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Abstract 
Finding out the desired drug combinations is a challenging task because of 
the number of different combinations that exist and the adversarial effects 
that may arise. In this work, we generate drug combinations over multiple 
stages using distance calculation metrics from supervised learning, clustering, 
and a statistical similarity calculation metric for deriving the optimal treatment 
sequences. The combination generation happens for each patient based on the 
characteristics (features) observed during each stage of treatment. Our approach 
considers not the drug-to-drug (one-to-one) effect, but rather the effect of group 
of drugs with another group of drugs. We evaluate the combinations using 
an FNN model and identify future improvement directions. 
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1. Introduction 

For obtaining optimized patient-specific treatment strategies, we conduct three 
experiments based on patients’ historical treatments and charted features across 
multiple time-stages. We name the experiments as Distance, Clustering, and Dis-
tribution experiments based on supervised learning, clustering techniques, and a 
statistical Kolmogorov-Smirnov test respectively1. Here the time-stage is a key 
logical component representing the health state of the patient. Each patient in 
each state has a corresponding vector of 10 features, which give an overview of 
the health condition of the patient. We first create treatment stages based on 
time. We define three time-stages, meaning optimal groups are identified three 
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times for each patient per method. We believe this division is important as iden-
tifying the optimal drug is highly dependent on the stage where the patient is lo-
cated; in other words, giving the same drug in the first time-stage and the third 
time-stage only based on the observed features may not provide the desired re-
sults. The third time-stage features may be affected by previous medication, and 
the same treatment may be effective at the earlier stages and not so effective at 
later stages, and vice versa. For each new patient that is admitted with a given 
diagnosis, the initial health state (group of features) is observed. The optimal 
drug sequences (group) of drugs are chosen from an existing pool of drug treat-
ments from previous admissions based on the defined methodologies, where in 
the end the patient has been successfully discharged to Home, which we regard 
as a positive outcome. As the patient’s treatment progresses in time, another group 
of optimal drug medications is identified from the corresponding time-stage of 
the existing treatment and so on. There are five methods used in total for identi-
fying the optimal medications; two of them are clustering algorithms; KMeans 
and Mini Batch KMeans, the other two are machine learning evaluation metrics 
which we use for similarity calculation, MSE and MAE, and the final one is a 
statistical Kolmogorov-Smirnov test for identifying if the distribution of the fea-
tures of the admitted patient is the same as a given distribution from the existing 
historical patient features. After finding out the optimal group of drugs for each 
stage, a combination strategy is used, which is a product-based combination. For 
i distinct group of drugs in stage 1, j such group in stage 2, and k such group in 
stage 3, we obtain i j k⋅ ⋅  combinations, which becomes a drug treatment data-
set. Each instance of this dataset is evaluated against a target label, which is 1 if 
the patient has been discharged to Home, and 0 otherwise. The label is known 
for all patients, for both historical and new admissions. We utilize a small feed-
forward neural network (FNN), which is a linear layer followed by a sigmoid ac-
tivation, for identifying how well on average the combined group of treatments 
across stages predict the final patient output. The prediction results can also be 
used for selecting the best overall treatment procedure. The approaches are eva-
luated on datasets for the PNEUMONIA diagnosis. The evaluation results show 
that the model is learning, however, limited dataset observations and class im-
balance should be handled as part of future work. In summary, the contributions 
that the paper provides are: 
• An algorithm for selecting the most similar patients in terms of the observed 

medical features for each time-stage using five different machine learning and 
statistical methodologies. 

• Logic for generating drug-treatment datasets using product-based combina-
tions for each patient using medication of the most similar patients identified 
from one of the methodologies. 

• Methodological evaluation. 

2. Related Work 

In this work, we use machine learning and distance-based methodologies for 
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combining drug sequences over multiple stages for optimized treatments, and 
for that reason, we review the literature where drug combination approaches have 
been used for treatment optimization. One such area is cancer treatment. Al-
though drug combinations can improve cancer treatment efficacy, and provide 
side effect reduction and drug resistance, combining drugs is a difficult task for 
the high number of possibilities that exist. Another challenge is that drug combi-
nations may result in synergistic, additive, or antagonistic interactions between 
drugs stated by [1], who apply a feedback system control technique with a popu-
lation-based stochastic search algorithm to traverse through the parametric space 
of nine angiostatic drugs at four concentrations to identify low-dose drug com-
binations. An Iterative approach of in vitro testing and algorithm-based analysis 
is performed. Synergy is when two drug components increase each other’s effec-
tiveness by more than the sum of their single-agent responses. The advantage of 
synergy is that allows to lower the dosage of individual agents, allowing to re-
duce toxicity but still maintaining the desired effect. The additive is when the ef-
fect of one drug neither reduces nor increases the effect of the other drug. Final-
ly, a drug combination is antagonistic when the combined activity of the drugs is 
lower than the response of the individual agents [2] [3]. There is also a concept 
of independent drug action alternative to drug synergy. Cell-to-cell heterogenei-
ty within a patient as well as cell-to-cell variability in drug response makes it 
challenging to predict the effectiveness of the treatment. Combinational drug 
treatment has been used for overcoming this challenge for the reason that at 
least one of the drugs may provide the desired effect. This is also known as ‘in-
dependent’ action and is defined as the response of the patient to the combina-
tion therapy equivalent to the response of the more effective drug alone with no 
added benefit from the less effective drug [2] [4]. In fact, by analyzing available 
clinical data, and comparing monotherapy and combinational therapy, it is con-
cluded that the most positive outcome observed in patient treatments is due to 
independent action [4] [5]. There exists a Quadratic Phenotypic Optimization 
Platform (QPOP), an artificial intelligence (AI) approach that utilizes experimen-
tal drug response datasets for identifying globally optimal drug combinations, 
which uses orthogonal array composite design (OACD) for generating a minim-
al set of drug combinations sufficient for second order model fitting. In their 
work, [6] provide a more efficient OACD that can be applied toward AI-driven 
drug combination design in drug development and precision medicine. For de-
veloping optimal treatment intervention and planning for breast cancer patients, 
[7] develop a Markov decision process (MDP) based framework with interven-
tion and treatment costs, data-driven intervention, and treatment actions. State 
space is a vector of age, health status, prior intervention, and treatment plans, 
and the actions are wait, prophylactic surgery, radiation therapy, chemotherapy, 
and their combinations. A recursive classification framework with potential ap-
plications in medical treatment optimization is proposed by [8]. Regarding 
healthcare data, there are many types, such as Clinical Data, Sensor Data, Omics 
Data, Genomic Data, Transcriptomic Data so on [9]. In this work we deal with 
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Clinical Data, a type of data which is collected during the ongoing treatment of 
the patient. There are multiple use cases where machine learning has been ap-
plied to clinical datasets. ML algorithms for the prediction of pathological com-
plete response (PCR) to neoadjuvant chemotherapy and survival outcome of 
breast cancer patients are proposed by [10]. In this study eight classifiers, among 
which are logistic regression, random forests, adaptive boosting are applied to 
rank the features for PCR including residual cancer burden (RCB), Recurrence 
Free Survival (RFS), and disease-specific survival DSS. [11] propose an improved 
classification approach for survival prediction of Hepatocellular Carcinoma 
(HCC) patients. For identifying Type-2 Diabetes Mellitus (T2DM) patients using 
Electronic Health Record (EHR) data, a new framework is proposed by [12]. 
[13] used machine learning models for the identification of high-risk surgical 
patients. Meanwhile, [14] investigate five machine learning algorithms, includ-
ing an artificial neural network with a single hidden layer for delirium risk pre-
diction based on electronic health data. Other use cases of machine learning in-
clude survival prediction by [15], heart failure prediction by [16] and cardiovas-
cular risk prediction by [17]. There are a few cases when combinatorial tech-
niques have been applied in the healthcare domain. [18] propose an original 
procedure based on combinatorial K-Means clustering designed to find the most 
appropriate clinical variables to efficiently separate similar patients into groups 
diagnosed with diabetes mellitus type 2 (DMT2) and underlying diseases. [19] use 
combinatorial optimization for dataset creation, used for diet planning and die-
tary healthcare with machine learning. [20] introduce a machine-learning-based 
prediction model capable of optimal treatment selection for hepatitis C virus 
(HCV). For effective allocation of medical resources in intensive care units, [21] 
train regression models using MIMIC-III database for solving a discharge predic-
tion task. 

3. Materials and Methods 
3.1. Data 

Experiments are conducted using three different datasets namely Drugs, Features, 
and Output generated for each time-stage, having shapes of (n, 902), (n, 10) and 
(n, 1) in the mentioned order, where n is the number of admissions. These datasets 
are obtained from preprocessing four tables from MIMIC-III clinical database, 
namely ADMISSIONS, D_Items, and PRESCRIPTIONS datasets, and a subset of 
the CHARTEVETS dataset, the latter containing 5 million rows from the whole 
dataset. The features are O2 saturation pulse oxymetry, Heart Rate, Respiratory 
Rate, Non Invasive Blood Pressure mean, Non Invasive Blood Pressure systolic, 
Non Invasive Blood Pressure diastolic, Temperature Fahrenheit, Arterial Blood 
Pressure systolic, Arterial Blood Pressure diastolic, Arterial Blood Pressure mean. 
The Drugs dataset is in a dummy format where each drug is present as a column 
and for a given row takes values of 0 or 1, 0 indicating the presence and 1 the 
absence of a drug for a given diagnosis in a given stage. Each instance (row) for 
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the Drugs dataset for each stage is the group of drugs given to the patient. The 
Features dataset is used for comparing the newly-admitted patient features with 
existing historical patient features at each stage, identifying the “best” or most 
similar patient ids then selecting their drug treatments, which is the corres-
ponding instance from the Drugs dataset. 

3.2. Stages (Timesteps) 

Data is divided into three stages based on length of stay logic. Each stage in-
cludes aggregated historical charted observations for 10 features and a list of 
drug treatments for each patient. The first and second stages include 2-day ob-
servations, while the final stage can have from 2 to 4-day observations. There are 
three distinct methodologies used as part of the main experiment, which can be 
described as data-driven. The base idea among all methodologies is to find the 
treatment sequence for a given testing instance from the training instances based 
on existing feature similarity. How similarity is obtained is described in the fol-
lowing sections. Train-test division (3.3) and batch selection (3.4) are done be-
fore the actual methodology is performed. 

3.3. Train Test Division 

We perform a data division for each stage and name it “train-test”, where obser-
vations from “test” are the instances for which even though we know the actual 
treatments (drug sequences), we rely on the historical treatments from training 
instances to generate new potential procedures. We also know the output label 
of each testing instance, which is later expanded to match the concatenated da-
taset size described in section (3.8). This is not a train-test division in the tradi-
tional machine learning terminology, but rather a division of past and current 
admissions and treatment. The key part here is understanding which training 
instances are the best for a given test instance, so the best drug procedures can 
be selected. 70% of the observations from each stage are kept as training in-
stances and the rest as testing instances. 

3.4. Batch Selection 

Training instances for each stage are further filtered before being compared to a 
testing instance for similarity. The logic of filtering is that if the training instance 
has a corresponding output of 1 from the Output dataset, meaning the patient 
has been discharged to Home, the instance has had a good drug prescription se-
quence over multiple stages. The training instances are filtered based on this 
logic and for each stage, we end up with training observations or patient obser-
vations that have been discharged to Home. 

3.5. Distance-Based Approach 
3.5.1. Supervised Learning Experiment 
The distance-based approach assumes similarity calculation between each testing 
instance with all training instances. The naming, just like train-test division, is 
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for experimental purposes, the actual approaches are conventional machine 
learning evaluation metrics for calculating the loss between training and testing 
vectors. Two metrics are used, MSE and MAE. Using these metrics, we select the 
ids of the five most similar training instances. The ids are selected so that the 
corresponding drug treatment sequences can be taken, as elaborated on in the 
Data (3.1) section. 

3.5.2. Mean Squared Error and Median Absolute Error 
Each training instance is regarded as the vector of ground truth values. Mean 
squared error measures the expected value of the mean quadratic loss while MAE 
measures the expected value of the absolute error loss [22]. 

3.6. Clustering-Based Approach 
3.6.1. Clustering Experiment 
In the clustering experiment, we fit a clustering algorithm on the training data and 
then make a prediction, assigning each training instance to one of the three clusters 
using KMeans and Mini Batch KMeans algorithms. We do a similar prediction for 
the testing instances, assigning each instance to a cluster. We then proceed to iterate 
over the testing predictions (clusters), selecting all training instances that also be-
long to the same cluster, then selecting five training instance ids from this selection. 
Here, unlike the distance-based approach, there is no particular ordering for the 
selected training instances, meaning that all instances are equally important. 

3.6.2. KMeans and Mini Batch KMeans 
KMeans algorithm cluster data by trying to separate data into n groups of equal 
variance, minimizing within the cluster sum of squares. Mini Batch KMeans 
tries to optimize the same objective function as KMeans but uses KMeans to re-
duce the computation time [22]. 

3.7. Distribution-Based Approach 
3.7.1. Statistical Similarity Experiment 
As a final approach to our experiment, we use a statistical Kolmogorov-Smirnov 
test (3.7.2) for selecting the best training instances for a given test instance. The 
way the training data selection takes place for each testing instance is quite simi-
lar to the experiment described in section (3.5). The difference is that we select 
the training instances based on how closely the feature distribution of the train-
ing instance matches one of the test instances based on the p value metric. The 
closer the value to 1, the more similar the distributions are. We then select the 
top five most similar training instance ids based on p value ordering from high-
est to lowest, which later are used for obtaining corresponding drug sequences. 
The experiment as in all previous experiments is performed for each diagnosis 
for each of the three stages. 

3.7.2. Kolmogorov-Smirnov Test 
We perform a two-sample Kolmogorov-Smirnov test for the goodness of fit, 
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where we compare the underlying distributions of two independent samples, in 
this case, the training and testing samples. We test a two-sided null hypothesis 
that two distributions are the same for all x, and the alternative is that they are 
not identical [23]. We accept the null hypothesis if the statistical p value is 
greater than 0.05. 

3.8. Drug Sequence Concatenation and Modeling 

As a result of the experiments, for each patient, we obtain up to five treatment 
strategies for each stage based on each method. High-level pseudocode of the 
algorithm (5) is listed in the appendix. 

Visualization of the methodology can be seen in Figure 1, where the identifi-
cation of the top 5 treatments is done using the methods listed in section (3). 
The full treatment depends on sub-treatments, and as there are three stages and 
5 treatments, for a single patient there can be 53 product-based treatment com-
binations. We gather all such combinations through the concatenation of drug 
sequences and generate five datasets, one for each method. With this methodol-
ogy, we obtain a vast number of possible drug combination procedures for each 
patient. Regarding the output of these combinations, if the output label of a giv-
en testing instance is 0, all the concatenated drug treatments for that instance 
will have a label of 0. This is also true when the label is 1. The shape of each da-
taset is ( )125,902n∗ , where n is the number of patients coming from the test  

 

 
Figure 1. Algorithm visualization. 
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set for each diagnosis, and 902 is the total number of unique drugs. 
Here an intersection of the row and the column represent whether the drugs 

were given during the treatment or not. The goal here is to find out how the 
combination strategy works in an effort to identify the best drug procedures and 
methodologies. The success of this strategy may also be used for recommending 
new treatment procedures which have a high likelihood of leading the patient 
toward a successful discharge. There is a significant class imbalance for each 
generated dataset, which have shapes of (2500, 902). Out of these 2500 observa-
tions, there are only 125 instances that have a positive target output of 1, the rest 
having 0. As the output is the same, these numbers are the same across all data-
sets. To tackle this issue, we identify the instances whose output is 0, filter the 
first 125 instances, and concatenate to the other 125 instances with the output of 
1, obtaining a perfect dataset balance. Although the final dataset now has a shape 
of (250, 902), a significant decrease from the original, this method allows to bet-
ter evaluate the proposed methodologies, and be confident that model perfor-
mance is not affected by the class imbalance. The technique is applied to the da-
tasets generated by each methodology. We perform 5-fold cross-validation, each 
fold selecting observations randomly from the dataset. We then construct a train 
loader to use for model training and a test loader for model evaluation. For each 
fold, we reset the model parameter weights. The model parameters can be seen 
from Table 1. We train a feed forward neural network with a sigmoid activation 
applied to a linear layer without any hidden layers, which becomes a logistic re-
gression model. The benefit is that we use a neural network optimization pipe-
line instead of a standard statistical regression model. We try to keep the model 
as simple as possible so that good performance is attributed to the underlying 
approach rather than the complexity of the model. 

4. Setting 

The experiments and conducted in python using “scikit-learn” [22], SciPy [23], 
and “PyTorch” [24] machine learning libaries. 

5. Results 

We provide a visualization of the training results for each technique, as well as  
 

Table 1. FNN model parameters. 

Parameters Values 

Folds 5 

Optimizer AdamW 

Loss Function Binary Cross Entropy Loss 

Epochs 300 

Batch size 100 

Learning Rate 0.001 
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testing evaluation results for Accuracy, Recall, and F1-scores. The training re-
sults can be seen from Figure 2 and the evaluation results can be seen from Ta-
ble 2. From the figure, you can see that there are oscillations during the learning  
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Figure 2. Training results. 

 
Table 2. Average evaluation results across folds. 

Mean-Squared Error 

 Accuracy Recall F1-score 

Average (across folds) 76.8% 75.3% 76.4% 

Median-Absolute Error 

 Accuracy Recall F1-score 

Average (across folds) 78.4% 78.4% 77.9% 

KMeans 

 Accuracy Recall F1-score 

Average (across folds) 100% 100% 100% 
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Continued 

Mini-Batch KMeans 

 Accuracy Recall F1-score 

Average (across folds) 100% 100% 100% 

kstest 

 Accuracy Recall F1-score 

Average (across folds) 100% 100% 100% 

 
for mean_squared_error and median_absolute_error, which is also reflected in test 
predictions in the table. Learning is much smoother for KMeans, MiniBatch-
Kmeans, and kstest approaches. By looking at the table, you can see that compared 
to distance-based metrics of mean_squared_error and median_absolute_error er-
ror, the models perform significantly well with clustering and distribution-based 
algorithms. Method names in the charts are based on external library function 
names, so there are some naming differences in comparison to the names listed 
in section (3). 

6. Conclusion 

In this work, we proposed approaches for obtaining drug combination treatment 
strategies suited for the multi-stage patient treatment task. We identified the im-
portance of having a methodology that can identify the optimal group of drugs 
across multiple stages, then showed how some of the proposed combination ap-
proaches based on existing techniques successfully predict the discharge location 
of the patient. These approaches may help in finding combinations that have not 
been explored previously and suggesting alternative treatments, however, based on 
the dataset sizes and the experimental approach of the work, cautious evaluation of 
the obtained results is needed before a final drug-treatment recommendation. 

7. Discussion and Limitations 

Due to the algorithmic and data pre-processing logic of the work, we considered 
group of drugs combinations instead of one-to-one drug combinations. This 
approach identifies possible successful treatment groups, however, the fact that 
independent one-to-one drug effect is not fully examined is a limitation. The 
best group of drugs for each stage is based on a vector of 10 features, which may 
not be enough for an entire treatment generation. This is a known limitation and 
we have proceeded with the limited number of features for the methodological 
reasons of this work. The class imbalance was handled in this experiment, but it 
should be of primary importance if we work with datasets of bigger sizes. We 
will try to address all identified limitations as part of future work. 
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