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Abstract 
The sparse phase retrieval aims to recover the sparse signal from quadratic 
measurements. However, the measurements are often affected by outliers and 
asymmetric distribution noise. This paper introduces a novel method that 
combines the quantile regression and the L1/2-regularizer. It is a non-convex, 
non-smooth, non-Lipschitz optimization problem. We propose an efficient 
algorithm based on the Alternating Direction Methods of Multiplier (ADMM) 
to solve the corresponding optimization problem. Numerous numerical ex-
periments show that this method can recover sparse signals with fewer mea-
surements and is robust to dense bounded noise and Laplace noise. 
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1. Introduction 

Phase retrieval is a problem in recovering the unknown signal p∈x   from the 
following model:  

2A= +y x                            (1) 

where [ ]T1 2, , , n p
nA ×= ∈a a a   is the known measurements matrix, n is the 

number of measurements, [ ]1 2, , , n
n= ∈y y y y   is the squared-magnitude 

measurements, [ ]1 2, , , n
n= ∈      is noise or outliers [1], 2⋅  denotes the 

element-wise absolute-squared value. Especially, when both A and x belong to 
the real field, the problem is called real-valued phase retrieval [2] [3]. Phase re-
trieval problem has many important applications, including X-ray crystallogra-
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phy [4], optics [5], astronomy [6], and blind ptychography [7]. The methods to 
solve PR problems can be roughly divided into two categories: the first is based 
on alternating projection proposed by Gerchberg and Saxton. Examples include 
Hybrid Input-Output (HIO), Hybrid Projective Reflection, and so on. In recent 
years, some scientists have proposed more advanced alternating projection algo-
rithms. The second is the convex method of semidefinite programming (SDP) or 
convex relaxation for quadratic equations in the dirt (1). The most representa-
tive is PhaseLift [8], which was proposed by Cand, Strohmer, and Voroninski. 
This is an algorithm for minimizing convex trajectories (kernels) using an 
SDP-enhanced technique. In many applications, especially those related to im-
aging, the signal px∈  allows sparse representation under certain known and 
deterministic linear transformations. Without losing generality, we assume that 
signal x itself is sparse in the rest of this paper. In this case, model (1) is called 
the sparse phase recovery model.  

To solve the sparse problem, ( )0 1pL p< <  norm regularization is a com-
mon approach in the field of compression perception. In further study of the 
phase diagram, [9] results are as follows: 1) As the p-value decreases, the solu-
tion obtained by L regularization becomes more sparse. 2) When 1 2 1p< < , 
L1/2 regularization always gets the most sparse solution, and when 0 1 2p< < , 
there is no significant difference in pL  regularization performance. Therefore, 
the L1/2 regularization can be used as a representative of the ( )0 1pL p< <  re-
gularization.  

For asymmetric noise or outliers, some stable results have been obtained. For 
example, [10] developed for minimizing the least squares empirical loss and de-
signed a two stages algorithm, which starts with a weighted maximal correlation 
initialization and then follows by the reweighted gradient iterations. However, 
most of the above methods are built upon the least squares (LS) criterion which 
is optimal for Gaussian noise, but may not be optimal if the noise is not Gaus-
sian or asymmetric. To enhance the robustness against asymmetric noise or out-
liers, introduced quantile regression (QR) method which includes LAD method 
as a special case. Compared to LAD method, QR method involves minimizing 
asymmetrically-weighted absolute residuals, which permits a much more accu-
racy portrayal of the relationship between the observed covariates and the re-
sponse variables. Therefore, it is more approproate in certain non-Gaussian set-
tings to use QR method. For these reasons, QR has attracted tremendous interest 
in the literature. Recently, the penalized QR method has also gained a lot of at-
tention in the high dimensional linear models, see for example [11] [12] [13] [14] 
[15]. 

On the other hand, recall that L1/2-regularization introduced by [9] and [16] 
has been widely used in many fields since it can generate more sparse solutions 
under fewer measurements than L1-regularization. Inspired by these works, we 
here propose a novel method which consists of QR and an L1/2-regularization. 
We call this method L1/2-regularized quantile regression phase retrieval (L1/2 
QR PR). Because the L1/2-regularized problem is non-convex, non-smooth, non- 
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lipschitz, it is difficult to solve directly. Therefore, we design an ADMM algo-
rithm to solve the correspoding optmization. Fortunately, all subproblems have 
closed solutions and convergence is guaranteed. Numerical experiments show 
that the proposed method can recover sparse signals with fewer measurements 
and is robust to asymmetrically distributed noises such as dense bounded noises 
and Laplacian noises.  

The rest of this article is organized as follows. In Section 2, we design a novel 
algorithm based on ADMM to solve our method L1/2 QR PR and discuss the 
convergence of proposed algorithm. In Section 3, we use a large number of nu-
merical experiments to prove the effectiveness and robustness of our algorithm. 
Conclusions and future work are presented in Section 4. 

2. Optimization Algorithm 
2.1. The Problem Formulation 

The optimization problem that we consider is minimizing the problem as follow:  

( ) 1 2
1 1 2

21min , ,n
i iR i a

n τρ λ
∈ =

− +∑
x

x y x                (2) 

where  

( ) ( )
, 0

1 , otherwise,
t t

t
tτ

τ
ρ

τ
≥

=  −
 

, , ,i ia nx y  have been described in (1), ( )0,1τ ∈ , ,⋅ ⋅  stands for the inner 
product. 0λ >  is the regularized parameter, and 1 21 2

2 11
p

ii== ∑x x .  
Noting that 

2

1 2
1 2lim →∞ →∞x x  and 0λ > , we obtain that  

( )( )
2

1 2
1

T

1
2

21lim
n

i i
i

a
n τρ λ

→∞ =

− + →∞∑
x

x y x  

which together with the continuity of the object function yields that Problem (2) 
has a bounded solution. To design an appropriate iterated algorithm, we give the 
following two lemmas.  

Lemma 1. (see [16] [17]) The global solution *t  of following problem has 
analytic expression, 

( ) 1 22arg min
t

t tα µ
∈

− +


 

( )
3

2 3
2* ,1

54,
4

0, otherwise,

ft µ α α µ


>= 


 

where 

( ) ( ),1 2
2 2 2, 1 cos
3 3 3

fµ µα α α ϕ α  ∈ = + −  
 

π
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( )
3
2
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8 3µ

αµϕ α
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Lemma 2. The global solution *h  of following problem has analytic expres-
sion,  

( ) ( )2* 2
1 2arg min ,

2h
h h hτ

µ α ρ α
∈

= − + −


 

where 1 2,α α ∈ , 0µ >  is a constant. It can be derived  
( )*

1 2, ,h lµ α α=  

where  

( )

1
2 2 1 2

1 2
2 2 1 2

2 2 2 1

2, if 0 or 0 and 1
21

2, ,, if 0 and 0 1

2, if 0 and 1 0

lµ

α τα α α α
τ µ
µ

τα α α α α α
µ

τα α α α
µ

  
≤ > > +  

  +

  =  > ≤ ≤ +   
  
− > − + ≤ ≤  

 

 

( )0 2 1µ τ< ≤ −  and 

( )
( )

( )

( )

( )

1
2 2 1 2

1
2 1 2

1 2

2 2 2 1 2

2 2 2 1 2

2, if 0 or 0 and 1
21

2 1
, if 0 and 1

2 1
1, ,

2 1 2, if 0 and 1 1

2 12, if 0 and 1 1

lµ

α τα α α α
τ µ
µ

τα
α α α

τ µ
α α µ

τ τα α α α α
µ µ

ττα α α α α
µ µ

  
≤ > > +  

  +

 −  > < −  −   −= 


−   
> − ≤ ≤ +   

  
 −  − > − + ≤ ≤ − −      

 (3) 

as ( )2 1µ τ> − .  
One can get this lemma in the similar way of [18]. So, we omit the details. 

2.2. Solving the Objective with ADMM 

We now employ the alternating direction method of multipliers (ADMM) algo-
rithm to solve Problem (2). By introducing a pair of new variables, we reformu-
late Problem (2) as  

( ) 1 2
1

2

, 2, 1

1min

s.t.   0,

n
i ix jq z n

A
I

τρ λ
=

− +

   
− =   

   

∑ z y q

z
x

q

                  (4) 

where nz∈  and pq∈ . Then, the augmented Lagrangian function of the 
above problem is  

( ) ( ) 1 2
1 2 1

1
1

2 2
2 2

2

2

1, , ; , ,

, ,
2 2

n

r i i
in
r rA A

τρ λ
=

= − + + −

+ − + − + −

∑x q z z y q x q

x q x z x z

 Λ Λ Λ

Λ
      (5) 
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where 1 2,Λ Λ  are the Lagrange multipliers, r is a positive constant.  
Based on the framework of ADMM, the 1j + th iteration can be calculated as  

( )
( )
( )

( )
( )

1
1 2

1 1
1 2

1 1 1
1 2

1 1 1
1 1

1 1 1
2 2

arg min , , ; , ,
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j j j j j
r

j j j j

j j j j
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r A

+

+ +
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+ + +

+ + +

=

=

=

= + −

= + −

j j

j

q

z

x x q z

q x q z

z x q z

x q
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Λ Λ

Λ Λ

Λ Λ

Λ Λ

Λ Λ

               (6) 

In the following, we discuss the solution to each sub-minimization problem 
with respect to (w.r.t.) , ,x q z .  

1) Sub-minimization problem with respect to x: This problem can be writ-
ten as  

2 2

1 22 2
min , , ,

2 2n

j j j j j jr rA A
∈

− + − + − + −
x

x q x q x z x z


Λ Λ        (7) 

Notice that  

2 2

1 22 2

2 2

2 1 2 2

, ,
2 2

, , .
2 2

j j j j j

j j j j

r rA A

r rA A

− + − + − + −

= + + − + −

x q x q x z x z

x x x z x q

Λ Λ

Λ Λ
         (8) 

By the first order optimal condition, we can obtain the optimal solution. After 
analysis and comparison, we can conclude that  

( )T 1 T T
2 1

j j j j jr rA A r A rA++ = − + −I x q zΛ Λ  

where I  stands for the identity matrix. 
2) Sub-minimization problem with respect to q: This problem can be writ-

ten as  

21 1
1

2
2 2

1
1min , .

2n

j j jrλ + +

∈
+ − + −

q
q x q q x


Λ               (9) 

By simple calculation, one can see that the above problem is equivalent to the 
following minimization,  

2
1 11

1
2

2
2min .

2 2p

j
jrλ +

∈
+ − −

q
q q x



Λ
                 (10) 

According to the Lemma 1, we get  

( )
3

2 3
1 ,1 2

54,
4

0, otherwise,

j j
j d d

d
fλ λ+


>= 



u uq  

where ( )1
1 2j j j

d d

+= +u x Λ  is the d-th element of the vector 1
1 2j j+ +x Λ , and 

1,2, ,d p=  .  
3) Sub-minimization problem with respect to z: This problem can be writ-
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ten as  

( ) 22
2, 2 11, , ,

1min .
2i

i
n j

i ii n

r z
n τρ∈ = =

− + −∑
z

z y W


             (11) 

where 1
2

j j jA r+= +W x Λ . For each 1,2, ,i n=  , the following problem  

( ) ( )221min
2i

j
i i i i

r
n τρ∈

− + −
z

z y z W


                 (12) 

can be solved by 
( )21, ji

nr i
j

i

l
 
 
  
 

y
W

W
 based upon Lemma 2. To the ease of pres-

entation, we introduce the notation ( )21, n
nrL ∈y W   whose i-th element is 

defined as 
( )21, i

nr
j

i

l
 
 
  
 

y

W
. Therefore, the problem (11) can be solved by  

( )21 1, ,j j j
nrL W+ =z y W 

 

where   denote the Hadamard product, respectively. 
According to the above analysis, the iterative scheme for solving (4) can be 

given in Algorithm 1. 

2.3. Convergence Analysis 

As discussed above, one can see that each subproblem of the proposed algorithm 
is well defined. Therefore, we discuss its convergence. Consider q-sub-problem  
 

 

Algorithm 1. L1/2QR PR: ADMM method for solving (4). 
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2
2
2

1 2
1

1min
2n

µ
∈

− +
q

q u q


                    (16) 

where 0µ > . According to [19], the first-order stationary point definition of (16) 
is given as follow. 

Definition 1. Let q̂  be a vector in p  and ( )ˆDiag=Q q  where ( )ˆDiag q  
denotes a p p×  diagonal matrix whose diagonal is formed by the vector q̂ . 
The vector q̂  is a first-order stationary point of (16) if  

( ) 1 2ˆ ˆ 0.
2

Q µ
− + =q u q  

Similar to [20], we introduce the Karush-Kuhn-Tucker (KKT) conditions of 
the Lagrangian ( )1 2, , ; ,r x q z Λ Λ  in (2) as follows  

( )
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∂ =
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x q z

Q q x q

x q z
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Λ

Λ

Λ Λ

Λ

Λ Λ

Λ Λ

Λ Λ

                (17) 

where ( )1 2, , , ,x q z  

   Λ Λ  is a saddle point, ∂  represents the partial derivative, 
( )Diag=q q  , q  is the first-order stationary point of q-subproblem (10).  

Since the Lagrangian ( )1 2, , ; ,r x q z Λ Λ  is nonconvex w.r.t. , ,x q z . After 
analyzing the first-order optimality conditions for the variable z and the sub-
problem (12), the above KKT conditions corresponding to these three variables 
can be described as  

2 1 0,HA + = Λ Λ  

2
1 0,

2
− =q Q



 



Λ
Λ  

( )2 22 0, 1,2,3, , ,m m m
m

sign A m n
nr r

  − − + =  
   

z y z x


 
Λ

 

,A=z x  

,=x q   

where  

( )
1, > 0,

1, 0,
0, 0.

sign

= − <
 <

x
x x

x
 

Similar to Theorem 2.4 in [18], we show that our proposed algorithm con-
verges to a saddle point satisfying KKT conditions.  

Theorem 3. Assume that the successive differences of the two multipliers 

{ }1 1
1 1 2 2,j j j j− −− −Λ Λ Λ Λ  converge to zero and { }jx  is bounded. Then there exists 
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a subsequence of iterative sequence of Algorithm 1 converging to an accumula-
tion point that satisfies the KKT conditions of the saddle point problem (5). 

3. Numerical Experiments 

All simulations were performed on a 64-bit laptop computer running Windows 
11 system with an AMD A8-6410 APU and 4 GB of RAM. To demonstrate the 
efficiency of our proposed method, we calculate the relative error between origx  
and x̂  as  

2

1
2

ˆ
Relative error : min ,orig

c
orig

x x

x=±

−
=  

where origx  is the true signal and x̂  is the solution obtained by a solver. In all 
experiments, we carry out 100 Monte Carlo runs.  

3.1. Experimental Parameters and Initialization 

We take 128p =  in all experiments, generating the true signal as Gaussian 
random sparse vector. The measurements matrix A generates from ( ). . . 0,i i d

ia I
. 

Regularization parameter λ  is given by a fixed 10−4. The penalty parameter r is 
chosen as 10−2.  

For nonconvex problems, ADMM can converge to different (and in particular, 
nonoptimal) points, depending on the initial values and the penalty parameter 
[21]. We take Wirtinger flow [22] with initial point 0q , which obeys  

( )0 1dist ,
8

≤q x x , where ( ) 1 2dist , minc c=±= −q x q x . Hence the algorithm 

proposed converges from the neighborhood of the global minimizer. 
Like many phase retrieval methods, we use spectral initial values to achieve 

better recovery. To evaluate the efficiency of our method, we compare the suc-
cessful recovery rate with 5 kinds of algorithm listed in Table 1. 
 
Table 1. Comparison of reconstruction methods. 

Method Implementation 
Measurements 

matrix 
Robustness 

Sparse 
solution 

L0L1PR [23] ADMM 
Fourier 
related 

Noise ✓ 

LAD-ADMM [24] ADMM Gaussian 
Gaussian 

mixture noises 
 

Median-RWF [1] 
Gradient 
descent 

Gaussian Noise outliers  

Median-MRWF [25] 
Gradient 
descent 

Gaussian Noise outliers  

L1/2LAD PR [18] ADMM Gaussian Noise outliers ✓ 

L1/2QR PR ADMM Gaussian Noise outliers ✓ 
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3.2. Success Rate Comparisons 

We compare the recovery success rates of L1/2QR PR at different values of τ  in 
the noise-free case and noisy case including dense bounded noise and Laplace 
noise.  

1) When not disturbed by noise, let 0.1,0.2,0.4,0.5,0.6,0.8,0.9τ = . We re-
port the success rates on Table 2 where the recovery is considered successful if 
the relative error is less than 0.0001.  

2) When in dense bounded noise, let 0.1,0.2,0.4,0.5,0.6,0.8,0.9τ = . The en-
tries of the dense bounded noise are generated independently from ( )max0,η , 
where max 2 0.01xη = . We say that the recovery is successful if the relative er-
ror is less than 0.001. Since the recovery success rate is 0 as 0.1τ = , we here re-
port the other cases on Table 3.  

3) When in Laplace noise, let 0.4,0.5,0.6,0.8,0.9τ =  and 4,5,6n p = . The 
entries of Laplace noise are generated from Laplace ( )max0, 2µ , where  

max

2

0.001
n

µ
=

y
. We say that the recovery is successful if the relative error is 

less than 0.005 and report the success rate on Table 4. 
From Tables 2-4, one can see that the recovery success rate of L1/2QR PR with 

0.5τ =  is usually better than when τ  equals other values. For Laplace noise, 
L1/2QR PR with 0.5τ =  and 0.8τ =  both perform well when 6n p = . 
 
Table 2. Success rate of L1/2QR PR (Without noise). 

τ  n/p = 2 n/p = 3 n/p = 4 n/p = 5 n/p = 6 

0.1 0.008 0.81 0.90 0.92 0.98 

0.2 0.01 0.82 0.91 0.94 0.98 

0.4 0.01 0.83 0.91 0.95 0.95 

0.5 0.57 0.87 0.92 0.94 1.0 

0.6 0.46 0.86 0.90 0.95 0.99 

0.8 0.56 0.85 0.89 0.93 0.96 

0.9 0.55 0.84 0.88 0.92 0.97 

 
Table 3. Success rate of L1/2QR PR (Dense bounded noise). 

τ  n/p = 4 n/p = 5 n/p = 6 n/p = 7 n/p = 8 

0.2 0.65 0 0 0 0 

0.4 0.70 0 0 0 0 

0.5 1 1 1 1 1 

0.6 1 0.92 0.82 0.24 0.20 

0.8 1 1 1 0.84 0.29 

0.9 1 0.91 0.92 0.65 0.20 
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Table 4. Success rate of L1/2QR PR (Laplace noise). 

τ  n/p = 4 n/p = 5 n/p = 6 

0.4 0.22 0.40 0.73 

0.5 0.49 0.88 0.96 

0.6 0.42 0.86 0.92 

0.8 0.40 0.85 0.96 

0.9 0.42 0.83 0.95 

 
Next, let’s continue to compare recovery success rate with the other five algo-

rithms under different measurement fractions (n/p). We continue to use the 
same parameters and recovery success criteria as above. And let 0.5τ = . Figure 
1 shows how these algorithms behave without noise. Through repeated experi-
ments, we find that median-MRWF has a better recovery success rate when 
measurement fractions (n/p) = 2, 3 and no noise interference in real field. The 
recovery success rate of L1/2QR PR is slightly lower than that of median-RWF 
and median-MRWF, and higher than that of other algorithms. Figure 1 also 
shows how these algorithms behave when disturbed by noise. When receiving 
interference from dense bounded noise, the recovery success rate of L1/2QR PR is 
higher than that of the other five algorithms in the real field. When receiving in-
terference from laplace noise, the recovery success rate of L1/2QR PR is higher 
than that of the other five algorithms in the real field.  

In the following chapters, we make 0.5τ = . And we fix the sparsity to s = 8 
and use the competing algorithms listed in L1/2QR PR the L1 norm loss function, 
and L0L1PR adds L0 regularization. The median-RWF and the median-MRAF of 
the L2 norm loss function are highly robust to outliers through heuristic trunca-
tion rules. We compare the relative errors relative to the iteration count T under 
different measurement fractions (n/p), x is the true signal, x (t) is the tth iteration 
point. 

Remark 3.1. We take n = 2p, 3p, 4p, 5p, 6p in real case. In detail, n = 2p and n 
= 4p are approximate theoretical sample complexity. When lad-admm returns to 
stability, we actually use n = 6p. 

3.3. Exact Recovery for Noise-Free Data 

In the noise-free case, Figure 2 shows in real case, when n = 2p, L1/2QR PR and 
L1/2LAD PR have good recovery performance. When n = 3p, 4p, 5p, 6p, L1/2QR 
PR is slightly better than other 5 algorithms.  

3.4. Stable Recovery with Dense Bounded Noise 

Now, we consider the existence of dense bounded noise. The entries of the dense 
bounded noise are generated independently from ( )max0,η , where  

max 2 0.001,0.01xη = . It can be seen from Figure 3, L1/2QR PR shows great ro-
bustness to dense bounded noise in real case, while LAD-ADMM shows poor 
performance. L1/2QR PR and L1/2LAD PR have similar performance when n = 4p  
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(a) 

 
(b) 

 
(c) 

Figure 1. Recovery success rate. (a) No noise; (b) Dense bounded noise; (c) Laplace noise. 
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(c)                                                   (d) 

Figure 2. The relative error with respect to the iteration count for LAD-ADMM, median-RWF, median-MRAF, L0L1PR, L1/2LAD 
PR, L1/2QR PR with noise-free data in real case. (a) n = 2p; (b) n = 3p; (c) n = 5p; (d) n = 6p. 

 
in real case. Median-RWF and median-MRAF have similar performance when n 
≥ 4p in real case. Another reasonable observation, we find the relative recon-
struction error has 10 times increase as η shrinks by a factor of 10 for all algo-
rithms.  

3.5. Stable Recovery with Laplace Noise 
Finally, we consider the presence of Laplace noise, the entries of Laplace noise 

are generated from Laplace ( )max0, 2µ , where max

2

0.001,0.01
n

µ
=

y
. As can  

be observed in Figure 4, surprisingly, L1/2QR PR and L1/2LAD PR are very robust 
to Laplace noise, especially in real case, no matter when n = 2p, 3p, 4p, 5p, 6p. 
However, other methods show poor performance, even when n = 6p, LAD- 
ADMM, L0L1PR, median-RWF, median-MRAF don’t have satisfactory recovery. 
Another logical observation, we find the relative reconstruction error has 10 
times increase as maxµ  shrinks by a factor of 10 for all algorithms.  
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(a)                                                   (b) 

  
(c)                                                   (d) 

  
(e)                                                   (f) 

Figure 3. The relative error with respect to the iteration count for LAD-ADMM, median-RWF, median-MRAF, L0L1PR, L1/2LAD 

PR, and L1/2QR PR with dense bounded noise in real case. ( max

2

0.001,0.01
x
ηη = = ). (a) n = 2p; η = 0.001; (b) n = 3p; η = 0.001; (c) 

n = 6p; η = 0.001; (d) n = 2p; η = 0.01; (e) n = 3p; η = 0.01; (f) n = 6p; η = 0.01. 
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(a)                                                   (b) 

  
(c)                                                   (d) 

  
(e)                                                   (f) 

Figure 4. The relative error with respect to the iteration count for LAD-ADMM, median-RWF, median-MRAF, L0L1PR, L1/2LAD 

PR, L1/2QR PR with Laplace noise in real case. ( max

2

0.001,0.01
n

µµ ==
y

). (a) n = 2p; η = 0.001; (b) n = 3p; η = 0.001; (c) n = 6p; 

η = 0.001; (d) n = 2p; η = 0.01; (e) n = 3p; η = 0.01; (f) n = 6p; η = 0.01. 
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The simulation results show that the L1/2QR PR algorithm with quantile loss 
function and L1/2 regularization has two significant advantages over other me-
thods. One is the ability to recover the signal with fewer measured values, and 
the other is the robustness to asymmetrically distributed noise (such as dense 
bounded noise and Laplacian noise). 

4. Conclusion 

We proposed the L1/2 QR PR method and designed an efficient algorithm based 
on the framework of ADMM. A series of numerical experiments show that the 
proposed method can recover sparse signals with fewer measurements and is 
robust to asymmetrically distributed noises such as dense bounded noises and 
Laplace noises. An interesting future research direction is to consider the com-
plex situations, such as Fourier basic measurements, which is an application of 
coded diffraction patterns [26]. 
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