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Abstract 
In the process of intelligent mine construction in open-pit mine, in order to 
improve the safety monitoring ability of mine transportation system, solve the 
problems of large human interference and blind Angle detection by existing 
conventional monitoring methods, this paper establishes an open-pit mine 
monitoring data set, and proposes a real-time intelligent monitoring model 
based on UAV. The reasoning component with strong computing power and 
low power consumption is selected, and the lightweight object detection 
model is selected for the experiment. A quantitative standard of dynamic 
energy consumption detection by evaluation algorithm is proposed. Through 
experimental comparison, it is found that YOLOv4-tiny has the highest com-
prehensive grade in detection accuracy, speed, energy consumption and other 
aspects, which is suitable for application in the above model. 
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1. Introduction 

The coal industry is an important basic industry related to the national economy 
and energy security, and the main goal of open-pit mine construction at this 
stage is to achieve smart mine construction [1]. So far, most of the safety moni-
toring work in surface coal mines has been carried out by manual inspection, 
which is costly and inefficient; although the deployment of fixed heads for mon-
itoring is a good solution to the above problems, it is not flexible enough in the 
face of the complex geographical environment of the mine. With the develop-
ment of Unmanned Aerial Vehicles (UAVs) technology, the low-altitude remote 
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sensing operation of drone can reduce the influence of terrain, weaken the in-
terference of human factors, and have the flexibility and mobility to become a 
powerful supplement to high-altitude satellite remote sensing, making it possible 
to fully build an integrated three-dimensional monitoring network between hea-
ven and earth [2]. 

With the continuous expansion and enrichment of UAV mounted equipment, 
researchers have begun to use UAVs equipped with intelligent detection mod-
ules to carry out safety monitoring and geological research in coal mines [3]. 
UAVs equipped with infrared cameras and ground-penetrating radar can con-
duct combined detection of hidden ground fractures. Not only can they find the 
location of hidden ground fractures caused by underground mining, but they 
also find that the surface temperature above hidden ground fractures is higher 
than the surface temperature of non-fracture areas, enabling them to efficiently 
and accurately locate hidden ground fractures and explain the mechanism of 
distribution of ground temperature values in mining areas [4]. Effectively pre-
dicted the total suspended particulate (TSP) matter concentration in Anjialing 
coal mine by using an unmanned aircraft with dust detection equipment and a 
LSTM memory network incorporating an attention mechanism [5]. At present, 
computer vision algorithms based on machine learning and deep learning have 
been widely used, and deep learning target detection models, with their fast fea-
ture extraction and more accurate classification regression, but there has been a 
dynamic balance between the computing power of the veneer equipment on the 
UAV and the real-time target detection algorithms that can be invoked for dep-
loyment when the UAV is conducting inspection operations, and the UAV is 
ensuring that the flight components operate There is also a limit to the amount 
of power that can support the intelligent single board device (SBD) for computa-
tion during the process, making the use of advanced on-board computers on 
UAVs and the deployment of an efficient target detection framework particular-
ly critical [6]. As the RCNN [7] and SSD [8] algorithms take up a large number 
of resources and cannot be detected in real time on a single board device, the 
lightweight YOLO [9] target detection algorithm is deployed. 

In this paper, a dataset is built from actual working videos of trucks in the 
Ordos Dongsheng coalfield in Inner Mongolia, and a Prometheus 600 (abbre-
viated as P600) drone equipped with NVIDIA JETSON XAVIER NX (abbre-
viated as NX) is used as the hardware operating platform for the fast detection 
algorithm of surface mine trucks, and a real-time monitoring model for surface 
mine transportation equipment is proposed. In order to investigate the most 
suitable target detection algorithm to be ported to the NX platform, this experi-
ment deploys a darknet-based surface mining truck detection model on the 
UAV platform, compares the detection accuracy of several algorithms on the NX 
platform for mining trucks using experiments, and grades the four networks on 
NX in terms of running speed and computational resource occupation through a 
weighted scoring method. Finally, it is hoped that this research can explore a 
fast, accurate and low-cost target detection technology for open pit mines, pro-
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mote the development of unmanned aerial vehicles and enhance the intelligence 
of mining machinery management. 

2. Related Work 

In recent years, aerial UAVs have been widely used in many fields, including 
power inspection [10], rail transportation [11], agricultural production [12] and 
disaster monitoring [13], to extract object features or targets of interest through 
target detection by aerial video captured by UAVs [14]. 

Convolutional deep neural network-based target detection methods have also 
been rapidly developed, and the single-board devices that can be carried on 
UAVs are becoming smaller and lighter, while being able to achieve larger com-
putational volumes with lower power consumption [15], so that applying UAVs 
and deploying deep learning-based target detection models in open-pit mines 
can be used for real-time monitoring of mining trucks. 

In agricultural scenes, drones are commonly applied for production opera-
tions, and drones with vision functions are generally applied for disease detec-
tion [12]; in the field of electric power or rail transportation inspection, the 
scene depth is large, and drones and fixed aircraft positions are commonly used 
in cooperation, and drones are generally applied for fine operations with rela-
tively low requirements for real-time, and the underground platform of the open 
pit mine has a large drop from the ground and a complex slope structure. The 
safety monitoring of mining trucks is very necessary, which is beneficial to the 
safety production work of open pit coal mines [5]. Although in other industries 
based on aerial video drones have been fully used, but in open-pit coal mines, 
drones generally carry gas and temperature sensors for simple data collection, or 
environmental modeling, the application of drones for aerial surveillance is rela-
tively incomplete, and the development of real-time monitoring systems is still 
in the trial stage. 

3. Models and Presentation Method 

Aiming at the operating conditions of open pit coal mines, combined with the 
experience gained from existing UAV aerial video monitoring in the fields of 
electricity, agriculture and disaster response, etc. Summarizing the shortcomings 
of the traditional monitoring model, this paper investigates the model construc-
tion of a real-time monitoring system for open pit coal mines, and proposes a 
method to grade the performance of the target detection model on a single-board 
computer with the commissioning of the system. 

3.1. Real-Time Safety Monitoring Model for Open-Pit Mines 

Traditional applications of UAV target detection technology require the genera-
tion and collection of large volumes of video during routine inspections. Deep 
learning-based target detection allows for efficient and accurate identification of 
objects to be detected. While there are managers who process manually in data 
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centres or deploy intelligent detection frameworks on cloud servers for auto-
mated processing, solutions via over-the-horizon communication are not suita-
ble for the demanding tasks that arise from the proliferation of video volumes. 
With the performance and speed of intelligent computing devices constantly 
pushing new limits and more and more video processing tasks being placed on 
devices at the edge of the network, bringing them as close to the data source as 
possible, now is the beginning of the era of edge computing and edge devices. 
An intelligent autonomous sensing inspection system that incorporates cloud, 
edge computing, deep learning and big data technologies consists of the follow-
ing three main components. 

1) Data acquisition and analysis system 
2) Real-time autonomous visual monitoring system for UAVs 
3) High-performance single board devices for UAVs that can run real-time 

inspection depth models 
The autonomous inspection system designed in this project is mainly based 

on the above 3 components. Based on the above analysis, a system model for 
real-time UAV detection is proposed in this paper, and the system architecture 
diagram is shown in Figure 1. This inspection process is divided into two phas-
es: the first phase is the training phase, where data collection, dataset production 
and model training are to be completed to obtain training weights; the second 
phase is the inspection phase, where the inspection model and the modified 
business model (to achieve statistical, functional wearability) are deployed in 
advance to the edge-side single board device. This enables real-time monitoring 
of the aerial inspection process of drones, which require rapid and continuous 
analysis of incoming data to be able to parse the world around them and take ac-
tion within millisecond response times. 

 

 
Figure 1. Flow chart of the UAV real-time target detection system. 
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This time constraint makes it impossible to rely entirely on the cloud to 
process the data stream when detecting, but rather the processing must be done 
locally. However, there is a disadvantage to processing locally: the edge device 
hardware does not have the computing power available on the cloud and cannot 
compromise on accuracy and speed depending on the actual requirements. The 
solution to this problem is either to use stronger and more efficient hardware, or 
not to use as complex a deep neural network. To get the best results, a balance 
has to be found between the two points. 

3.2. Computing Devices for Real-Time Video Processing on Board 
Drones 

Naeem et al. deployed the yolo series of algorithms using Raspberry Pi 4, Nvidia 
Jetson Nano, Nvidia Jetson TX2, and Nvidia AGX Xavier devices to evaluate the 
use of autonomous deep learning target detection algorithms on these airborne 
devices and use this for powerline inspection. But they did not experiment with 
the latest Nvidia Jetson NX [10]. 

For graphical image processing UAVs, the core device for edge computing is 
the aircraft’s Single Board Computer (SBC), and the most advanced SBCs availa-
ble are NVIDIA’s range of visual reasoning modules. NVIDIA’s leading single 
board computers are shown in Table 1. 

On the NX, the NVIDIA Deep Learn Accelerator (NVDLA) engine and GPU 
run simultaneously at INT8 precision, while on the Jetson Nano and Jetson TX2, 
the GPU runs at FP16 precision. jetson Xavier NX delivers 10 times more per-
formance compared to Jetson TX2 with the same power and 25% less footprint. 
The kit’s small size and light weight compared to the AGX led to the selection of 
the NX as the single board device to carry the UAV. 

3.3. Performance Evaluation Metrics for Target Detection Algorithms 

In this paper, we use the mean average precision (mAP) to measure the goodness  
 
Table 1. List of training environment. 

Equipment Indicators Nvidia Jetson Nano Nvidia Jetson TX2 Nvidia AGX Xavier Nvidia Jetson NX 

CPU 
4-core ARM® 

Cortex®-A57 MPCore 

Core Denver 2 64 bit 
and 4-core ARM 

Cortex®-A57MPCore 

8-core Nvidia Carmel® 
ARM v8.2 64 bit CPU 

6-core Nvidia Carmel® 
ARM v8.2 64 bit CPU 

GPU 
128 Nvidia CUDA® 

cores 
256 Nvidia CUDA® cores 512 Nvidia CUDA® core 

with 64 Tensor Cores 
384 Nvidia CUDA® core 

with 48 Tensor Cores 

GPU Architecture Maxwell Pascal Volta Volta 

AI perfmance/TFLOPs 0.472 1.33 22 
14 (10w) 

21 (15/20w) 

Memory Capacity 4 GB 64-bit LPDDR4 4/8GB 128-bit LPDDR4 32 GB 256-bit LPDDR4x 
8/16GB 128-bit 

LPDDR4x 

Size/mm 69.6 × 45 
69.6 × 45 
87 × 50 

100 × 87 69.6 × 45 
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of the network model accuracy, mAP means the average of the APs of all catego-
ries within all images, which is calculated as 

1

1mAP AP %
N

i
iN =

= × ×∑                      (1) 

where: N—number of categories, which is 3 in this experiment; AP—Average 
accuracy per class, refers to the area under the P-R curve of a specific category 
within all images. AP is calculated as follows 

( )1

0
AP dP R R= ∫                         (2) 

TP
TP FP

P =
+

                         (3) 

TP
TP FN

R =
+

                         (4) 

where: TP indicates predicted with mining card, actual with mining card; FP in-
dicates predicted with mining card, actual without mining card; FN indicates 
predicted without mining card, actual with mining card; TN indicates predicted 
without mining card, actual without mining card. The AP calculation of COCO 
will take multiple cross-merge ratios for calculation. In this experiment, the re-
sult of IOU = 0.5 is used to calculate AP. 

3.4. Quantitative Standard Design for Single Board Computers on 
Drones 

In order to select a network model suitable for real-time target detection at NX, 
it is necessary to evaluate the performance of different target detection network 
models operating on NX, and therefore a quantitative criterion is proposed in 
this section. This criterion is based on the fact that a large amount of computa-
tional resources will be used by the UAV for real-time monitoring, and that the 
computational resource occupation will affect the operation of other functional 
modules of the overall detection system (e.g. distance detection, obstacle avoid-
ance, etc.), and the performance of each model is analyzed comprehensively in 
this paper in relation to its occupation of hardware resources. 

The NX single-board device on board the UAV turns on the maximum per-
formance mode (MAXN mode) during the target detection of the mining card, 
closes all irrelevant terminal windows, and ensures that only one network model 
detection program and the jtop system resource monitoring program are opened 
for each test. This paper uses a scoring system to evaluate the overall perfor-
mance of the network model, which is calculated using the formula 

3

1
Grade i i

i
w g

=

= ∑                         (5) 

where: Grade is total score; g1, g2, g3 are mAP item score, average frame rate item 
score, hardware test score; w1, w2, w3 are the weighting factor of the above 3 
scores, which sums to 1. 

When evaluating the drone detection resource score, GPU, CPU and RAM 
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usage is considered and a corresponding score is assigned to each sub-category. 
As a rule of thumb, fluency is the most important factor for real-time drone de-
tection, followed by object detection accuracy and hardware resource consump-
tion respectively. For this reason, all evaluation items in real-time UAV moni-
toring are weighted and given different weighting factors according to their im-
portance, with 1 being the highest weighting factor. This paper therefore assigns 
the following values to the weighting coefficients of all the test terms according 
to their importance: w1 is 0.4, w2 is 0.4 and w3 is 0.2. A maximum standard score 
of 5 points was established for the scoring of the test items and the final score 
was calculated by decreasing the standard score by 1 point for each 20%. The 
item-specific evaluation criteria can be found in Table 2. 

w1 is the frame rate test weight, w2 is the resource usage test weight and w3 is 
the detection accuracy test weight. 

4. Experiment 
4.1. Experimental Environment 

The model training test platform is a H3C UniServer R4900 G3 dual-way rack-
mount server with Intel(R) Xeon(R) Bronze 3204 CPU, 16 GB RAM, NVIDIA 
A10 GPU and 24 GB video memory to build the DarkNet deep learning framework. 
On this basis, the training trials of the target detection model were completed. 

The visual inference module on board the drone is NVIDIA’s NX single board 
device with a Volta architecture GPU containing 384 CUDA compute cores, 
each chip hitching 48 Tensor Cores, with over 59.7 GB/s of memory bandwidth 
and 8 GB of 128-bit LPDDR4x memory with a maximum frequency of 1600 
MHz and an arithmetic power of 21 TOPS. As mentioned earlier, the YOLO 
family of target detection algorithms (YOLOv3, YOLOV4, YOLOv3-tiny and 
YOLOv4-tiny) will be used in this experiment. 

Among them, the training parameters of YOLOv3, YOLOV4, YOLOv3-tiny 
and YOLOv4-tiny are the same: learning rate 0.001. A batch training method is 
used to divide the training set as well as the test set into four batches, both with a 
batch-size of 4, and the dataset is set to a uniform resolution of 640 × 640 for 

 
Table 2. List of training environment. 

Rating mAP FPS 
Hardware Resource Usage 

T1 T2 T3 

5 mAP ≥ 0.70 FPS ≥ 30.0 ≤1 Core full AVE ≤ 30.0% RAM ≤ 1.5 GB 

4 0.52 ≤ mAP < 0.70 24.0 ≤ FPS < 30.0 2 Core full 30.0% < AVE ≤ 36.0% 1.5 GB < RAM ≤ 1.8 GB 

3 0.46 ≤ mAP < 0.52 18.0 ≤ FPS < 24.0 3 Core full 36.0% < AVE ≤ 42.0% 1.8 GB < RAM ≤ 2.1 GB 

2 0.26 ≤ mAP < 0.46 12.0 ≤ FPS < 18.0 4 Core full 42.0% < AVE ≤ 48.0% 2.1 GB < RAM ≤ 2.4 GB 

1 0.18 ≤ mAP < 0.26 6.0 ≤ FPS < 12.0 5 Core full 48.0% < AVE 2.4 GB < RAM 

T1 is CPU usage, core occupancy ≥ 95% is “core full”; T2 is GPU usage; T3 is RAM usage. 

https://doi.org/10.4236/ojapps.2023.134039


J. Y. Wu et al. 
 

 

DOI: 10.4236/ojapps.2023.134039 490 Open Journal of Applied Sciences 
 

training and testing. 

4.2. Building a Data Set 

Data were collected using a DJI Royal 2 zoom version of the drone (Figure 2(a)) 
and real-time monitoring was carried out using a research drone p600 equipped 
with a Jetson Xavier NX (Figure 2(b)). 

The dataset in this experiment was taken from the aerial video taken and 
produced by a UAV at the Dongsheng coalfield in Ordos, as shown in Figure 3. 
The video files were split with a frame rate of 10 images/s to eliminate redundant 
and repetitive images. In order to enrich the diversity of the dataset and increase 
the generalization ability of the model in practical use, a small part of the dataset 
was searched on the Internet or by means of screen shading, etc. A total of 1863 
images were collected as the original images. 

The data set was divided into a training set, a validation set and a test set ac-
cording to 8:1:1, and the data set was expanded by data enhancement methods 
such as Mosaic and Mixup during training. 

5. Results 
5.1. Training Data Set 

In this paper, four different deep learning models YOLOv3-DarkNet53, YO-
LOv3-tiny, YOLOv4-CSPdarknet53 and YOLOv4-tiny were trained to construct  

 

 
Figure 2. Experimental UAVs. (a) DJI Mavic2 ZOOM; (b) Prometheus 600. 

 

 
Figure 3. Open-pit mine target aerial image dataset. 
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the autonomous target detection algorithm, with 6000 (Figure 4) and 12,000 
(Figure 5) iterations on the dataset respectively. 

From Figure 4 it can be seen that YOLOv4-tiny after a relatively small num-
ber of iterations the model basically converges to 0.6, and YOLOv3 and YOLOv4 
quickly reach a high training accuracy of 91.3% and 95.1% respectively. 

Compared to YOLOv4 and YOLOv3, YOLOv4-tiny and YOLOv3-tiny have 
fewer convolution layers, which improves their suitability for real-time processing,  

 

 
Figure 4. Results for the 4 Models Trained 6000 Times. (a) YOLOv3 (6000 iterations); (b) YOLOv3-tiny (6000 iterations); (c) 
YOLOv4 (6000 iterations); (d) YOLOv4-tiny (6000 iterations). 
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Figure 5. Results for the 4 Models Trained 12,000 Times. (a) YOLOv3 (12,000 iterations); (b) YOLOv3-tiny (12,000 iterations); (c) 
YOLOv4 (12,000 iterations); (d) YOLOv4-tiny (12,000 iterations). 
 

but theoretically reduces accuracy slightly. As can be seen from Figure 5, the 
training accuracy of YOLOv4 is higher (4.6% higher than YOLOv3), the con-
vergence of the YOLOv3 and YOLOv4tiny algorithms is better, and the loss rate 
of YOLOv4tiny drops to 0.65 or less with little variation after a small number of 
iterations. Of all four models, YOLOv4-tiny gave the best training results with 
an accuracy of 80% and a loss of 0.62. YOLOv3 also had a low loss of 0.8 and an 
accuracy of 91.7%, but it used 53 convolutional layers, which made it signifi-
cantly more computationally expensive compared to the 29 convolutional layers 

https://doi.org/10.4236/ojapps.2023.134039


J. Y. Wu et al. 
 

 

DOI: 10.4236/ojapps.2023.134039 493 Open Journal of Applied Sciences 
 

used in YOLOv4-tiny. 

5.2. Results of Real-Time Video Detection on NX for Four Models 

The results of real-time video detection on NX are showing on Table 3. The ta-
ble lists the detection speed of the algorithms and the operation of hardware de-
vices such as CPU, GPU and memory, based on the results below to obtain the 
grades in 5.3. 

5.3. Grades of Real-Time Detection on NX for the Four Models 

Based on the real-time detection results in Table 3 and the detection accuracy 
mAP values of the four network models (YOLOv3: 92.8, YOLOv3-tiny: 79.5, 
YOLOv4: 97.1, YOLOv4-tiny: 80.7), the scoring results of each model on NX 
were calculated using the scoring criteria in Section 3.4, as shown in Table 4. 

YOLOv4-tiny and YOLOv3-tiny scored highest in resource usage with their 
lightweight size. Although YOLOv4 and YOLOv3 have higher detection accura-
cy, they do not score well in real-time target detection because of their slow de-
tection speed and high resource usage. Other modules will also request access to 
GPU resources when the drone is performing real-time monitoring. Considering 
the high GPU usage of YOLOv3 and YOLOv4, using YOLOv4-tiny may be more 
beneficial to the overall performance of the system [10]. 

6. Conclusions 

This paper presents a model for running a real-time autonomous target detec-
tion algorithm on a UAV-mounted veneer device based on actual work expe-
rience in the Dongsheng coalfield in Inner Mongolia, with the aim of detecting  

 
Table 3. Results of the target detection model when run on a single board. 

Model 
Real-time Detection Result 

FPS T1 T2/% T3/GB 

YOLOv3 11 2 40.71 2.2 

YOLOv3-tiny 38 1 25.29 1.9 

YOLOv4 11 3 53.89 2.9 

YOLOv4-tiny 36 0 22.79 1.4 

 
Table 4. Grade of target detection models running on a single board. 

Model 
Real-time Detection Result 

Grade 
mAP FPS T1 T2 T3 

YOLOv3 4 1 4 3 2 2.0 

YOLOv3-tiny 1 5 5 5 3 3.8 

YOLOv4 5 1 3 1 1 1.5 

YOLOv4-tiny 2 5 5 5 5 4.2 
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personnel through mining trucks and other equipment. 
By comparing the most popular veneer devices available today, the newest 

NVIDIA Jetson NX was selected as the vision inference module embedded on 
the UAV; the real-time processing results of YOLOv3, YOLOv3-tiny, YOLOv4 
and YOLOv4-tiny on the NX platform were further compared. The results show 
that YOLOv4-tiny achieves the best balance of higher accuracy and better frame 
rate during real-time detection. 

In the future, our work will be expanded to consider multiple tasks on UAVs 
(path planning, beyond-horizon control), as well as the ability for UAVs to take 
off and land on hangars for frog-jump inspection operations, improved safety, 
and enhanced range. 
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