 
linear quantile regression models with missing response, and the SEL statistics 
for the parameters and the nonparametric part were defined, and the asymptotic 
Chi-squared distributions were shown. Recently, for the linear QR models with 
missing response at random, Luo et al. [24] proposed three SEL ratios for the re-
gression parameter, and the asymptotical distributions were shown to be standard 

2χ  distribution under some conditions. Linear quantile regression models offer 
a flexible approach in many applications. It is also of considerable interest to in-
vestigate nonlinear quantile models. As far as we know, there is little work done 
for nonlinear quantile models with missing responses at random. Just like men-
tioned in Koenker [2] and other literature about nonlinear models, the compu-
tation of the entire process in the nonlinear case is considerably more challeng-
ing than the linear case where the computation task is quite easy. So it is not di-
rectly to extend the work of Whang [22] and Luo et al. [24] to nonlinear quantile 
models because of the complexity of nonlinear models with missing responses at 
random. Therefore, the main purpose of this paper is to develop the smoothed 
EL inferences on β  with missing responses at random. The rest of this paper is 
organized as follows. In Section 2, the smoothed empirical likelihood ratios for 
the parametric vector are proposed, and the asymptotic properties of the pro-
posed empirical log-likelihood ratios are investigated in Section 3. Section 4 is 
the proofs of the main results. Conclusions are given in Section 5. 

2. Methodology  

In this paper, we consider the nonlinear quantile regression model  

( ), , 1,2, , ,i i iY f X i nτβ ε= + =                    (2.1) 
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where iX  is a d-dimensional covariate and iY  is a response variable, τβ  is a 
p-dimensional parameter vector, and iε  is an independent and identically dis-
tributed random variable, which satisfies ( )0 |i iP Xε τ≤ = , where the quantile 
level ( )0,1τ ∈ . For simplicity, we write τβ  as β  throughout this paper. For 
model (2.1), we focus on the case where all values of iX  are completely ob-
served, but some values of response iY  are missing. That is, we have the in-
complete observations ( ), , , 1,2, ,i i iX Y i nδ =   from model (2.1), where iδ  is 
an indicator variable, when iY  can be observed, then 1iδ = , and when iY  is 
missing with 0iδ = . Throughout this paper, we assume that iY  is missing at 
random (MAR), and the MAR assumption satisfies  

{ } { } ( )1| , 1| .i i i i i iP Y X P X Xδ δ π= = = =             (2.2) 

The formula (2.2) implies that iδ  is conditionally independent with iY  for 
given iX , and ( )iXπ  is called the propensity score or selection probability 
function. 

2.1. Smoothed Quantile Empirical Likelihood with Complete-Case  
Data  

In Koenker [2], if ( ), , 1,2, ,i iX Y i n=   can be observed, the quantile estimator 
β̂  of the parameter β  in model (2.1) is obtained by minimizing the following 
objective function  

( )( )
1

, ,
n

i i
i

Y f Xτρ β
=

−∑                    (2.3) 

where ( ) ( )( )0u u I uτρ τ= − <  is the quantile loss function and ( )I ⋅  is the in-
dicator function. β̂  can be obtained by solving the following equation, which 
is the optimal condition corresponding to (2.3), i.e.  

( )
1

, , 0,
n

i i i
i

f Y Xψ β
=

∇ =∑                    (2.4) 

where ( ),i if f X β β ∇ = ∂ ∂  , ( ) ( )( ), , , 0i i i iY X I f X Yψ β β τ= − ≥ −  is the 
quantile score function, and ( )( ), , 0i iE Y Xψ β =  if β  is the true value. 

Since some values of response iY  from model (2.1) are missing, with MAR 
assumption we can prove that  

( )( ), , 0.i i i iE f Y Xδ ψ β∇ =                   (2.5) 

So based on complete-case data, the quantile estimator ˆ
Qβ  of the parameter 

β  is the solution of  

( )
1

, , 0.
n

i i i i
i

f Y Xδ ψ β
=

∇ =∑                    (2.6) 

As pointed out by Whang [22], the function ( ), ,i iY Xψ β  in (2.6) is not dif-
ferentiable at point β . This will cause some difficulties in higher-order asymp-
totic analysis, since most of the empirical likelihood-based research is based on a 
smooth function of sample moments. Then following Whang [22], let ( )K ⋅  
denote a bounded kernel function that is compactly supported on [ ]1,1−  and 
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integrated to one, define ( ) ( )d
u x

G x K u u
<

= ∫ , ( ) ( )hG x G x h= , where h is a 
positive bandwidth, then a smooth function of ψ  is defined as  

( ) ( )( ), , , .h i i h i iY X G f X Yψ β β τ= − −              (2.7) 

It can be proved that ( ), ,h i iY Xψ β  is asymptotically unbiased. 
Introducing the auxiliary random vector  

( ) ( ), , , .i C i i h i if Y Xη β δ ψ β= ∇                 (2.8) 

According to the above discussion, we know that ( ), 0i CE η β  =  , so the 
smoothed empirical log-likelihood ratio function of parameter β  with com-
plete-case data can be defined as 

( ) ( ) ( ),
1 1 1

2max log | 0, 1, 0 ,
n n n

C i i i i i C
i i i

R np p p pβ η β
= = =

 = − ≥ = = 
 
∑ ∑ ∑     (2.9) 

where log(.) is the logarithmic fuction based on e. If zero is inside the convex 
hull of ( ) ( )( )1, ,, ,C n Cη β η β , then a unique value for ( )CR β  exists. Using the 
Lagrange multiplier method and some simple calculations, ( )CR β  can be 
written as  

( ) ( )( )T
,

1
2 log 1 ,

n

C i C
i

R β λ η β
=

= +∑               (2.10) 

where λ  is a Lagrange multiplier which is determined by  

( )
( )

,
T

1 ,

0.
1

n
i C

i i C

η β
λ η β=

=
+∑                    (2.11) 

2.2. Smoothed Weighted Quantile Empirical Likelihood  

Similar to Section 2.1, we introduce the following auxiliary random vector  

( ) ( ) ( ), , , .i
i W i h i i

i

f Y X
X
δ

η β ψ β
π

= ∇               (2.12) 

Using the MAR assumption, we can prove that ( )( ), 0i WE η β =  if β  is the 
true value, thus the smoothed weighted quantile empirical log-likelihood ratio 
function for β  can be defined accordingly. 

Since (2.12) contains an unknown function ( )iXπ  which needs to be esti-
mated first. We can use a kernel smoothing method to estimate. Specifically, 
( )iXπ  can be defined by  

( )
( )
( )

1

1

ˆ ,
n

a j i j
i n

aj j i

j L X X
X

L X X

δ
π =

=

−
=

−

∑
∑

                (2.13) 

where ( ) ( ) d
aL L a a⋅ = ⋅  is the d-dimensional kernel function, and a is the 

bandwidth. 
When the dimension of the covariate X is very high, the nonparametric esti-

mation will encounter with the curse of dimensionality. In this case, a parame-
tric approach might be more feasible for the estimation of ( )iXπ . A commonly 
used model is the logistic regression given by  
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( )
( )
( )

( )
( )

T T
0 1

T T
0 1

exp exp
, ,

1 exp 1 exp
i i

i
i i

X
X

X

γ γ γ
π γ

γ γ γ

+ Γ
= =

+ + + Γ
         (2.14) 

where ( )TT1,i iXΓ = , ( )TT
0 1,γ γ γ= ∈Θ  is ( )1d + -dimensional unknown pa-

rameter vector. Here γ  can be estimated by maximizing the log-likelihood 
function  

( ) ( ) ( ) ( )( ){ }
1

log , 1 log 1 , .
n

i i i i
i

L X Xγ δ π γ δ π γ
=

= + − −∑       (2.15) 

Let γ̂  be the maximum likelihood estimation of γ , then the parameter es-
timator of ( )iXπ  can be written as ( )ˆ,iXπ γ . If the parametric model for 
( )π ⋅  is correctly specified, the inverse probability weighted method is consis-

tent and feasible. 
For convenience, we use ( )ˆ iXπ  to represent the estimation of ( )iXπ , it 

can be the estimator estimated by the parameter method or by nonparametric 
method. Denote  

( ) ( ) ( ),ˆ , , ,
ˆ

i
i W i h i i

i

f Y X
X
δ

η β ψ β
π

= ∇               (2.16) 

the smoothed weighted quantile empirical log-likelihood ratio function of para-
meter β  is 

( ) ( ) ( ),
1 1 1

ˆ2max log | 0, 1, 0 .
n n n

W i i i i i W
i i i

R np p p pβ η β
= = =

 = − ≥ = = 
 
∑ ∑ ∑   (2.17) 

2.3. Smoothed Imputed Quantile Empirical Likelihood  

From above discussion, we can see neither approach makes full use of the in-
formation contained in the data. As pointed out in Xue [25], discarding the 
missing data may lead to incorrect conclusion when there are a lot of missing 
values in the considered data set. To resolve the issue, we first use the nonlinear 
quantile imputation to impute iY  by ( )ˆ,i Qf X β , with ˆ

Qβ  obtained by (2.6), 
this kind of imputation is also used by Zhao and Tang [18] and Zhou et al. [21]. 
With the imputed value in hand, and then using the inverse probability weighted 
technique, we define the final imputed value by  

( ) ( ) ( )ˆˆ 1 , ,
ˆ ˆ

i i
i i i Q

i i

Y Y f X
X X
δ δ

β
π π

 
= + −  

 
            (2.18) 

where ( )ˆ iXπ  is given in Section 2.2. Then the imputation based auxiliary 
random vector is  

( ) ( ),
ˆˆ , , ,i I i h i if Y Xη β ψ β=∇                   (2.19) 

Accordingly, the smoothed imputed quantile empirical log-likelihood ratio 
function for β  is defined as 

( ) ( ) ( ),
1 1 1

ˆ2max log | 0, 1, 0 .
n n n

I i i i i i I
i i i

R np p p pβ η β
= = =

 = − ≥ = = 
 
∑ ∑ ∑    (2.20) 
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The ratio is more appropriate, because it sufficiently uses the information 
contained in the data. 

3. Asymptotic Properties 

In this section, we will give the asymptotic distributions for the three smoothed 
quantile empirical log-likelihood ratios proposed in Section 2.1-2.3. Firstly, we 
give some symbols and assumptions that needed in proof. 

Assuming the probability density function of X is ( )p x , let ( )|g x⋅  and 
( )|F x⋅  be the density and distribution function of error ε  conditional on 

X x= , respectively. 
C1. { }, , 1, ,i iY X i n=  , are independent and identically distributed random 

vectors. 
C2. Both ( )xπ  and ( )p x  have bounded derivatives up to order r almost 

surely, and ( )inf 0x xπ > . 
C3. ( )L x  is a kernel function of order r, and there is a constant 1 2, ,C C ρ , 

such that ( ) ( ) ( )1 2C I x L x C I xρ ρ≤ ≤ ≤ ≤ . 
C4. The kernel function ( )K x  has bounded and compactly supported on 

[ ]1,1− , and for a constant 0KC ≠ , it satisfies  

( )
1, 0,

d 0, 1 1,
, .

j

K

j
u K u u j r

C j r

=
= ≤ ≤ −
 =

∫  

C5. For 1L ≥ , let ( ) ( ) ( ) ( )( )T2 1, , , LG u G u G u G u+=

 , where  
( ) ( )d

v u
G u K v v

<
= ∫ . For any 1LRθ +∈  satisfying 1θ = , there is a partition on 

[ ]1,1− : 0 1 11 1Lb b b +− = < < < = , such that ( )TG uθ   is either strictly positive 
or strictly negative on ( )1, , 1,2, , 1l lb b l L− = + . 

C6. The bandwidth h satisfies ( )2 0, logrnh nh n→ →∞  as n →∞ . 
C7. The matrices , 1,2iA i =  and , 1,2,3iB i =  defined in Lemma 3 of Section 

4 are non-singular. 
C8. ( ) ( )1 2

n nP X M o n−> = , where 0 nM< →∞ . 
C9. The bandwidth a satisfies 2 2 40, 0d d r

nna M na− → → . 
C10. The maximum likelihood estimation γ̂  of γ  is n -consistent and sa-

tisfies the regularity condition of asymptotic normality. 
The following Theorem states the asymptotic distribution of ( )R β . 
Theorem 1. Suppose that conditions in C1-C10 hold, and β  is the true value 

of the parameter, then  

( ) 2 ,D
dR β χ→  

where ( )R β  can be ( ) ( ) ( ), ,C W IR R Rβ β β , 2
dχ  is a chi-square distribution 

with d degrees of freedom, and D→  represents convergence in distribution. 
According to the above theorem, the confidence region of the parameter β  

can be constructed. More specifically, for a given α  with 0 1α< < , let 
( )2 1dχ α−  satisfies ( )( )2 2 1 1d dP χ χ α α≤ − = − , then the approximate ( )1 α−  

confidence region for β  can be defined as  
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( ) ( ) ( ){ }2| 1 .dC Rα β β β χ α= ≤ −                 (3.1) 

4. Proofs 

Before giving the proof of the main theorem, some lemmas are useful for prov-
ing the main theorem. 

Lemma 1 Suppose conditions C2, C3 and C8 hold, then  

( ) ( ) ( )( ) ( ) ( )12 2 1 2ˆ .d d r
i i nE X X O na M O a o nπ π −−

 − = + +   

Lemma 1 is the Lemma 2 in Xue [25], so the proof is omitted. 
Lemma 2 Suppose that conditions C2, C10 hold and the ( ) ( ),x xπ π γ=  is 

correctly specified, then  

( ) ( ) ( ) ( )1 2

1
ˆ ˆ, max , , 1 ,p pi n

O n x x oγ γ π γ π γ
≤

−

≤
− = − =  

where γ  is the true value. 
Lemma 2 is the lemma A.2 of Tang and Zhao [26], please see the proof details 

in Tang and Zhao [26]. 
Lemma 3. Suppose conditions C1-C10 hold, then as n →∞ , we have  

1) 
( ) ( )1 ;iE A o

η β
β

 ∂
= + ∂ 

 

2) ( ) ( ) ( )T 1 ,i iE B oη β η β  = +   

When ( ) ( ),i i Cη β η β= , ( ) ( ) ( )T
1 1 10 |A A E X g X f fπ = = ∇ ∇  ,  

( ) ( ) ( )T
1 1 11B B E X f fτ τ π = = − ∇ ∇  ; 

When ( ) ( ),ˆi i Wη β η β= , ( ) ( )T
2 1 10 |A A E g X f f = = ∇ ∇  ,  

( ) ( ) ( )T
2 1 1

11B B E f f
X

τ τ
π
 

= = − ∇ ∇ 
  

; 

When ( ) ( ),ˆi i Iη β η β= , ( ) ( )T
2 1 10 |A A E g X f f = = ∇ ∇  ,  

( ) ( )T
3 1 11B B E f fτ τ  = = − ∇ ∇  . 

Proof a) We first prove the lemma when ( ) ( ),i i Cη β η β= . 
For result 1), By a change of variable, we have  

( ) ( ) ( ) ( ), | 0 | d ,i C i i i if F hu X F X K u uη β δ  = ∇ − − ∫  

and then  

( ) ( ) ( )

( ) ( ) ( ) ( )

, T

T

0 |

| 0 | d .

i C
i i i iT

i i i i i

E E X g X f f

E X f f g hu X g X K u u

η β
π

β

π

 ∂
 = ∇ ∇   ∂ 
  + ∇ ∇ − −  ∫

 (4.1) 

Obviously, the first term on the right-hand of Equation (4.1) is  
( ) ( ) T

1 0 |i i i iA E X g X f fπ = ∇ ∇  , and then applying Taylor expansion to the 
second term on the right-hand of Equation (4.1) can obtain result 1). 
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For result 2), noticing that 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ){ }

T
, ,

T

T

1

2 | 0 | d .

i C i C

i i i

i i i i i

E

E X f f

E X f f F hu X F X G u K u u

η β η β

τ τ π

π τ

  
 = − ∇ ∇ 

   + ∇ ∇ − − −  ∫

 (4.2) 

Obviously, the first term on the right-hand of Equation (4.2) is  
( ) ( ) T

1 1 i i iB E X f fτ τ π = − ∇ ∇  , and again applying Taylor expansion to the 
second term on the right-hand of Equation (4.2) can obtain result 2). 

b) When ,ˆ( ) = ( )i i Wη β η β , by direct calculation, we can derive  

( ) ( ) ( )( )

( ) ( )( )

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

,

,

ˆ ,
ˆ

,

ˆ
,

ˆ

ˆ
, .

ˆ

i
i W i h i i

i

i
i h i i

i

i i
i i h i i

i i

i i
i W i i h i i

i i

f G f X Y
X

f G f X Y
X

X X
f G f X Y

X X

X X
f G f X Y

X X

δ
η β β τ

π

δ
β τ

π

π π
δ β τ

π π

π π
η β δ β τ

π π

 = ∇ − − 

 = ∇ − − 

−
 + ∇ − − 

−
 = + ∇ − − 

  (4.3) 

In addition, we can prove  

( ) ( ) ( )( ) ( )
1

1 , 1 .
ˆ

n
i

i h i i p
i i i

f G f X Y O
X Xn
δ

β τ
π π=

 ∇ − − = ∑       (4.4) 

According to Lemma 1 and Lemma 2, we can obtain that  
( ) ( ) ( )ˆsup 1x px x oπ π− =  for both nonparametric estimator and parameter es-

timator of ( )xπ . Using this result and (4.4), we can derive  

( ) ( ) ( )( ) ( ),ˆ , 1 .i
i W i h i i p

i

f G f X Y o
X
δ

η β β τ
π

 = ∇ − − +         (4.5) 

Further derivation leads to  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,ˆ 0 | 1

| 0 | d 1 .

i
i W i i i p

i

i
i i i p

i

f G h F X o
X

f F hu X F X K u u o
X

δ
η β ε

π

δ
π

 = ∇ − − + 

 = ∇ − − + ∫
    (4.6) 

Similar to the proof in the case of a), it can be seen that  

( ) ( )

( ) ( ) ( ){ }

, T
T

T

ˆ
0 |

| 0 | d .

i W
i i i

i i i i

E E g X f f

E f f g hu X g X K u u

η β
β

 ∂
 = ∇ ∇   ∂ 

 + ∇ ∇ − − ∫
   (4.7) 

Obviously, the first term on the right-hand of the Equation (4.7) is  
( ) T

2 0 | i i iA E g X f f = ∇ ∇  , and using Taylor expansion to the second term on 
the right hand of (4.7), and result 1) is proved. Similarly, result 2) is also ob-
tained. 

c) When ( ) ( ),ˆi i Iη β η β= , direct calculation yield  
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( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

ˆ,

ˆ1 , , ,
ˆ ˆ

ˆˆ1 , , .
ˆ ˆ

i i

i i
i i Q i i

i i

i ii i
i i Q i i i

i i i i

f X Y

f X f X Y f X
X X

X X
f X f X

X X X X

β

δ δ
β β β

π π

π πδ δ
β β δ ε ε

π π π π

−

     = − − − −       
  − = − − − −     

 (4.8) 

Using Taylor expansion to ( )ˆ,i Qf X β  at β , we have 

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

T ˆˆ, 1
ˆ

ˆ
1 .

ˆ

i
i i i Q

i

i i i
i i i p

i i i

f X Y f
X

X X
o

X X X

δ
β β β

π

π π δ
δ ε ε

π π π

 
− = − ∇ −  

 
−

− − +

 

Noticing that 
( )

T
1

1 1 0n i
ii

i

E f
n X

δ
π=

  
− ∇ =      

∑  and combined with  

( )1 2ˆ
Q pO nβ β −− = , we can derive  

( ) ( ) ( )T

1

1 ˆ1 1 .
ˆ

n
i

i Q p
i i

f o
Xn
δ

β β
π=

 
− ∇ − =  

 
∑  

Using ( ) ( ) ( )ˆsup 1x px x oπ π− =  and 
( ) ( ) ( )1

1 1
ˆ

n i
i pi

i i

O
X Xn
δ

ε
π π=

=∑ , then 

we get  

( ) ( ) ( )( ) ( )ˆ, , 1 .i
i i i i p

i

f X Y Y f X o
X
δ

β β
π

− = − − +          (4.9) 

So we obtain  

( ) ( )( )

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

,
ˆˆ ,

, 1

0 | 1

| 0 | d 1 ,

i I i h i i

i
i h i i p

i

i
i h i i p

i

i
i i i p

i

f G f X Y

f G f X Y o
X

f G F X o
X h

h X
f F u X F X K u u o

η β β τ

δ
β τ

π

δ
ε

π

π
δ

 = ∇ − − 
   = ∇ − − +      
  

= ∇ − +      
   = ∇ − − +  
   
∫

  (4.10) 

and then 

( ) ( )

( ) ( ) ( )

, T
T

T

ˆ
0 |

| 0 | d .

i I
i i i

i
i i i i

i

E E g X f f

h X
E f f g u X g X K u u

η β
β

π
δ

 ∂
 = ∇ ∇   ∂ 
    + ∇ ∇ − −   

     
∫

 (4.11) 

Similar to the proof in case a), it is obvious that the first term on the right- 
hand of Equation (4.11) is ( ) T

2 0 | i i iA E g X f f = ∇ ∇  . Similarly, we can obtain 
result 2) with ( ) T

3 1 i iB E f fτ τ  = − ∇ ∇  . 

https://doi.org/10.4236/ojapps.2023.136074


H. H. Dong, X. L. Wang 
 

 

DOI: 10.4236/ojapps.2023.136074 930 Open Journal of Applied Sciences 
 

Lemma 4 Suppose conditions C1-C10 hold, then as n →∞ ,  

1) ( ) ( )
1

1 ;
n

i n
i

O d
n

η β
=

=∑  

2) ( ) ( ) ( )T

1

1 1 ,
n

i i
i

B o
n

η β η β
=

= +∑  

uniformly in { }0:n ndβ β β β∈Θ ≡ − ≤ , with 1 3 1,0 6nd n ζ ζ− −= < < , where 

1B B=  when ( ) ( ),i i Cη β η β= ; 2B B=  when ( ) ( ),ˆi i Wη β η β= ; 3B B=  when 
( ) ( ),ˆi i Iη β η β= , and 1 2,B B , and 3B  are defined in Lemma 3. 
Proof: By Taylor expansion, we derive  

( ) ( ) ( )( ) ( )( ) ( )0 0 0
1 1

1 1 ,
n n

i i i i nc
i i

E E R
n n

η β η β η β η β β
= =

 = − + + ∑ ∑     (4.12) 

where ( )
( )

( )
*

01

1 in
nc iR

n

η β
β β β

β=

∂
= −

∂∑ , and *β  lies between β  and 0β . 

a) This lemma will be proved first for the case of ( ) ( ),i i Cη β η β= . 
Similar to the proof of Lemma 2 of Whang [22], using Cauchy-Schwartz in-

equality, triangle inequality and arguments similar to the proof of Lemma 3, we 
have  

( ) ( )sup . .
n

nc nR O d a s
β

β
∈Θ

=                  (4.13) 

with ( )
( )

( )
*

,
01

1 i Cn
nc iR

n

η β
β β β

β=

∂
= −

∂∑ . Therefore, according to (4.12), (4.13), 

law of iterated logarithm, Lemma 3 and condition 6C , it holds that 

( ) ( )( )( ) ( ) ( ) ( )2
,

1 21

1

1sup log log . .
n

n
r

i C n n
i

O n n O h O d O d a s
nβ

η β −

∈Θ =

= + + =∑  

The proof for the first result is completed. The second result can be proved in 
a similar way, here we omit the details. 

b) When ( ) ( ) ( ), ,ˆ ˆ,i i W i Iη β η β η β= , according to the Equations (4.5) and (4.10) 
respectively, and by the similar arguments for ( ) ( ),i i Cη β η β= , we can derive 
the two results, here we omit the details. 

Proof of Theorem 1 By the Lagrange multiplier method, ( )R β  can be 
represented as  

( ) ( )( )T

1
2 log 1 ,

n

i
i

R β λ η β
=

= +∑                     (4.14) 

where λ  is the solution of the following equation  

( )
( )T

1
0.

1

n
i

i i

η β
λ η β=

=
+∑                        (4.15) 

Similar to the proof in Owen [13], we can prove that  

( ) ( ) ( ) ( ) ( )
1

T

1

1 2

1

1 2 .
n n

r r
i i i p p

i i
o n h O n hλ η β η β η β − −

−

= =

 = + + = + 
 
∑ ∑     (4.16) 

Using Taylor expansion for (4.14), combined with Lemma 4 and (4.16), we 
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obtain  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

2T T

1
T 1

T

1 1 1

2 2 1

1 1 1 1 .

n

i i p
i

n n n

i i i i p
i i i

R o

o
nn n

β λ η β λ η β

η β η β η β η β

=

−

= = =

 = − +  

    = +    
    

∑

∑ ∑ ∑
 (4.17) 

When ( )iη β  is ( ) ( ), ,ˆ,i C i Wη β η β  and ( ),î Iη β , together with the results of 
Lemma 3 and Lemma 4 respectively, the asymptotic distribution of the smoothed 
empirical log-likelihood ratio can be proved to be a chi-square distribution with 
d degrees of freedom. 

5. Conclusion 

In this paper, we propose three smoothed empirical log-likelihood ratio func-
tions for nonlinear model parameters with missing responses. We obtain the 
corresponding Wilks phenomenon under some regular conditions, and can eas-
ily construct the confidence interval of the parameters. For the type of data 
missing, we only consider the case where the covariate data is complete and the 
response variable data is missing. In addition, there are cases where the covariate 
data is missing and the response variable data is complete. Therefore, the smooth 
empirical likelihood inference for nonlinear quantile regression models with 
missing covariates is also worth studying.  
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