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Abstract 
In this paper, we propose a discrete ratio-dependent predator-prey system. 
The stability of the fixed points of this model is studied. At the same time, it 
is shown that the discrete model undergoes fold bifurcation and flip bifurca-
tion by using bifurcation theory and the method of approximation by a flow. 
Numerical simulations are presented not only to demonstrate the consistence 
with our theoretical analyses, but also to exhibit the complex dynamical be-
haviors, such as the cascade of period-doubling bifurcation in period-2 and 
the chaotic sets. The Maximum Lyapunov exponents are numerically com-
puted to confirm further the complexity of the dynamical behaviors. These 
results show that the direct discrete method has more rich dynamic behaviors 
than the discrete model obtained by Euler method. 
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1. Introduction and Preliminaries 

The interaction between predators and their prey has long been the studied top-
ics of ecology and mathematical ecology. In recent years, discrete dynamic mod-
els have been widely studied. Compared with continuous dynamic systems, dis-
crete dynamic systems have the following three advantages: Firstly, when popu-
lations have non-overlapping generations or the population number is small, dis-
crete dynamic systems are more appropriate than continuous dynamic systems. 
Secondly, the numerical simulation results obtained from the discrete dynamic 
system are more accurate than the continuous dynamic system. Thirdly, discrete 
models exhibit more complex dynamic characteristics than corresponding con-
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tinuous models [1]. For example, the single-species discrete Logistic model has 
more complex dynamic behaviors such as bifurcation and chaos. 

There are two ways to get discrete system. On the one hand, we start from the 
continuous model and transform the continuous model into a discrete model by 
some method, such as Euler iteration [2] and semi-discrete methods [3]. On the 
other hand, we start from the discrete model directly. Elettreby [4] [5] studied 
the discrete prey-predator model with mixed functional response from the fol-
lowing discrete model. 

( ) ( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( ) ( )

1 ,

1 ,

x n x n a bx n p x n y n

y n q x n y n dy n

 + = − −


+ = −
           (1.1) 

where ( )x n  and ( )y n  represent population densities of prey and predator at 
a discrete time step n, respectively; d is the natural death rate of the predator; 

( )( ) ( )p x n y n  and ( )( ) ( )q x n y n  represent the predator-prey interaction, 
( )( )p x n  is the predator functional responses, ( )( )q x n  describes how preda-

tor transforms the consumed prey into the growth of predator. Because the func-
tion ( )( )p x n  only depends on the density of prey, it is often called a prey-de- 
pendent response function. However, more and more evidence shows that in 
many situations, especially when predators have to search for food, a more ap-
propriate functional response is a function which is dependent on both prey and 
predator densities. 

Differing from the prey-dependent predator-prey systems, the ratio-dependent 
predator-prey models have two main predictions: a) the equilibrium abun-
dance is positively correlated with the enrichment gradient (see Arditi [6]) and 
b) the “paradox of enrichment” (see Rosenzweig [7]) either completely disap-
pears or enrichment is linked to stability in a more complex way. In this paper, 
we will study some mathematical characteristic rather than discuss the ecological 
significance of the model. In 2001, Xiao [8] [9] [10] further studied the ra-
tio-dependent predator-prey model based on Kuang [11]. Xiao made a global 
qualitative analysis of the model depending on all parameters, and gave the con-
ditions for the existence and nonexistence of limit cycles in the model. Later, the 
discrete-time dynamical models described by difference equations are widely 
investigated. Chen [3] showed that positive equilibrium is globally asymptotical-
ly stable and established a new sufficient condition. Sohel Rana [12] discretized 
the continuous model using the forward Euler scheme. It showed that under 
some parametric conditions, the system undergoes flip and Neimark-Sacker bi-
furcation. 

Arditi [6] proposed the ratio-dependent function in the following form 

.

xc
x cxyp

xy my xm
y

 
= =  +  +

 

Then we get the following discrete predator-prey model with the ratio-de- 
pendent: 
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( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1 ,

1 ,

cx n y n
x n x n a bx n

x n my n

fx n
y n y n d

x n my n


+ = − − +


  + = − +   + 

          (1.2) 

where 0a
b
>  is the carrying capacity of the prey, d is the natural death rate of  

the predator, a is prey intrinsic growth rate, c is capturing rate, m is half satura-
tion constant and f is conversion rate. So a, b, c, d, m and f are positive con-
stants. 

The paper is organized as follows. In Section 1, as preliminaries, an important 
lemma is given. In Section 2, we devote to the existence and local stability of the 
fixed points of system (1.2). In Sections 3 - 4, we analyze the bifurcation of sys-
tem (1.2) at the boundary equilibrium point by using the bifurcation theory. 
Moreover, we proved that the system (1.2) undergoes fold and flip bifurcations 
for some parameters, respectively. In Section 5, numerical simulations are per-
formed to illustrate the obtained theoretical results and reveal some new dynami-
cal properties of the system (1.2). In Section 6, some conclusions close the paper. 

Before analyzing the fixed points of the system (1.2), we introduce an impor-
tant lemma [2], which will be useful later. 

Lemma 1.1 Let ( ) 2F B Cλ λ λ= + + , where B and C are two real constants. 
Suppose 1λ  and 2λ  are two roots of ( ) 0F λ = . Then the following state-
ments hold. If ( )1 0F > , then 

1) 1 1λ <  and 2 1λ <  if and only if ( )1 0F − >  and 1C < ; 
2) 1 1λ <  and 2 1λ >  (or 1 1λ >  and 2 1λ < ) if and only if ( )1 0F − < ; 
3) 1 1λ >  and 2 1λ >  if and only if ( )1 0F − >  and 1C > ; 
4) 1 1λ = −  and 2 1λ ≠  if and only if ( )1 0F − =  and 0,2B ≠ ; 
5) 1 1λ = −  and 2 1λ = −  if and only if ( )1 0F − =  and 2B = ; 
6) 1λ  and 2λ  are a pair of conjugate complex roots and 1 2 1λ λ= =  if 

and only if 2 2B− < <  and 1C = . 

2. The Existence and Stability of Fixed Points 
In this section, we give the conditions for existence of fixed points of system (1.2) 
in 2R+  and discuss the property of these fixed points. 

It is clear that the fixed points of the system (1.2) satisfy the following equa-
tions: 

( ) ,

.

cxyx x a bx
x my

fxy y d
x my

 = − − +


  = − +  + 

                     (2.1) 

By a simple computation, we have 
Lemma 2.1 System (1.2) has two fixed points: 

(i) the boundary equilibrium point 1
1,0aE

b
− 

 
 

 exists if 1a ≠ ; 
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(ii) the unique positive fixed point ( )* *
2 ,E x y , where  

( )* 11 c f dax
b mbf

− −−
= −  and 

( )
* *1

1
f dy x
d m
− −

=
+

. The fixed point exists if and only 

if any one of the following conditions holds: 
(ii.1) 1d f+ <  and ( )1c m a≤ − ; 

(ii.2) 
( )
( )

1
1

1
c d

d f
c m a

+
+ < <

− −
 and ( )1c m a> − . 

Next, we study the stability of the system (1.2) at fixed points. The Jacobian 
matrix of the system (1.2) evaluated at ( ),E x y  is as follows: 

( )
( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

2

, .

cmy cxa bx
x my x my

J x y
fmy fxd

x my x my

 
− − − 

+ + 
=  
 − +
 + + 

           (2.2) 

The characteristic equation of the matrix can be written as 

( ) ( )2 , , 0,p x y q x yλ λ+ + =  

where 

( )
( )

2 2

2, 2 ,cmy fxp x y d a bx
x my

−
= − + +

+
 

( )
( )

2 2 3

2

2, 2 .afx cmdy bfxq x y ad bdx
x my

+ −
= − + +

+
 

Proposition 2.2 When 1a ≠ , system (1.2) has a boundary equilibrium point 

1
1,0aE

b
− 

 
 

 and 

(i) it is a sink if 1 3a< <  and 1 1d f d− < < + ; 
(ii) it is a source if one of the following conditions holds: 

(ii.1) 0 1a< <  and 0 1f d< < − ; 
(ii.2) 0 1a< <  and 1f d> + ; 
(ii.3) 3a >  and 0 1f d< < − ; 
(ii.4) 3a >  and 1f d> + ; 

(iii) it is non-hyperbolic if 3a =  or 1f d= −  or 1f d= + ; 
(iv) it is a saddle except if conditions (1)-(3) are satisfied. 
Proof. The Jacobian matrix of the fixed point 1E  is 

1

2
.

0E

a c
J

f d
− − 

=  − 
                     (2.3) 

The two eigenvalues of the characteristic equation are:  

1 22 ; .a f dλ λ= − = −  

Then, the fixed point 1,0a
b
− 

 
 

 is a sink if 1iλ < , where 1,2i = . 

1 2 1 then 1 3,a aλ = − < < <  
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2 1 then 1 1.f d d f dλ = − < − < < +  

So, the fixed point 1
1,0aE

b
− 

 
 

 is stable if the following condition are satis-

fied: 

1 3, 1 1.a d f d< < − < < +  

The other three items of the propositions are proved by using the above me-
thod. 

Condition (iii) can be written as 

( ) ( ){ }1

1 , , , , , 0, : 1, 3, 1 ,EFB a b c d m f f d a a= ∈ +∞ = + ≠ ≠      (2.4) 

( ) ( ){ }1

2 , , , , , 0, : 1, 3, 1 ,EFB a b c d m f f d a a= ∈ +∞ = − ≠ ≠      (2.5) 

( ) ( ){ }1

3 , , , , , 0, : 3, 1, 1 .EFB a b c d m f a a f d= ∈ +∞ = ≠ ≠ ±      (2.6) 

For simple calculation, we denote 
( ) ( )22

1 2

1 2
2

[ ( 1) ]
mf c d f dcR

m mf df d
− + − −

= + +
− +

 

and ( ) ( )
( ) ( )

2

2 2

1 3
3

1 1

c d f dcR
m mf d f d

+ − −
= + −

 − − + 

. 

Proposition 2.3. When 1f d> +  and ( )1
1

c f d
a

mf
− −

> + , system (1.2) has 

a unique positive fixed point ( )* *
2 ,E x y  and 

(i) it is a sink if one of the following conditions holds: 

(i.1) 1d ≥ , 
( )21d

f
d
+

<  and 1 2R a R< < ; 

(i.2) 1d ≥ , 
( )21d

f
d
+

= , 
( )21

cdm
d

>
+

 and 2a R< ; 

(i.3) 0 1d< < , 
( )21

1
d

f
d
+

>
−

 and { }1 2min ,a R R< ; 

(i.4) 1d = , 
( )21d

f
d
+

>  and { }1 2min ,a R R< ; 

(i.5) 1d > , 
( ) ( )2 21 1

1
d d

f
d d
+ +

< <
−

 and { }1 2min ,a R R< ; 

(i.6) 1d > , 
( )21

1
d

f
d
+

=
−

 and 1a R< ; 

(i.7) 1d > , 
( )21

1
d

f
d
+

>
−

 and 2 1R a R< < ; 

(ii) it is a source if one of the following conditions holds: 

(ii.1) 1d ≥ , 
( )21d

f
d
+

<  and { }1 2min ,a R R< ; 

(ii.2) 1d ≥ , 
( )21d

f
d
+

= , 
( )21

cdm
d

<
+

 and 2a R< ; 
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(ii.3) 0 1d< < , 
( )21

1
d

f
d
+

>
−

 and 1 2R a R< < ; 

(ii.4) 1d = , 
( )21d

f
d
+

>  and 1 2R a R< < ; 

(ii.5) 1d > , 
( ) ( )2 21 1

1
d d

f
d d
+ +

< <
−

 and 1 2R a R< < ; 

(ii.6) 1d > , 
( )21

1
d

f
d
+

=
−

 and 1a R> ; 

(ii.7) 1d > , 
( )21

1
d

f
d
+

>
−

 and { }1 2max ,a R R> ; 

(iii) it is a saddle if one of the following conditions holds: 

(iii.1) 0 1d< < , 
( )21

1
d

f
d
+

>
−

 and 2a R> ; 

(iii.2) 1d =  and 2a R> ; 

(iii.3) 1d > , 
( )21

1
d

f
d
+

>
−

 and 2a R< ; 

(iii.4) 1d > , 
( )21

1
d

f
d
+

<
−

 and 2a R> ; 

(iv) it is a non-hyperbolic if one of the following conditions holds: 

(iv.1) 
( )21d

f
d
+

= , c mf=  and 1 12 6a
d d

+ < < + ; 

(iv.2) 
( )21d

f
d
+

>  and 
( )

( ) ( )

23 2

2 2

4 4 1

1 1

mdf m d f
mf c mf

d f d

− +
− < <

+ − −
; 

(iv.3) 
( )21

1
d

f
d
+

≠
−

 and 2a R= . 

Proof. The Jacobian matrix of the fixed point 2E  is 

( )
( )

( )
( )

( ) ( )

2

2** *
*

2 2* * * *

2* * *

2 2* * * *

1

.

1
E

c xcx ybx
x my x my

J
fm y mfx y

x my x my

 
 − + − + + =  
 −  + + 

            (2.7) 

By computation, we have the characteristic equation of ( )* *,J x y  are fol-
lows: 

( ) ( )2 * * * *, , 0,B x y C x yλ λ+ + =  

where ( ) ( )
( )

* *
* * *

2* *
, 2

c mf x y
B x y bx

x my

−
= − + −

+
,  

( ) ( )
( )

( )
( )

2* ** *
* * *

2 2* * * *
, 1

bmf x yc mf x y
C x y bx

x my x my

−
= − + +

+ +
, 

( ) ( )* 1 1c d f mf a
x

mbf
+ − + −

=   

and 
( )

* *1
1

f dy x
d m
− −

=
+

. 

https://doi.org/10.4236/ojapps.2023.133032


M. X. Duan, J. Y. Ma 
 

 

DOI: 10.4236/ojapps.2023.133032 402 Open Journal of Applied Sciences 
 

Let 

( ) ( ) ( )2 * * * *, , .F B x y C x yλ λ λ= + +  

Obviously, ( )
( )

( )

2* *

2* *
1 0

bmf x y
F

x my
= >

+
, 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

2

2

3 1 1 1 1
1

1 3
,

a d f d c d f d
F

f mf

c d f d
mf

   − − − + − − +   − = −

+ − −
+

     (2.8) 

( ) ( ) ( )

( ) ( )

2 2 2

2

2

1 2 1 1

1 2
,

a df d df d c df d
C

f f f

c d f d
mf

     − + − + − +     = − −

+ − −
+

       (2.9) 

( ) ( )2 2

2

1 1
2 .

d c dcB a d
m f mf

+ +
= + − − − +               (2.10) 

From Lemma 1.1, we can see that both 1 1λ <  and 2 1λ <  if and only if 
( )1 0F − >  and 1C < . Then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

1 0 1 1 3 1 1

1 1 1 3 .

F d f d mfa d f d mf

d f d cf c d f d

   − > ⇒ − − + > − − +   
 + − − + − + − − 

 

If ( ) ( )21 1 0d f d− − + > , then 1d > , 
( )21

1
d

f
d
+

>
−

 and 2a R> ; 

If ( ) ( )21 1 0d f d− − + = , then 
( )21

1
d

f
d
+

=
−

 and 1d > ; 

If ( ) ( )21 1 0d f d− − + < , then we can divided d into there cases: 1d > , 1d =  
and 0 1d< < . 

Case I: if 1d > , then 
( )21

1
d

f
d
+

<
−

 and 2a R< ; 

Case II: if 1d = , then 2a R< ; 

Case III: if 0 1d< < , then 
( )21

1
d

f
d
+

>
−

 and 2a R< . 

( ) ( ) ( )

( ) ( )

2 2 2

2 2

1 1 2 1 1

1 2 .

C df d mfa df d mf df d cf

c d f d mf

     < ⇒ − + < − + + − +     

− + − − +
 

If ( )21 0df d− + > , then 
( )21d

f
d
+

>  and 1a R< ; 

If ( )21 0df d− + = , then 
( )21d

f
d
+

=  and 
( )21

cdm
d

>
+

; 

If ( )21 0df d− + < , then 
( )21d

f
d
+

<  and 1a R> . 
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From ( )1 0F − >  and 1C < , we get conclusion (i). The propositions (ii) and 
(iii) are proved by using the above method. 

Note that the fixed point ( )* *
2 ,E x y  is non-hyperbolic if either 1 1λ =  or 

2 1λ = . There also are two cases: 0∆ <  and 0∆ ≥ . When 0∆ < , ( )* *
2 ,E x y  

is non-hyperbolic if and only if 1C =  and 2 2B− < < . Then 

( ) ( ) ( ) ( )2 2 2 2

2 2

1 1 1 1
2 2 4

d c d d c dc cB d a d
m f m fmf mf

+ + + +
− < < ⇒ − + + − < < − + + −

 

( ) ( ) ( )

( ) ( )

2 2 2

2 2

1 1 2 1 1

1 2 .

C df d mfa df d mf df d cf

c d f d mf

     = ⇒ − + − − + − − +     

+ + − − =
 

If 
( )21d

f
d
+

= , then c mf= ; If 
( )21d

f
d
+

≠ , then 1a R= . From 1C =  and 

2 2B− < < , we get conclusion (iv.1, 2). 
When 0∆ ≥ , ( )* *

2 ,E x y  is non-hyperbolic if and only if ( )1 0F − = . Then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

1 0 1 1 3 1 1

1 1 1 3 0.

F d f d mfa d f d mf

d f d cf c d f d

   − = ⇒ − − + − − − +   
 − − − + + + − − = 

 

From 0∆ ≥  and ( )1 0F − = , we get conclusion (iv.3). Thus, we finish the 
proof. 

3. Fold Bifurcation 

From Proposition 2.2 (iii), we know that the eigenvalues at 1
1,0aE

b
− 

 
 

 are 

1 2 aλ = −  and 2 1λ =  if both 1f d= +  and 1,3a ≠ . 

Let ( ) ( ) 1au n x n
b
−

= − , ( ) ( )v n y n=  and * 1f f d= − − . We transform the 

fixed pointed 1
1,0aE

b
− 

 
 

 into the origin. After Taylor expansion, the system 

(1.2) becomes 

( )
( )

( )
( )

( ) ( )( )
( ) ( )( )

*
1

*
2

, ,1 2
,

1 0 1 , ,

F u n v n fu n u na c
v n v n F u n v n f

  +   − −   = +      +       
      (3.1) 

where ( ) ( )( )T
,U u n v n=  and 

( ) ( )( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

*
1

2 2 2
42 2 2 3

2 2

, ,

,
1 1 1

F u n v n f

bcm b cm b cmbu n v n u n v n v n O U
a a a

= − + − − +
− − −

 

( ) ( )( )

( )
( )

( )
( )
( )

( ) ( )

( )
( )

( )

*
2

* 2 *
* 2 2

2

2 2 *
43

2

, ,

1 1

1 1
1

( ) .
1

F u n v n f

bm f d b m f d
f v n v n u n v n

a a
b m f d

v n O U
a

+ + + +
= − +

− −

+ +
+ +

−
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When 1,3a ≠ , we construct an invertible matrix  

1

1
.

0 1
c

T
a

 
=  − 

 

Let 

( )
( )

( )
( )1 .

u n x n
T

v n y n
   

=   
   

�
�

 

Then system (3.1) can be transformed into 

( )
( )

( )
( )

( ) ( )( )
( ) ( )( )

*
1

*
2

, ,1 2 0
,

1 0 1 , ,

g x n y n fx n x na
y n y n g x n y n f

  +   −   = +      +       

� �� �
� � � �

      (3.2) 

where 

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

*
1

*
* 2 2

* 2 2

*
2 2 2 2 * 3

, ,

2
1

2 2

2 2 ,
1

g x n y n f

f d acf y n b cm x n y n
a

bc c m f d a y n bx n bcx n y n

f d ab c m b cm f d a y n
a

+ − +
= − +

−
 − + + − + − − 

 + − +
+ − + − + − 

� �

� � �

� � � �

�

 

( ) ( )( )

( ) ( ) ( )
( )

( )

( ) ( )

*
2

2 *
* * 2 2

*
2 2 2 * 3

, ,

1
1

1
1 1 .

1

g x n y n f

b m f d
f y n bm f d y n xy n

a
f db cm b m f d y n

a

+ +
= + + + +

−
 + +

+ + + + − 

� �

� � ��

�

 

By the center manifold theorem and the method of the references [13], we 
know that there exists a center manifold ( )0cM  of system (3.2) at the origin in 
a small neighborhood of * 0f = , which can be approximately represented as 
follows: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ){ }* 3 *0 , , | , , 0,0 0, 0,0 0 .cM x n y n f R x n h y n f h Dh= ∈ = = =� � � �  

For ( )y n�  and *f  sufficiently small, we assume that a center manifold of 
the form  

( )( ) ( ) ( ) ( ) ( )( )32* * * * 2 *
0 1 2 3, ,h y n f b f b f y n b f b y n O y n f = + + + + + 

 
� � � �  

where ( )( )3*O y n f + 
 
�  is a function with order at least three of its variables. 

( ) ( )( )

( ) ( ) ( ) ( )( )

*

32* * * 2 *
0 1 2 3

1 1 ,

.

x n h y n f

b f b f y n b f b y n O y n f

+ = +

 = + + + + + 
 

� �

� � �
  (3.3) 

Also, 
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( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

* * *
1

* *
0 1 0

22 * 2
2 0 3

32 *

1 2 ( ( ), ) , , ,

2 2 2

2 2

2 .

x n a h y n f g h y n f y n f

a b f a b c b bc f y n

a b bb f a b bc mbcd

mabc mbc y n O y n f

+ = − +

= − + − − −  

  + − − + − − −  
 + − + +   

� � � �

�

� �

     (3.4) 

Compare the coefficients for (3.3) and (3.4), we have 
2

0 1 2 3
20, , 0, .

1 1
c bc mbcd mabc mbcb b b b

a a
+ − +

= = = =
− −

 

System (3.2) restricted to the center manifold is given by  

( ) ( ) ( ) ( ) ( ) ( )( )3* * 2 *1 1 1 .y n f y n bm f d y n O y n f + = + + + + + + 
 

� � � �  (3.5) 

Let 

( )( ) ( )*, 1 ,F y n f y n= +� �  

then 

( ) ( )

( )( )* *

0,0

1 2 1 1,F f bmy n f d
y n
∂

= + + + + =
∂

�
�

 

( )
( ) ( )2

*
0,0

0,F y n bmy n
f
∂

= + =
∂

� �  

( ) ( )

( ) ( )
2

*
2

0,0

2 1 2 1 0,F bm f d bm d
y n
∂

= + + = + >
∂�

 

( ) ( ) ( )
( )

( )

2 2

0,0* 2*

0,0

| 1 2 1, 0.F Fbmy n
y n f f

∂ ∂
= + = =

∂ ∂ ∂
�

�
 

Theorem 3.1 System (1.2) undergoes a fold bifurcation at 1
1,0aE

b
− 

 
 

 when 

parameter f varies in a small neighbourhood of 
1

1
EFB . 

4. Flip Bifurcation 

From Proposition 2.2 (iii), we know that the eigenvalues at 1
1,0aE

b
− 

 
 

 are 

1 1λ = −  and 2 f dλ = −  if both 3a =  and 1f d− ≠ ±  (similarly for the case 

of 
1

2
EFB ). 

Let ( ) ( ) 1au n x n
b
−

= − , ( ) ( )v n y n=  and * 3a a= − . We transform the 

fixed pointed 1
1,0aE

b
− 

 
 

 into the origin. After Taylor expansion, the system 

(1.2) becomes 
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( )
( )

( )
( )

( ) ( )( )
( ) ( )( )

*
1

*
2

, ,1 1
,

1 0 , ,

F u n v n au n u nc
v n v nf d F u n v n a

  +   − −   = +      + −      
       (4.1) 

where ( ) ( )( )T
,U u n v n=  and 

( ) ( )( )
( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

*
1

2
* 2 2 2

* 2*

2 2
43

2*

, ,

2 2

,
2

F u n v n a

bcm b cma u n bu n v n u n v n
a a

b cm v n O U
a

= − − + −
+ +

− +
+

 

( ) ( )( )
( )

( )
( ) ( )

( )
( ) ( )

*
2

2 2 2
42 2 3

* 2 2* *

, ,

.
2 2 2

F u n v n a

bmf b mf b m fv n u n v n v n O U
a a a

= − + + +
+ + +

 

When 1f d− ≠ , we construct an invertible matrix 

( )
( )( )

*

2 *

1 2
.

0 2 1

a c
T

a f d

 − +
 =
 + − + 

 

Let 

( )
( )

( )
( )2 .

u n x n
T

v n y n
   

=   
   

�
�

 

Then system (4.1) can be transformed into  

( )
( )

( )
( )

( ) ( )( )
( ) ( )( )

*
1

*
2

, ,1 1 0
,

1 0 , ,

g x n y n ax n x n
y n y nf d g x n y n a

  +   −   = +      + −      

� �� �
� � � �

      (4.2) 

where 

( ) ( )( )
( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )( )( ) ( ) ( )

*
1

2* 2 * 2 * 2

* * *

2 2

2 * 3

, ,

2 1 1 2

2 2 2

( 1) 1

1 2 1 1 ,

g x n y n a

a x n bx n bcm a d f d bc a y n

ca a y n bc a x n y n

b cm d f d x n y n

b cm d a f d m f d c y n

 = − − + + − − + − +  

+ + + +

+ − − +

+ − + − + − + −  

� �

� � �

� � �

� �

�

 

( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

*
2

2
2 2

*

2 3

, ,

1
1

2
1 1 .

g x n y n a

b mf f d
bmf f d y n x n y n

a
b mf f d m f d c y n

− +
= − − + +

+
+ − + − + −  

� �

� � �

�

 

By the center manifold theorem and the method of the references [13], we 
know that there exists a center manifold ( )0cM  of system (4.2) at the origin in 
a small neighborhood of * 0a = , which can be approximately represented as 
follows: 
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ){ }* 3 *0 , , | , , 0,0 0, 0,0 0 .cM x n y n a R y n h x n a h Dh= ∈ = = =� � � �  

For ( )x n�  and *a  sufficiently small, we assume that a center manifold of 
the form 

( )( ) ( ) ( ) ( ) ( )( )32* * * * 2 *
0 1 2 3, ,h x n a b a b a x n b a b x n O x n a = + + + + + 

 
� � � �  

where ( )( )3*O x n a + 
 
�  is a function with order at least three of its variables. 

( ) ( )( )
( ) ( ) ( ) ( )( )

*

32* * * 2 *
0 1 2 3

1 1 ,

.

y n h x n a

b a b a x n b a b x n O x n a

+ = +

 = − + + + + 
 

� �

� � �
   (4.3) 

Also, 

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )( )

* * *
1

* *
0 1

22 *
2 0

32 *
3

1 , , , ,

1

.

y n f d h x n a g x n h x n a a

f d b a f d b a x n

f d b bb mf f d a

b f d x n O x n a

+ = − +

= − + −

 + − − − + 
 + − + + 
 

� � � �

�

� �

       (4.4) 

Compare the coefficients for (4.3) and (4.4), we have 

0 1 2 30, 0, 0, 0.b b b b= = = =  

System (4.2) restricted to the center manifold is given by 

( ) ( ) ( ) ( ) ( )( )3* 2 *1 1 .x n a x n bx n O x n a + = − − − + + 
 

� � � �         (4.5) 

Let 

( )( ) ( )*, 1 .F x n a x n= +� �  

then 

( ) ( ) ( )0,0

0,0 0, 1,FF
x n
∂

= = −
∂�

 

( ) ( )
( )

2 2

* * 2

0,0

1 1 0,
2

F F F
x n a a x n

α
 ∂ ∂ ∂

= + = ≠  ∂ ∂ ∂ ∂ � �
 

( ) ( )
( )

23 2
2

3 2

0,0

1 1 0.
6 2

F F b
x n x n

β
  ∂ ∂ = + = >   ∂ ∂   
� �

 

Based on the above analysis, we have the following results.  

Theorem 4.1 System (1.2) undergoes a flip bifurcation at 1
1,0aE

b
− 

 
 

 when 

parameter a varies in a small neighbourhood of 
1

3
EFB . 

5. Numerical Simulations 

In this section, we use the bifurcation diagrams, phase portraits diagrams and 
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the Maximum Lyapunov exponents diagrams of the system (1.2) to validate the 
above analytical result. Then, we consider bifurcation parameters in the follow-
ing two cases. 

Case I: Suppose that parameters 2a = , 1b = , 1c = , 3d = , 1m =  in sys-

tem (1.2). We see that a fold bifurcation occurs at the fixed point 1,0a
b
− 

 
 

 

when 1 4f d= + = . This confirms Theorem 3.1. 

Figure 1 shows the bifurcation diagram of system (1.2). We can see that the 
fixed point ( )1 1,0E  is stable on the center manifold for 3.5 4f< ≤ . When 

4f >  the fixed point ( )1 1,0E  on the center manifold becomes unstable. At  

the same time, there occurs a new fixed point 4 4,1
f f

 
− 

 
 when 4f > . Hence,  

the transcritical type of fold bifurcation takes place. The phase diagrams of sys-
tem (1.2) which are associated with Figure 1 are displayed in Figures 2(a)-(h) 
with different f. 

Case II: Suppose that parameters 2.9f = , 1b = , 1c = , 2d = , 1m =  in 

system (1.2). We see that a flip bifurcation occurs at the fixed point 1,0a
b
− 

 
 

 

when 3a = . This confirms Theorem 4.1. 
Figure 3(a) shows the bifurcation diagram of system (1.2). We can see that 

the fixed point ( )1 1,0E a −  is stable for 3a < . When 3a = , system (1.2) oc-
curs a subcritical flip bifurcation at the fixed point ( )1 1,0E a − . When a in-
creases to 3.6, system (1.2) undergoes a cascade of inverse period-doubling bi-
furcations. Subsequently, the system (1.2) near the fixed point ( )1 1,0E a −  is 
chaotic with narrow periodic windows. The Maximum Lyapunov exponents 
corresponding to Figure 3(a) are calculated in Figure 3(b), which is consistent 
with the bifurcation diagram. The phase diagrams of system (1.2) which are as-
sociated with Figure 3 are displayed in Figure 4(a)-(h) with different f. 
 

 
(a)                                                   (b) 

Figure 1. (a) Bifurcation diagram of the system (1.2) in (f, x)-plane when a = 2, b = 1, c = 1, d = 3, m = 1 and f varies in [3.5, 4.5], 
the initial value is (0.9, 0.1). (b) Bifurcation diagram of the system (1.2) in (f, y)-plane with same parameters in (a). 
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(a)                                                   (b) 

 
(c)                                                   (d) 

 
(e)                                                   (f) 
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(g)                                                   (h) 

Figure 3. Phase portraits for various values of f, a = 2, b = 1, c = 1, d = 3, m = 1, the initial value is (0.9, 0.1), (a) f = 1.496; (b) f = 
1.54; (c) f = 1.56; (d) f = 1.57; (e) f = 1.59; (f) f = 1.6; (g) f = 1.62; (h) f = 2. 
 

 
(a)                                                   (b) 

Figure 3. (a) Supercritical flip bifurcation diagram of the system (1.2) on the (a, x)-plane with f = 2.9, b = 1, c = 1, d = 2, m = 1, x0 
= 1.9, y0 = 0.1; (b) Maximum Lyapunov exponents corresponding to (a). 
 

 
(a)                                                   (b) 
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(c)                                                   (d) 

 
(e)                                                   (f) 

 
(g)                                                   (h) 

Figure 4. Phase portraits for various values of f, a = 3, b = 1, c = 1, d = 2, m = 1, the initial value is (1.9, 0.1), (a) f = 0.79; (b) f = 0.8; 
(c) f = 0.9; (d) f = 1.1; (e) f = 2.9; (f) f = 3.01; (g) f = 3.153; (h) f = 3.154. 
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6. Conclusion 

In this paper, a discrete prey-predator model with ratio-dependent functional 
response in the closed first quadrant is established. We obtain the equilibrium 
points of system (1.2) and the conditions for its existence. Moreover, we show 
that the boundary equilibrium point of system (1.2) can undergo flip bifurcation 
and Hopf bifurcation by using center manifold theorem and bifurcation theory. 
The system (1.2) displays interesting dynamical behaviors, including cascade of 
period-doubling, chaotic with narrow periodic windows and period-2 orbits, 
which implie that the boundary equilibrium points of system (1.2) lose stability 
via bifurcation. Nevertheless, the bifurcation of positive equilibrium point has 
not been discussed. It is a further research topic on how to set reasonable para-
meters to analyze the bifurcation at the positive equilibrium point. 
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