
Open Journal of Applied Sciences, 2022, 12, 1783-1795 
https://www.scirp.org/journal/ojapps 

ISSN Online: 2165-3925 
ISSN Print: 2165-3917 

 

DOI: 10.4236/ojapps.2022.1211123  Nov. 8, 2022 1783 Open Journal of Applied Sciences 
 

 
 
 

Numerical Study of a Cylindro-Parabolic 
Cooker “Blazing Tube” 

Boureima Dianda1,2, Mibienpan Ki2, Wende Pouiré Germain Ouédraogo2,3, Nébon Bado2,  
Sikoudouin Maurice Thierry Ky2, Bruno Korgo2, Sié Kam2, Dieudonné Joseph Bathiebo2 

1National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso 
2Laboratory of Renewable Thermal Energies, University Josph Ki-Zerbo, Ouagadougou, Burkina Faso 
3Higher School of Engineering (ESI), University of Fada N’Gourma, Fada N’Gourma, Burkina Faso 

 
 
 

Abstract 
The objective of this work is to numerically determine the thermal perfor-
mance of the parabolic cylinder cooker commonly “blazing tube”. These per-
formances were determined by establishing heat balances at the different le-
vels of the system. The equations obtained have been discretized; simplifying 
assumptions have been made to facilitate their resolution. We adopted Gauss 
Seidel’s method using MATLAB software to solve these equations. The tem-
peratures of the coolant, the glass and the absorber were determined as a 
function of time and along the tube. The thermal efficiency was also deter-
mined. It emerged that the different temperatures evolve linearly as a func-
tion of the length of the tube. Yield and temperatures depend on the amount 
of sunshine. 
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1. Introduction 

The foods consumed by men are mostly cooked beforehand. The source of 
energy necessary for this cooking is generally fossil fuel. This increasingly rare, 
perishable and expensive source of energy is also polluting. It should be noted 
above all that in African countries in general, the most widely used source of 
energy is wood. These reasons lead researchers to turn to renewable energies, in-
cluding solar. The literature shows that several solar cookers have been devel-
oped and studied. Box type cookers are the most common. This type of cooker 
consists of an insulated box with a transparent glass cover [1]. Several authors 
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have taken an interest in the study of these cookers [2] [3] [4] [5]. Studies have 
shown their effectiveness and limits, so they added improvement elements such 
as reflectors, fins and even storage systems. So-called solar panel cookers have 
also been the subject of research by several researchers [6] [7] [8] [9]. These 
cookers are made up of panels that can be made of cardboard or any other ma-
terial (even recycled). These panels are foldable and covered with reflective ma-
terials. The particularity of these cookers is that they are easy to build, very in-
expensive and transportable. Unfortunately they are ineffective. However, im-
provement work has been carried out by these authors. Another type of cooker is 
the parabolic solar cooker. It is a parabolic shaped cooker with a reflective sur-
face. The rays are reflected at the focus where the pot is placed. Studies carried 
out by various authors [10]-[15] show that thanks to the concentration of the 
sun’s rays, these cookers perform well. A major inconvenience is that the entire 
device remains under the sun’s rays, indisposing the user. This is why I refer to 
them as direct solar cooker. In contrast to these cookers, there may be indirect 
cookers. These cookers are the subject of this study, more specifically the para-
bolic cylinder solar cooker commonly called “blazing tube”. A numerical study 
on MATLAB is made to determine the performance of this type of cooker in or-
der to allow possible improvements. 

2. Materials and Methods 
2.1. Description of the Device 

The device on which the simulation study will be carried out is the parabolic cy-
lindrical solar cooker called “blazing tube”, an indirect solar cooker. It is made 
up of: 
• an aluminum reflector, 
• a transparent pyrex glass tube under vacuum, 
• a copper absorber tube covered with black paint containing a heat transfer 

fluid which is vegetable oil, 
• a hearth or cooking box where the container (kitchen utensil) is located. 

It is also equipped with wheels to facilitate its mobility. 
The solar cooker concentrates the solar rays through the reflector on the ab-

sorber tube filled with oil (linear concentration). The heated oil rises by thermo-
siphon to the cooking hearth where the pot is located [16].  

Figure 1 presents ours device. 

2.2. Heat Balances at the Level of the Various Components 

Before performing the heat balances, we made some simplifying assumptions. 
Hypotheses 

 the heat transfer fluid is incompressible; 
 the ambient temperature Ta around the receiver is uniform; 
 the solar flux at the level of the absorber is uniformly distributed; 
 a transient regime for each heat transfer medium; 
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Figure 1. Cylindrical-parabolic cooker ((a) Front view, (b) Side image). 

 
 One-dimensional heat transfer. 

2.2.1. Heat Balance at the Glass 
The heat transfer is done according to the three modes of transfer that is to say 
the convection, the conduction and the radiation. During this heat exchange we 
observe gains but also losses. 

The glass exchanges heat with the external environment but also with the ab-
sorber. 
• Thermal balance of exchanges at the level of the external wall of the glass: 
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• Thermal balance of exchanges at the level of the internal wall of the glass: 
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2.2.2. Heat Balance of the Absorber 
• Thermal balance of the external wall of the absorber: 
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• Thermal balance of the internal wall of the absorber: 
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• Overall thermal balance at the level of the absorber: 

https://doi.org/10.4236/ojapps.2022.1211123


B. Dianda et al. 
 

 

DOI: 10.4236/ojapps.2022.1211123 1786 Open Journal of Applied Sciences 
 

( ) ( )

( )

,
, ,

,

d
d

p abs abs
abs ray abs vi abs vi abs conv abs vi abs abs vi

conv abs f abs abs f abs

C T
m h S T T h S T T

t
h S T T P

− −

−

= − − −

− − +
    (5) 

2.2.3. Overall Heat Balance of the Heat Transfer Fluid Overall Heat  
Balance of the Heat Transfer Fluid 
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Conditions to the limits: 

( ),0f ambT j T=  
( )0,f feT n T=  

2.3. Evaluation of Heat Exchange Coefficients 

• convection between the heat transfer fluid and the absorber 
Heat transfer between the absorber tube and the heat transfer fluid (oil in our 

case) takes place by natural convection with a regime that can be laminar or 
turbulent. 

In natural convection we have: 
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• Convection between the absorber and the glass 
Heat transfer between the absorber tube and the glass (where air is trapped 

between them) takes place by natural convection. The heat transfer coefficient is 
determined using the following relationships: [18] 
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and 
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The Rayleigh number is defined as follows: 
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air air

g L T T
Ra

β ρ
α µ

−
=                    (13) 

• Convection between the glass and the ambient 
The heat exchange between the glass and the surrounding environment takes 

place by convection. 
It can be determined by several linear relationships depending on the wind 

speed: 
Hottel and Woertz relationship 

, 5.67 3.86conv veh Vv= +  [19]                  (14) 

Watmuff et al. relationship 

, 2.8 3.3conv veh Vv= +  [20]                    (15) 

For our work we have opted for the relation of Hottel and Woertz which is 
more rigorous and more used. 
• Radiation between the glass and the celestial vault 
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,ray ve v c v ch T T T Tσε= + +                   (16) 

• Radiation between the absorber and the glass 
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• Conduction between the glass walls 
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• Conduction between the walls of the absorber 
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2.4. Determination of Powers 

• Power received by the collector 

c cP S I=                           (20) 

• Power absorbed by the glass 
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v v c g vP I C Sα ρ=                        (21) 

• Power absorbed by the absorber 

ab ab v c g absP I C Sα τ ρ=                      (22) 

2.5. Thermal Efficiency 

Le rendement thermique est le rapport entre la puissance thermique gagnée par 
le fluide caloporteur et la puissance solaire reçue par le capteur. Il est donné par 
la relation suivante: 

The thermal efficiency is the ratio between the thermal power gained by the 
heat transfer fluid and the solar power received by the collector. It is given by the 
following relationship: 
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2.6. Calculation of Solar Radiation 

The global radiation RG is expressed by the relationship: 

RG RDIR RDIF= +                      (24) 

RDIF is diffuse radiation 
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RDIFH is diffuse radiation on a horizontal surface 
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RDIR is direct radiation 
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3. Results 

The equations were discretized by the finite difference method. They are then 
solved by the Gauss Seidel method in a computer program using MATLAB 
software. This program made it possible to obtain the curves below. 

Figure 2 and Figure 3 represent respectively the temporal evolution of direct 
sunshine and global sunshine by simulation. 

It can be seen that the overall sunshine increases (8 a.m. to 12 p.m.) then de-
creases as a function of time. The curve is “bell-shaped”. It reaches its maximum 
around 12 noon with a value of approximately 920 W/m2. Direct sunlight reach-
es a maximum value of approximately 860 W/m2. 
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Figure 2. Temporal evolution of direct sunshine. 

 

 
Figure 3. Temporal evolution of global sunshine. 

 
Figure 4 presents the variations of the different temperatures (temperature of 

the absorber, temperature of the fluid, temperature of the glass) as a function of 
the length of the tube for t = 13 h (t represents the time). 

It can be seen that all the curves have the same shape and that the tempera-
tures evolve in an increasing way according to the length of the tube. We also 
note that the temperature of the absorber is higher than that of the fluid which is 
higher than that of the glass. We find the same profiles in the simulation results 
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of Chekirou et al. [18]. This shows that our results are satisfactory. The maxi-
mum temperature of the fluid, i.e. the outlet temperature, is around 145˚C. 

Figure 5 shows the evolution over time of the temperature of the absorber 
(red), the heat transfer fluid (black) and the glass (blue). 

Temperatures change during the day or time. This means that the temperatures  
 

 
Figure 4. Evolution of the temperature of the fluid (black), of the absorber (red) and of 
the glass (blue) according to the length of the tube. 

 

 
Figure 5. The evolution over time of the temperature of the absorber (red), the heat 
transfer fluid (black) and the glass (blue). 
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Figure 6. Evolution of thermal efficiency. 

 
are a function of the sunshine. During the day the temperature of the absorber is 
the highest and that of the glass the lowest throughout the day, the temperature 
of the fluid is then between the two. The same profiles are obtained in the work 
of Chekirou et al. [18], Boukhchana et al. [21]. 

Figure 6 shows the evolution of thermal efficiency as a function of time. 
The thermal efficiency evolves in an increasing way until its maximum (0.40 

to 0.33) around 1 p.m. The thermal efficiency curve has a bell shape, like that of 
sunshine. The efficiency depends on the solar power. 

4. Conclusion 

An algorithm developed in this study allowed us to determine the performance 
of the cylindrical parabolic solar cooker. Thus, it was possible to evaluate the 
temperatures of the various components of the system and of the heat transfer 
fluid. There is an increasing evolution of these temperatures along the length of 
the tube. Also the sunshine directly influences the evolution of the fluid temper-
ature as well as on all the components. 
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Nomenclature 

Symbols Designation  Unity 
A Atmospheric haze factor  
Ac useful surface of the collector m2 

B Atmospheric haze factor  
C correction factor  
Cg  geometric concentration - - 
Cp specific heat J/kg.K 
D Diameter m 
Dh hydraulic diameter m 
f collector efficiency factor - 
Gr Grashoff number - 
h height of the sun  (˚) degré 
hcond heat exchange coefficient by conduction W/m2∙K 
hconv heat exchange coefficient by convection W/m2∙K 
hray radiation heat exchange coefficient W/m2∙K 
I solar radiation W/m2 

I0 Solar constant W/m2 
K overall heat exchange coefficient  W/m2∙K 
Keff effective thermal conductivity of fluid W/mK 
l collector length m 
m mass  kg 

fm  mass flow of the heat transfer fluid kg/s 
Nu Nusselt number  - 
P Power W 
Pr Prandtl number - 
Ra Rayleigh number - 
Rac simplified Rayleigh number  
S  concentrator opening area m2 
T temperature  K 
V wind speed m/s 
 
 
 
Greek letters Designation Unity  
α Absorption coefficient  - 
ε Emissivity  - 
η Thermal efficiency  - 
λ Thermal conductivity  W/m.K 
ρ Reflection coefficient  - 
σ Stephan-Boltzman constant  W/m2∙K4 

τ Transmission coefficient  - 
φ Amount of heat exchanged W 
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Indices  Designation  
ab absorbed  
abs absorbed  
air air  
c collector 
e External or input 
ext Outside 
f fluid 
i internal 
int Interior 
r receiver 
s exit 
v glass 

 

https://doi.org/10.4236/ojapps.2022.1211123

	Numerical Study of a Cylindro-Parabolic Cooker “Blazing Tube”
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. Description of the Device
	2.2. Heat Balances at the Level of the Various Components
	2.2.1. Heat Balance at the Glass
	2.2.2. Heat Balance of the Absorber
	2.2.3. Overall Heat Balance of the Heat Transfer Fluid Overall Heat Balance of the Heat Transfer Fluid

	2.3. Evaluation of Heat Exchange Coefficients
	2.4. Determination of Powers
	2.5. Thermal Efficiency
	2.6. Calculation of Solar Radiation

	3. Results
	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	References
	Nomenclature

