
Open Journal of Applied Sciences, 2023, 13, 643-658
https://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2023.135051 May 16, 2023 643 Open Journal of Applied Sciences

Distributed File System Based on a Relational
Database

Vladyslav Kutsman

Computer Sciences Department, Information Technologies and Computer Engineering Faculty, Vinnytsia National Technical
University, Vinnytsia, Ukraine

Abstract
Working with files and the safety of information has always been relevant,
especially in financial institutions where the requirements for the safety of
information and security are especially important. And in today’s conditions,
when an earthquake can destroy the floor of a city in an instant, or when a
missile hits an office and all servers turn into scrap metal, the issue of data
safety becomes especially important. Also, you can’t put the cost of the soft-
ware and the convenience of working with files in last place. Especially if an
office worker needs to find the necessary information on a client, a financial
contract or a company’s financial product in a few seconds. Also, during the
operation of computer equipment, failures are possible, and some of them
can lead to partial or complete loss of information. In this paper, it is pro-
posed to create another level of abstraction for working with the file system,
which will be based on a relational database as a storage of objects and access
rights to objects. Also considered are possible protocols for transferring data
to other programs that work with files, these can be both small sites and the
operating system itself. This article will be especially interesting for financial
institutions or companies operating in the banking sector. The purpose of
this article is an attempt to introduce another level of abstraction for working
with files. A level that is completely abstracted from the storage medium.

Keywords
File System, PostgreSQL, Golang, AWS, HDD, Ldap, Active Directory, AES
Encryption, Fintech, Banking

1. Introduction

The storage and use of information is a complicated process, since one has to
face a large number of tasks that have to be solved in the process of work. For

How to cite this paper: Kutsman, V.
(2023) Distributed File System Based on a
Relational Database. Open Journal of Ap-
plied Sciences, 13, 643-658.
https://doi.org/10.4236/ojapps.2023.135051

Received: March 25, 2023
Accepted: May 13, 2023
Published: May 16, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2023.135051
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2023.135051
http://creativecommons.org/licenses/by/4.0/

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 644 Open Journal of Applied Sciences

examples information can be stored on a storage with different types of file sys-
tem like NTFS [1] or FAT [2] also it can be AWS [3] storage and each of these
storages has own characteristics, depending of the business requirements. In this
article operate with the following entities such as COMPANY—PRODUCT—
CLIENT. An example of a company is an insurance company, a bank, a leasing
company. As an example of a PRODUCT, as example can be insurance, credit,
leasing, respectively by the essence of the client need to understand the final re-
cipient of the financial product.

Each entity has a specific set of properties. So in the case of a company, this is
a certificate, a license, etc. For a product, this is a description of the product it-
self, for example, if it is a car leasing, then this is the documentation for the sub-
ject of leasing itself. In the case of a client, this is a certain set of documents of
the client, which ultimately allows to conclude the financial transaction itself.
But for a computer and the operating system [4] (hereinafter OS) installed on it,
all these entities are a record in the database and a set of files with different sizes
and extensions, such as pdf, png, etc. Also, the OS does not know anything about
the importance of this or that document. In the same way, it is impossible to
guess in advance how much disk space is needed in order to store information.
Lets to consider a real case. For example, if you structure the data of the compa-
ny’s clients by name, where the client’s name is a directory on disk N and subdi-
rectories are a specific set of data on the client, and if the information on the
logical disk are placed in the form Figure 1 of a tree.

Then soon may arise a situation when the disk is full and it will be impossible
to create directory for a new client or add files to an existing client directory be-
cause this will require transferring data for some client directory to another disk.
But transferring data on the John Doe 1 client from one disk to another is not as
trivial a task as it might seem at first glance. Since the data for this client is most
likely stored in some accounting system in which links to documents are stored,
and accordingly, when changing the disk, it will be necessary to change the links
in the database of the accounting system. The situation is exactly the same when
it is necessary to transfer new clients to another drive, which leads to inconve-
nience when working with data directly for the company manager. Now let’s
simulate a situation where, for some unknown reason, not enough attention is

Figure 1. File tree structure client information.

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 645 Open Journal of Applied Sciences

paid to data security. And an unwanted user of the company gets access to our N
drive, and as a result, he receives all the information on the company’s custom-
ers in an open form, downloads what he needs and safely sends the company’s
customer base to a competitor. In the same way, it may be necessary to separate
information within the client directory into access levels by company depart-
ments, for example, only Department1 should have access to the ClientData1
directory, and Department2 and Department3 should have access to ClientDa-
ta2. That is, to create a client directory in the case of windows, its need at least a
bat file that will automatically set the rights to the client directory and subdirec-
tories. And it becomes clear that there are a number of tasks that may not be so
obvious at first glance, but they exist and often they have to be solved in com-
pletely different ways.

This article is a description of the key nodes and the general mechanism of a
possible abstraction level based on a relational database for working with files
and data stores, that is, a kind of distributed file system based on relational da-
tabase DFSboRD.

DFSboRD architecture.
On Figure 2 shows a schematic representation of the main elements of the

general architecture of DFSboRD.
This diagram shows the following key elements:
1) Physical storage such as NASS, AWS, HDD.
2) Database DB, within the article the database is implemented on PostgreSQL

[5].
3) The SB software block that implements protocols for working with files

within the article was released in Golang [6]. The following file exchange proto-
cols have also been implemented, such as WebDav [7], FTP/FTPS [8] [9], a local
implementation of file exchange based on the HTTP(S) protocol [10] [11].

4) Admin panel AP is designed for manage the issuance of rights, the creation
of logical drives, the generation of connection links, etc.

One of the main elements in this scheme is the DataBase and the SB software
block Figure 2. For a more detailed consideration, we divide into two corres-
ponding parts.

Figure 2. General architecture DFSboRD.

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 646 Open Journal of Applied Sciences

2. Data Base

To better understand the idea it is necessary to consider in detail the main ob-
jects of the database. For an example, was used descriptions and snapshots of
tables from a working database. For convenience, the database objects was di-
vided into two parts, namely the logical part—the part that stores information
about the logical structure of disks, directories, files, access rights, tokens and the
physical part—these are Tables 1-4 that store data about physical storages.

2.1. Logical Part

Let’s look at the main objects that form the logical part:

Table 1. The disc table.

Column Description

Id Bigint PK

Name Character varying (500)—name of the disc

Size Bigint—disc size in byte

Table 2. The folder_to_disc linking table.

Column Description

Disc_id Bigint PK

Folder_id Bigint PK

Table 3. The file_to_disc linking table.

Column Description

Disc_id Bigint PK

File_id Bigint PK

Table 4. The folder table.

Column Description

Id Bigint PK

Name Character varying (500)—name of the folder

Parent_id Bigint—parent directory identifier

Size Bigint—size

User_del Bigint—the user who deleted the directory

Date_del Timestamp—date when was deleted

User_id Bigint—creator

Date_create Timestamp—date when was created

Mod_time Bigint—date when was modified

Perm Smallint—field indicating existing of access control list

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 647 Open Journal of Applied Sciences

Table 4 has an additional composite index on the fields (Parent_id, Name),
this index is used to speed up the search for a child directory if program receive
a path as a string, as in the case of WebDAV or FTP protocols. For example, if
program have the following string like “John Doe 1/Documents1”, need to split
it by the “/” character and, having received an array of strings [John Doe 1,
Documents1], program will find out the Id of the “John Doe 1” directory using
Table 2 link table, then program are looking for Id for “Documents1” and in
this case need composite index (Parent_id, Name) for the fastest possible selec-
tion. In Table 4 and Table 5, there is a Perm field whose value range is [0, 1]
where 0 is the Access control list (ACL) to the object are not set and 1 the ACL
to the object are set. Table 1 does not have this field because the disk permis-
sions must be set in advance. And in the case of a directory or a file, the rights
can be inherited from the parent object until the Perm field is found in the child
element, indicating that this object has its own ACL, which will be inherited by
its child elements in the same way. Object File are different then Folder or Disc.
The Files object is described using 2 tables: Table 5 and Table 7. Table 5 de-
scribes object File and all his attributes and Table 7 stores all file’s physical ad-
dresses.

Table 3 and Table 6 are al linking tables, this tables realise a one-to-many re-
lationship, because one folder and one disc can contains lot of files.

Table 5. The file table that stores information about a file.

Column Description

Id Bigint PK

Name Character varying (500)—name of the file

Size Bigint—size

Date_create Timestamp—date when was created

Date_del Timestamp—date when was deleted

Mime Character varying (500)—mime-type

User_id Bigint—creator

Mod_time Bigint—date when was modified

User_del Bigint—the user who deleted the file

Perm Smallint—field indicating existing of ACL

Load Smallint—field indicating load stay

Table 6. The file_to_folder linking table.

Column Description

Folder_id Bigint PK

File_id Bigint PK

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 648 Open Journal of Applied Sciences

Table 7 has File_id, Store_id fields and this is the composite PK where File_id
is the identifier of file object and Store_id is the physical store id. That is, one file
can have several storage locations at the same time (Store_id), and if the physical
storage fails, it just need to switch the program to use another storage block, and
all other connected programs work as they did. The second important point here
is the Crdec field—indicating in what form the file is in the physical storage in
decrypted or encrypted, it will be discussed in detail later.

Table 8 is used as a bucket, which stores information from which directory
or disk this file was deleted from. There is a similar table for the directory ob-
ject.

Table 9 contains information about users. Table 10 contains information about
user groups. And Table 11 realises one-to-many relationship user to groups.

Table 7. The file_to_way table, which stores information about the physical location of a
file.

Column Description

File_id Bigint PK

Store_id Bigint PK

Url Character varying (500)—path to the storage file

Load Smallint—field indicating load stay

Crdec
Smallint—field indicating in what form the file is in storage

(encrypted or not)

Table 8. The file_delete table, which stores information about deleted file.

Column Description

File_id Bigint PK

Disc_id Bigint

Folder_id Bigint

Table 9. The user table, which stores information about users.

Column Description

Id Bigint PK

Name Character varying (500)—Full name

User_login Character varying (40)—User login

Password Character varying (40)—Password encrypted by sha1

Table 10. The groups table, which stores information about user groups.

Column Description

Id Bigint PK

Name Character varying (500)—name of the group

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 649 Open Journal of Applied Sciences

Table 11. The user_to_group linking table.

Column Description

User_id Bigint PK

Group_id Bigint PK

The final element of the logical part will be the organization of access rights.
It is suggested to use the following types of access rights:
Table 12 contains basic permissions Figure 3 and Table 13 contains basic

permissions groups Figure 4. Table 14 form permissions to permissions groups
Figure 5. This was made for reasons of database architecture in order to be able
to write access rights to an object as a composite PK.

There are similar tables for folder and file objects.
An example query with comments explaining permission checking:
SELECT (CASE WHEN f.perm = 1 THEN f.id ELSE allowed_permid END)

INTO allowed_permid FROM folder f
LEFT JOIN perm_group_folder pgf ON pgf.folder_id = f.id AND pgf.group_id

IN (SELECT group_id FROM user_to_group WHERE user_id = inuser_id)
LEFT JOIN perm_user_folder puf ON puf.folder_id = f.id AND puf.user_id =

inuser_id
LEFT JOIN perm_to_pack ptpg ON ptpg.pack_id = pgf.perm_id AND

ptpg.perm_id IN (1, 3)
LEFT JOIN perm_to_pack ptpu ON ptpu.pack_id = puf.perm_id AND

ptpu.perm_id IN (1, 3)
WHERE f.id = dirid AND (f.perm = 0 OR f.perm = 1 AND (puf.folder_id IS

NOT NULL AND
ptpu.pack_id IS NOT NULL OR puf.folder_id IS NULL AND ptpg.pack_id IS

NOT NULL));
This query checks write permissions ([1, 3] is the id of the permissions table)

for user groups ptpg.perm_id IN (1, 3) and user ptpu.perm_id IN (1, 3).
inuser_id—variable storing the user ID.
allowed_permid—variable storing the NULL value from beginning.
This part query “(CASE WHEN f.perm = 1 THEN f.id ELSE allowed_permid

END) INTO allowed_permid”—implements inheritance, that is, if the object has
a perm value of 1, then the variable allowed_permid gets the value f.id, otherwise
the previous value of allowed_permid is used. The link Table 15 and Table 16
are connected via a composite PK, which speeds up the selection as much as
possible. This part query “(puf.folder_id IS NOT NULL AND ptpu.pack_id IS
NOT NULL OR puf.folder_id IS NULL AND ptpg.pack_id IS NOT NULL)”—
first of all, the user’s rights are checked, and then the rights for the user’s
groups.

Table 17 contains the following fields of interest to us, such as Token (SHA1)
[12] and what object identifiers it is associated with User_id, Disc_id, Folder_id.
Also, one of the main conditions is that the Token value must be unique for any

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 650 Open Journal of Applied Sciences

Table 12. The permissions table storing basic permission codes.

Column Description

Id Bigint PK

Name Character varying (255)

Description Character varying (255)

Table 13. The perm_pack table represents grouped permissions.

Column Description

Id Bigint PK

Name Character varying (255)

Description Character varying (255)

Table 14. The perm_to_pack is linking table for perm_pack where perm_id this is Id
from permissions and pack_id this is id from perm_pack.

Column Description

Perm_id Bigint

Pack_id Bigint

Table 15. The perm_user_folder table.

Column Description

Folder_id Bigint PK

User_id Bigint PK

Perm_id Bigint—id of the perm_pack table

Table 16. The perm_group_folder table.

Column Description

Folder_id Bigint PK

Group_id Bigint PK

Perm_id Bigint—id таблицы perm_pack

Table 17. The token table holds user access tokens.

Column Description

Id Bigint PK

Token Character varying (40)—user token

User_id Bigint

Disc_id Bigint

Folder_id Bigint

Status Smallint

Creator_id Bigint

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 651 Open Journal of Applied Sciences

Figure 3. Main permissions codes list.

Figure 4. Grouped permissions list.

Figure 5. Permissions grouped into permissionspack.

of the User_id, Disc_id, Folder_id pairs. For example, in Figure 6, the highlighted
entry under id = 16 says that token=c80d9ba4852b67046bee487bcd9802c0 identi-
fies the user user_id = 175 to access disc_id = 6. And if is necessary make the di-
rectory a network disk, then need specify 0 in the disc_id field and specify in the
folder_id directory identifier (id) that must be as a network drive. In the future,
Token will be used in SB Figure 2 to identify the client when interacting via the
WebDav, FTP/FTPS protocols, this will be discussed in more detail later in the
SB section.

2.2. Physical Part

Now let’s to consider the implementation of the physical part of the base. But
first, let’s look at the structure of the file tree for placing files on physical storage,
shown in Figure 7. At the root of a physical disk, 1000 directories can be placed

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 652 Open Journal of Applied Sciences

Figure 6. User token table data.

Figure 7. Suggested structure for placing files on storage.

in each directory, there are also 1000 directories and 1000 files in each child di-
rectory.

In the database, this structure is implemented by 4 tables.
Table 18 contains fields such as Url—this is the storage identifier within the

operating system; in the case of Windows, it can be either the address of the disk
itself or the address of the folder on the disk, for example, it can be Y:\ and
Y:\storage\, respectively. Also, this table contains such a field as Crdec—indica-
ting in what form files should be stored on this storage in encrypted or not.
DFSboRD uses AES [13] encryption implemented by the golang. Also, this field
is in Table 7, but in this table it indicates whether the file was encrypted before
uploading or, in case of an error, it was not encrypted.

Table 19 provides to implement the structure shown in Figure 7. The Par-
ent_id field indicates whether this is the root directory or not. Counter—counter
of nested directories or files if it is a child directory.

Using Table 20 and Table 21, physical storage is grouped into blocks. The
Status_replica field of the storage_pack indicates whether this block of physical
storage is a replica or the main one that the system works with. Only one block
can be the main one with which the system is currently working; the other are

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 653 Open Journal of Applied Sciences

Table 18. The storage_fiz table.

Column Description

Id Bigint PK

Name Character varying (255)—name

Size Bigint—size in bytes

Allowed_size Bigint—free space in bytes

Url Character varying (255)—Storage address

Crdec
Smallint—a field indicating in what form the files should be

stored (encrypted/decrypted)

Table 19. The storage_folder table.

Column Description

Id Bigint PK

Counter Integer

Parent_id Bigint

Table 20. The storage_pack table.

Column Description

Id Bigint PK

Name Character varying (255)

Status Smallint

Status_replica Smallint

Table 21. The storage_to_pack_storage linking table.

Column Description

Storage_id Bigint PK—Id of storage_fiz table

Pack_id Bigint PK

used for data replication. Another important point is that in Table 7, within the
same file object (File_id), physical stores (Store_id) are selected from different
blocks. The program first time uploads the file to the storage located in the
main block, and then after the replication operation, the system adds an entry
to Table 7 with the storage identifier from other blocks that are replication.
And as mentioned earlier, if the storage from the main block fails, the adminis-
trator can immediately make one of the replication units the main one, imper-
ceptibly for other programs, and disable the damaged one and deal with the
problem.

3. SB

Software block. In this section, was briefly consider the idea of implementing

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 654 Open Journal of Applied Sciences

protocols such as WebDav, FTP/FTPS, HTTP(S) for DFSboRD interaction with
the user, taking into account the fact that information such as the logical drive,
directories on the disk, files, and their attributes are read directly from the data-
base not from the file system. Also, SB is directly involved in uploading/down-
loading files to physical storages. The SB configuration files store the key itself,
which is used to encrypt/decrypt data. On Figure 8 shows a direct connection to
DFSboRD in the form of a network drive using the WebDav protocol.

As shown in Figure 8, the system connects to the storage.domen.com server
on port 10111—this port is responsible for the WebDav protocol. What is
interesting here is that in the connection string was passing the user token
“ert4re3wfgh654rtyhgfr45tre45tre3” which is generated in the AP admin panel
in Figure 2 DFSboRD and is unique (Table 17 token) having generated another
token, substitute it into the string and already connect to another network drive.
Also, this token can be used when connecting to DFSboRD via FTP/FTPS pro-
tocols as a login and password.

When connecting to DFSboRD via FTP, the same domain was used, but
placed on a different port, namely 2121 ftp://storage.domen.com:2121 further as
shown in Figures 9-11. Entered login credentials and accessed data. Also, to
work with data, a small web server was made that operates with the HTTP pro-
tocol and a small web page was made for working with data that displays the
structure of the file tree. Also, the software block is responsible for encrypting
and decrypting files before writing or reading to physical storage. Another im-
portant point is that when a user connects to DFSboRD, information about the
user is checked in Active Directory using the ldap [14] protocol, and it is checked
in which groups the user has been added and checking if he has already been
blocked.

The implementation of the protocols itself in the sense of network interaction
remains the same, only the part that is responsible for getting directory/file list
and their information get data from database.

Figure 8. Connections to DFSboRD via WebDav protocol.

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 655 Open Journal of Applied Sciences

Figure 9. Connecting to DFSboRD via FTP.

Figure 10. Connecting to DFSboRD via FTP protocol, login request window.

Figure 11. Connecting to DFSboRD via FTP protocol, password prompt window.

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 656 Open Journal of Applied Sciences

4. Discussion

Creating DFSboRD as an abstraction layer is a completely new approach to
working with files. The situation in Ukraine serves as irreproachable proof of
this. When, after the massive missile shelling of cities, business began to pull his
information infrastructure into the clouds in order to save information. But at
the same time, the problem arose of the lack of a solution that would allow this
to be done quickly and would meet security requirements. The data had to be
uploaded to cloud storage, and this is hundreds of terabytes of data, but also
power outages. And when copying data while maintaining access rights, it slows
down the process even more. Unlike other file systems, DFSboRD stores all data
about logical drives, directories, files and their attributes, access rights in the da-
tabase (which can have several copies, slave servers). Files can also have several
copies as on servers in the office and on cloud storages, it is also very important
that files are stored in encrypted form on cloud storages, which is very important
for the security policy of banks. And in this case, the transfer of the infrastruc-
ture takes several minutes, namely, switching the slave server to the master, then
you will need to go to the admin panel and make the main block responsible for
storing files on cloud storage (Table 20), and its all, DFSboRD is already work-
ing on the clouds.

Also, DFSboRD easily integrates with the company’s Active Directory, and
since the data is stored in the database, it eliminates dependence on the domain.

The problem with the encoding in the file names is also solved, for example
when the file is located in windows OS and has a name in Cyrillic, then when
transferring to Linux, a situation may arise when the file names become un-
readable, then DFSboRD does not have such problems, because the original file
names are stored in the database and physically, files may have other names ex-
clusively in Latin.

DFSboRD is very easy to maintain for the administrator, it is enough to some-
times check the replication of databases, other work the system will do itself. For
exaple if the space on one of the blocks runs out, the administrator will be in-
formed by letter or message in a messenger convenient for him.

Ease of integration with various CRM systems, to connect you will need a to-
ken that can be created in the admin panel and that’s it. Further, after loading
file, CRM receives its ID, and if CRM need to receive the file, it is enough to
transfer its identifier and get need file, and the problem of safety and availability
of free disk space is already being solved on the DFSboRD side.

DFSboRD is operating system independent and also supports various data
transfer protocols which are reliable and time-tested. Also it is cheap, which is
often crucial when choosing software. There are no restrictions on the number
of employees, the amount of data, and so on.

5. Conclusions

The advantages of this approach, are the following:

https://doi.org/10.4236/ojapps.2023.135051

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 657 Open Journal of Applied Sciences

1) Files can be stored in different places at the same time, but logically it will
be 1 file, and if the physical storage fails, it is enough to make one of the replica-
tion blocks the main one, imperceptibly for other elements of the enterprise in-
formation infrastructure.

2) Files can be encrypted using a AES encryption method, that is, the file can-
not be physically read without prior software decryption, using SB.

3) Convenience of working with files, the ability to integrate with other sys-
tems, since another system will not deal with the safety of the file itself, this is
taken over by DFSboRD. Also, for some CRM systems, it is easier to store the Id
of the file and receive it via some web server than to bother with storing infor-
mation, allocating space.

4) More flexible handling. From the admin panel, you can create all the ne-
cessary links, grant rights, create a template for setting rights for directories and
subdirectories, etc.

5) The system does not depend on storage and operation systems. For exam-
ple, if the files are hosted on AWS and our connection is organized through the
rclone utility, then it doesn’t matter to us whether it is possible to issue rights to
objects because we have ACLs placed directly in the database.

6) Several orders of magnitude faster search for file directories by name.
7) Portability, extensibility, scalability to work with different data transfer pro-

tocols.
The main disadvantage is that without a database it will be impossible to re-

store the structure of the file tree and their ACL. And this requires appropriate
qualifications in the operation and maintenance of the database that will be used.
There is also a need a certain amount of RAM, since for AES encryption it is ne-
cessary to process the entire file.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] (2022) NTFS: Microsoft.

https://learn.microsoft.com/en-gb/windows-server/storage/file-server/ntfs-overview

[2] (2022) FAT: Microsoft.
https://learn.microsoft.com/en-us/troubleshoot/windows-client/backup-and-storag
e/fat-hpfs-and-ntfs-file-systems

[3] (2022) AWS.
https://docs.aws.amazon.com/s3/index.html

[4] Andrew, S. (2014) Tanenbaum, Herbert Bos Modern Operating Systems. 4th Edi-
tion, Vrije Universiteit Amsterdam, The Netherlands.

[5] (2012) PostgreSQL: Up and Running. 4th Edition, O’Reilly Media, Inc., Newton.

[6] Donovan, A.A.A. and Kernighan, B.W. (2015) The GO Programming Language.
Addison-Wesley.

https://doi.org/10.4236/ojapps.2023.135051
https://learn.microsoft.com/en-gb/windows-server/storage/file-server/ntfs-overview
https://learn.microsoft.com/en-us/troubleshoot/windows-client/backup-and-storage/fat-hpfs-and-ntfs-file-systems
https://learn.microsoft.com/en-us/troubleshoot/windows-client/backup-and-storage/fat-hpfs-and-ntfs-file-systems
https://docs.aws.amazon.com/s3/index.html

V. Kutsman

DOI: 10.4236/ojapps.2023.135051 658 Open Journal of Applied Sciences

[7] Dusseault, L. (2007) HTTP Extensions for Web Distributed Authoring and Version-
ing (WebDAV). RFC 4918. https://doi.org/10.17487/rfc4918

[8] Postel, J. (1985) File Transfer Protocol (FTP). RFC 959.
https://doi.org/10.17487/rfc0959

[9] Ford-Hutchinson, P. (2005) Securing FTP with TLS. RFC 4217.
https://doi.org/10.17487/rfc4217

[10] Fielding, R. (1999) Hypertext Transfer Protocol—HTTP/1.1. RFC 2616.
https://doi.org/10.17487/rfc2616

[11] Rescorla, E. (2000) HTTP over TLS. RFC 2818. https://doi.org/10.17487/rfc2818

[12] Rescorla, E. (2011) US Secure Hash Algorithms (SHA and SHA-Based HMAC and
HKDF). RFC 6234.

[13] Schaad, J. (2003) Use of the Advanced Encryption Standard (AES) Encryption. RFC
3565. https://doi.org/10.17487/rfc3565

[14] Good, G. (2000) LDAP Data Interchange Format. RFC 2849.

https://doi.org/10.4236/ojapps.2023.135051
https://doi.org/10.17487/rfc4918
https://doi.org/10.17487/rfc0959
https://doi.org/10.17487/rfc4217
https://doi.org/10.17487/rfc2616
https://doi.org/10.17487/rfc2818
https://doi.org/10.17487/rfc3565

	Distributed File System Based on a Relational Database
	Abstract
	Keywords
	1. Introduction
	2. Data Base
	2.1. Logical Part
	2.2. Physical Part

	3. SB
	4. Discussion
	5. Conclusions
	Conflicts of Interest
	References

