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Abstract 
Water stress early detection is essential for precision farming to improve crop 
productivity and product quality. The methods usually used are destructive, 
long and expensive. In this work, we used hyperspectral chlorophyll fluores-
cence technology as a rapid, non-destructive approach to detect the water de-
ficiency of eggplant plants using their spectral footprint. So, an experiment 
was made on 54 eggplant plants subjected to three water treatments: normal 
irrigation (T100), intermediate irrigation (T50) and no irrigation (T0). The flu-
orescence spectra were acquired in vivo and in situ using a USB4000 spec-
trometer from Ocean optics. For the classification of the plants subjected to 
three water treatments, we used three pretreatments of the raw hyperspectral 
data in order to suppress the non-informative variability present in these spec-
tra and to obtain robust models. These are the Savitzky-Golay smoothing (SG), 
the standard normal variable (SNV) and the first derivative of Savitzky-Golay 
(SG-D1). The preprocessed data were then subjected to two partial least squares 
discriminant analyses (PLS-DA): Hard PLS-DA and Soft PLS-DA. These sta-
tistical approaches are suitable for large samples as it reduces the dimensio-
nality of the data but improves the accuracy of the prediction. The SG-D1 
combined with the Soft PLS-DA gave the best discrimination of plants with 
scores of sensitivity, specificity and total efficiency respectively of 97.33%, 
94% and 95% for calibration, 6 days after hydric stress induction. For the 
plants used for the prediction, the scores are 86%, 91% and 90% respectively. 
This study shows that hyperspectral chlorophyll fluorescence spectroscopy is 
a fast and non-destructive technology allowing early detection of water stress 
in eggplant plants. 
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1. Introduction 

Eggplant is the fruit of a dicotyledonous plant from the Solanaceae family. There 
are several edible species of cultivated eggplant around the world. The fruits and 
leaves of all these species are consumed. They have many nutritional qualities. 
Low in calories, they are rich in fiber, vitamins, antioxidants and minerals benefi-
cial to human health [1] [2] [3]. In Côte d’Ivoire, the cultivation of eggplant occu-
pies an important place in the food crop sector [4] because this plant is con-
sumed in all regions of the country. 

This important crop is sensitive to water stress, bacterial, viral, fungal diseases, 
etc. Because of global climate change, water deficiency is the most damaging abi-
otic stressor [5]. In agronomy, the water state indicator of plants (implicitly the 
water stress level) is their water content. In plant physiology methodology, sev-
eral approaches to determining this parameter are frequently used [6] [7]. Howev-
er, these methods are destructive, laborious, and lengthy and use few samples [8]. 

Over the past decade, the technique of hyperspectral chlorophyll fluorescence 
spectroscopy has evolved rapidly. It is now a new scientific tool for non-destructive 
assessment of plant stress. Fluorescence emission is directly related to the process 
of photosynthesis that reflects the physiological state of the plant [9]-[14]. Thus, 
studying the fluorescence spectrum makes it possible to detect any stress expe-
rienced by the plant at the leaf or canopy scale [15]-[21]. Most of these studies 
use fluorescence ratios at two different wavelengths while for our work, we use 
the whole spectrum. 

The aim of this study is to evaluate the early, rapid and non-destructive detec-
tion of water stress in eggplant plants from hyperspectral chlorophyll fluores-
cence data and to design an appropriate methodology. To achieve this objective, 
the raw data underwent pretreatment combined with discriminating analysis of 
partial least squares. 

The present work is structured as follows: first, we explain the hydric stress 
induction and present the experimental setup to acquire the fluorescence spectra. 
Then, raw data analysis and pretreatment methods in order to discriminate the 
water-stressed plants are presented. Finally, we compare the results to identify 
the best method to detect hydric deficiency in eggplant plants. 

2. Materials and Methods 
2.1. Study Site and Plant Material 

The experiment was carried out at Adiopodoumé Km 17 in Côte d’Ivoire at an 
altitude of 05˚19'27.9''N and a longitude of 04˚08'12.6''W. To effectively con-
trol environmental variables, such as temperature, humidity and light, the ex-
periment took place in the greenhouse of the Central Laboratory of Biotech-
nology of the Centre National de Recherche Agronomique (CNRA). In this 
greenhouse, the mean temperature and humidity values were 30˚C and 78% re-
spectively. The eggplant variety provided by the CNRA and used in this study is 
called MEL7TV1. 
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2.2. Induction of Water Deficit and Experimental Design 

The eggplant seeds were sown on a seeding tray. When the seedlings reached the 
4 - 5 leaf stage, they were removed from the seeding tray and transplanted into 
plastic pots. These pots, which had a diameter of 20 cm, a height of 22 cm and a 
capacity of 5 L, contained a well homogenized soil rich in mineral elements ne-
cessary for the good growth of the plant. The bottom of these pots has been 
pierced to let the water drain after watering to avoid root asphyxiation. Thirty 
(30) days after planting, the pots were arranged in three random blocks. Each 
block consisted of 24 plants subjected to three water treatments: normal irriga-
tion (T100), intermediate irrigation (T50) and no irrigation (T0) with eight (8) 
plants per treatment. Figure 1 shows the arrangement of plants for each water 
treatment in the three blocks (B1, B2 and B3). 

2.3. Acquisition of Leaf Fluorescence Spectra 

As soon as the water deficit was induced, the fluorescence spectra were acquired 
in vivo and in situ on 216 leaves, at a rate of 3 leaves per plant. The spectral re-
sponse of the leaves per plant was obtained from the average of these three mea-
surements. Data collection took place every two days between 07:00 and 11:00 
until the first signs of water stress appeared on leaves, 12 days after stress induc-
tion (DAI). The data we used for the analysis are all those acquired from 1 DAI 
to 6 DAI. 

The fluorescence spectra acquisition system consisted of a USB 4000 spectro-
meter, a blue LED excitation source (LS-450), a bifurcated optical fiber and a 
laptop. Using the blue LS-450 source and the bifurcated optical fiber, the leaf is 
excited. After excitation, it emits fluorescent light which is sent to the USB4000 
spectrometer by the second route of the bifurcated fiber. The fluorescence spec-
tral data stored in the laptop connected to the spectrometer are between 640 and 
800 nm with a 0.22 nm sampling pitch. Figure 2 shows the configuration of the 
hyperspectral fluorescence experimental device. 

2.4. Data Analysis 

The MATLAB R2018b software was used to analyze hyperspectral fluorescence 
data. Principal Component Analysis (PCA), Hyperspectral Data Pretreatment 
Methods and Partial Least Square Discriminant Analysis (PLS-DA) models for 
water stress early detection in eggplant plants during the asymptomatic period 
were used. 

2.4.1. Principal Component Analysis 
Principal Component Analysis is an extremely powerful information synthesis 
tool when a large quantitative database is available for processing and interpre-
tation. It makes it possible to transform the many highly correlated variables in-
to a reduced number of new uncorrelated variables: these new synthetic va-
riables are called main components [22] [23]. 
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Figure 1. Experimental planting plan for eggplant plants subjected to water stress. 

 

 
Figure 2. Experimental setup for hyperspectral fluorescence analysis. 

 
In general, the first two main components contain more than 90% [22] [23] of 

information from the original variables. In addition, the information contained 
in each variable is not repeated. 

In this study, the raw chlorophyll fluorescence spectra of the control plants 
(T100) and stressed plants (T50, T0) collected were subjected to main components 
analysis. Therefore, the first three components were selected based on the cu-
mulative variance rate and used to explore the distinction of plants subject to the 
three (3) water treatments. 

2.4.2. Spectral Pretreatment 
After exploration of the raw hyperspectral data, pretreatment was necessary to 
remove the non-informative variability present in the raw spectra to obtain ro-
bust and highly discriminating models. Three pretreatment methods were used 
to correct the spectral data. These are: Savitzky-Golay (SG) smoothing [24], the 
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standard normal variable (SNV) [25] and the first derivative of Savitzky-Golay 
(SG-D1) [24]. 

2.4.3. Partial Discrimination Analysis of Least Squares 
Following pretreatment, two multi-class versions of the partial least squares dis-
criminant analysis (Hard PLS-DA and Soft PLS-DA) were used to build models 
for detecting water stress in eggplant plants. 

Partial least squares discriminant analysis is a statistical approach used for 
large samples as it reduces the dimensionality of the data and maximizes the ac-
curacy of the prediction. This is an appropriate method for highly correlated da-
ta. The PLS-DA model was developed using the PLS2 regression constructed 
between the X and Y matrices where the X matrix is used as a predictor, and the 
Y matrix with dummy variables represents the response. The regression model is 
used to compute the predicted responses Ŷ , which are then used for discrimi-
nation. In the traditional implementation of PLS-DA, the discrimination rule is 
based on the comparison of predicted response values of Ŷ  with a fixed thre-
shold (e.g. 0.5). In the hard and soft models of PLS-DA, the rule is based on the 
comparison of a distance between the thousandth line of the Ŷ  matrix with the 
corresponding thousandth line of the Y matrix (vector of the pattern response 
for class k). To assess this distance, it was proposed [26] to use the main com-
ponent analysis of the Ŷ  matrix, which gives a “super-score” T matrix. 

2 ˆ, TPLS PCAX Y Y→ →  

The “super-score” T matrix represents a new data set to which a classification 
method can be applied. We consider two methods: the linear discriminant anal-
ysis which provides a hard version of PLS-D and the quadratic discriminant 
analysis which results in a soft PLS-DA [26]. 

2.5. Model Evaluation 

Our database of 432 spectra was subdivided into 288 spectra for calibration and 
144 spectra for prediction. Leave-One-Out cross-validation (LOOCV) was used 
to determine the main factors of the different models on calibration spectra only. 
Pomerantsev and Rodionova (2018) [26] proposed three parameters to charac-
terize the overall quality of classification in relation to class k of multi-class 
models of partial least squares discriminant analysis: total sensitivity (TSE), total 
specificity (TSP) and total Efficiency (TEF). These are defined by the following 
equations: 

1

1 K
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k

TSE n
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= ∑                         (1) 
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I ≠

= − ∑                        (2) 
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where kkn  represents the number of samples of class k predicted as a member 
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of class k; kln  represents the number of samples of class k predicted as a mem-
ber of class l and I is the total sample size. 

Sensitivity is the ability of the model to correctly identify the class of samples, 
while specificity is the ability of the model not to be mistaken in the classifica-
tion. Efficiency represents the correct predictive accuracy of the model. 

3. Results and Discussion 

3.1. Fluorescence Spectral Signature Analysis 

The raw chlorophyll fluorescence spectra of the leaves of all eggplant plants are 
presented in Figure 3(a). In Figure 3(b), the average spectral profile of the 
leaves of normal (T100), intermediate (T50) and no irrigation (T0) plants are plot-
ted in green, blue and red respectively. 

The spectral signatures of our samples are similar, regardless of the water state 
of the plants (Figure 3(a)). However, the chlorophyll fluorescence intensities of 
water deficient plants are lower than those of normal irrigation plants (Figure 
3(b)). This shows that water stress influences the spectral characteristics of 
eggplant plants. High chlorophyll fluorescence intensity indicates reduced pho-
tosynthetic activity in leaves under water stress due to their low water and chlo-
rophyll contents [10]. The spectral fluorescence responses of eggplant plants ob-
tained are similar to those from other water stress studies conducted on other 
plants. Our results also show that the fluorescence spectra of eggplant leaves 
have a chlorophyll a fluorescence emission peak in the red at 685 nm and anoth-
er peak in the near infrared at 735 nm. Various studies on other plant species 
have shown that these two peaks are between 680 nm and 740 nm regardless of 
the stress to which they have been subjected [17] [18] [27]. As displayed in Fig-
ure 3(b), the spectra of plants with normal irrigation (T100) and those with a wa-
ter deficiency (T0 and T50) present large difference. These plants are therefore 
likely to be discriminated from each other. 

3.2. Principal Component Analysis 

Figure 4 shows the PCA results obtained using raw spectral fluorescence data 
from eggplant plants subjected to the three water treatments. 

The principal components analysis results show that the first three major 
components (PC1, PC2 and PC3) express up to 98.24% of the total variance. 
These principal components have respectively, a variance of 95.94%, 1.64%, and 
0.66%. The scatter diagram of the scores (Figure 4) for the first three major 
components of the raw spectra presents good discrimination between T0 and 
T100. On the other hand, there is an overlap between T50 and the treatments T100 
and T0. Although the PCA has reduced the number of spectral data, it is still dif-
ficult to effectively distinguish the couples of treatments (T0, T50) and (T100, T50). 

To improve this classification, spectral preprocessing methods will be applied 
to the raw spectra to establish efficient discrimination models. 
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Figure 3. Leaf fluorescence spectra of eggplant plants. 

 

 
Figure 4. First three main components of the raw spectral fluores-
cence data of eggplant plants subjected to three water treatments. 

3.3. Discriminant Analysis Hard PLS-DA and Soft PLS-DA 

The statistics of the water status classification models of eggplant plants, Hard 
PLS-DA and Soft PLS-DA of the raw and preprocessed spectra, are presented in 
Table 1. 

The Hard PLS-DA model obtained a total recognition efficiency of calibration 
and loss sets greater than 74%. The best model is obtained from raw spectra with 
a total efficiency of 91% in calibration and 85% in prediction. Applying SG, SNV 
and SG-D1 preprocessing methods before applying the model does not improve 
the overall classification efficiency. The total efficiency of SG, SNV and SG-D1 is 
even lower than that from raw spectra. The results of the best Hard PLS-DA 
classification model are shown in Figure 5. 

The Soft PLS-DA model obtained a total recognition efficiency of calibration 
and loss sets greater than 81%. The SG-D1 preprocessing yielded the best classi-
fication model with a total efficiency of 95% in calibration and 90% in prediction,  
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Table 1. Hard PLS-DA and Soft PLS-DA model results of raw spectra, pre-processed SG, SG-D1 and SNV spectra to identify wa-
ter status of eggplant plants. 

Spectra Data set 

Hard PLS-DA Soft PLS-DA 

Total 
Sensitivity (%) 

Total 
Specificity (%) 

Total 
Efficiency (%) 

Total 
Sensitivity (%) 

Total 
Specificity (%) 

Total 
Sensitivity (%) 

RAW 
Calibration 91 91 91 97 96 94 

Prediction 85 85 85 81 95 87 

SG 
Calibration 76 76 76 97 91 94 

Prediction 74 74 74 88 89 88 

SG-D1 
Calibration 76 76 76 97 94 95 

Prediction 75 75 75 86 91 90 

SNV 
Calibration 85 85 85 96 82 89 

Prediction 75 75 75 82 80 81 

 

 
Figure 5. Results of the best classification model of Hard PLS-DA models. 

 
representing a significant improvement in raw data performance. Therefore, Soft 
PLS-DA model coupled with SG-D1 pretreatment method and raw data could be 
adopted as an optimal combination to identify water status of eggplant plants. 
Figure 6 illustrates the results of the best Soft PLS-DA classification model. 

Comparing the results of the two multiclass versions of the partial least squares 
discriminant analysis, the Soft PLS-DA model performed better than the Hard 
PLS-DA model. The total efficiency of the Soft PLS-DA classification models was 
found to be higher than that of the Hard PLS-DA classification models, which is 
consistent with the trends reported by Kunz et al. [28] when identifying wood 
species and by Nunes et al. [29] to detect fraud in bovine meat. 
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Figure 6. Results of the best classification model of Soft PLS-DA models. 

4. Conclusions 

Preprocessing methods of hyperspectral chlorophyll fluorescence data from eggplant 
leaves combined with classification models were applied to build water stress 
detection models. These models made it possible to detect the water deficiency 
of eggplant plants six days after stress induction, so before signs of stress are vis-
ible on the leaves. The results showed that Savitzky-Golay first derivative com-
bined with soft partial least squares discriminant analysis provided the best dis-
criminant effect, with scores of total sensitivity, total specificity and total effi-
ciency of 97.33%, 94% and 95% respectively for the calibration and 86%, 91% 
and 90% for the prediction. The control plants (T100) and those not irrigated (T0) 
are correctly discriminated. On the other hand, there is an overlap between the 
pairs of data (T0, T50) and (T50, T100). However, there is less overlap if the spectral 
data are subjected to preprocessing. 

This study shows that hyperspectral chlorophyll fluorescence spectra can pro-
vide early detection of water deficiency in eggplant plants, if these data have un-
dergone preprocessing. This rapid and non-destructive method represents a prom-
ising way to monitor the water status of crops during the asymptomatic period. 
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